Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Similar documents
Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Light Baryon Spectroscopy What have we learned about excited baryons?

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Report on NSTAR 2005 Workshop

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

Baryon Spectroscopy: Recent Results from the CBELSA/TAPS Experiment

Facilities and Detectors for Baryon Physics

Measurement of Double-Polarization

Baryon Spectroscopy at ELSA

Baryon spectroscopy with polarization observables from CLAS

Overview of N* Physics

Kaon Photoproduction Results from CLAS

Electroexcitation of Nucleon Resonances BARYONS 02

Excited Nucleons Spectrum and Structure

The Beam-Helicity Asymmetry for γp pk + K and

Electroexcitation of Nucleon Resonances BARYONS 02

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

Nucleon Spectroscopy with CLAS

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

The search for missing baryon resonances

Double polarization measurements with the Crystal Barrel/TAPS experiment at ELSA

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Measurement of the Polarization Observables. Spectrometer. I s and I c for γp p π + π using the CLAS. Charles Hanretty.

Photoproduction of mesons off light nuclei

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

Photoexcitation of N* Resonances

Experimental Hadronic Physics at Florida State

Meson-baryon interaction in the meson exchange picture

Cornelius Bennhold George Washington University

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

Dynamical coupled-channels channels study of meson production reactions from

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Light-Meson Spectroscopy at Jefferson Lab

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FREE PROTON ANDREW MATTHEW WILSON

Open questions in hadron physics Spectroscopy with the Crystal Barrel Detector Volker Credé

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Nucleon Resonance Physics

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Hadron Spectroscopy: Results and Ideas.

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

Extraction Of Reaction Amplitudes From Complete Photo-Production Experiments

Baryon Spectroscopy with Polarised Photon Beams at ELSA

Vector-Meson Photoproduction

Photoproduction of K 0 Σ + with CLAS

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

Recent Results from Jefferson Lab

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

Exclusive N KY Studies with CLAS12

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

Valence quark contributions for the γn P 11 (1440) transition

arxiv: v1 [hep-ex] 22 Jun 2009

The Determination of Beam Asymmetry from Double Pion Photoproduction

Recent results from the Crystal Ball/TAPS experiment at MAMI

Hyperon Photoproduction:

Baryon Spectroscopy: what do we learn, what do we need?

Search for Gluonic Excitations with GlueX at Jefferson Lab

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Dynamical coupled channel calculation of pion and omega meson production

Measurement of the double polarisation observable G with the Crystal Barrel ELSA

The Jefferson Lab 12 GeV Program

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

Hunting for the Nucleon Resonances by Using Kaon Photoproduction

A Likelihood Fitting Technique for Nuclear Physics Data Analysis

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Challenges of the N* Program

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

arxiv: v1 [nucl-th] 14 Aug 2012

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Polarization Observables in Double Pion Photo- Production with Circularly Polarized Photons off Transversely Polarized Protons

Baryonspektroskopie mit polarisierten Photonenstrahlen aktuelle Ergebnisse der Experimente an ELSA

Electromagnetic Strangeness Production at GeV Energies

arxiv: v1 [nucl-th] 6 Aug 2008

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Covariant quark-diquark model for the N N electromagnetic transitions

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

Hyperon Photoproduction:

Pion photoproduction in a gauge invariant approach

arxiv: v1 [nucl-ex] 3 Oct 2016

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility

Coupled channel dynamics in Λ and Σ production

Experiments using polarized photon beam and polarized hydrogen-deuteride (HD) target

Hadron Spectroscopy CLAS g12

Search for Pentaquarks at CLAS. in Photoproduction from Proton

16) Differential cross sections and spin density matrix elements for the reaction p p, M. Williams

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Hadron Spectroscopy at COMPASS

Hadron Physics with Real and Virtual Photons at JLab

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park

Production and Searches for Cascade Baryons with CLAS

MESON PRODUCTION IN NN COLLISIONS

Nucleon Transition Form Factors and New Perspectives

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

Mukesh Saini. Florida State University, Tallahassee, FL. February 26, FSU Nuclear Physics Seminar. February 26

Transcription:

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24

Outline Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances 2 Electromagnetic Probes Mission Goal: Complete Experiments 3 Photoproduction of π and π + Mesons off the Proton 4

Outline Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances 2 Electromagnetic Probes Mission Goal: Complete Experiments 3 Photoproduction of π and π + Mesons off the Proton 4

Quarks, QCD, and Confinement Structure of Baryon Resonances Non-Perturbative Quantum Chromodynamics (QCD) QCD is the theory of the strong nuclear force which describes the interactions of quarks and gluons making up hadrons. Strong processes at larger distances and at small (soft) momentum transfers belong to the realm of non-perturbative QCD. Quarks are confined within hadrons. Confinement of quarks and gluons within nucleons is a non-perturbative phenomenon, and QCD is extremely hard to solve in non-perturbative regimes: Knowledge of internal structure of nucleons is still limited. This is particularly true for excited nucleons.

Non-Perturbative QCD Quarks, QCD, and Confinement Structure of Baryon Resonances How does QCD give rise to excited hadrons? What is the origin of confinement? 2 How are confinement and chiral symmetry breaking connected? 3 Would the answers to these questions explain the origin of 98% of observed matter in the universe? Excited Baryons: What are the fundamental degrees of freedom inside a proton or a neutron? How do they change with varying quark masses?

3 Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances Spectrum of N Resonances (PDG < 22) S. Capstick and N. Isgur, Phys. Rev. D34 (986) 289 25 ** *** ** Mass [MeV] 2 5 * S *** ** ** ** 2. Excitation Band: (56, + 2 ), (56, 2+ 2 ) (7, + 2 ), (7, 2+ 2 ) ( ) (2, + 2 )? * ** S S ***. Excitation Band: (7, ) Theory Experiment J π /2+ 3/2+ 5/2+ 7/2+ 9/2+ /2+ 3/2+ /2-3/2-5/2-7/2-9/2- /2-3/2-

3 Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances Spectrum of N Resonances (PDG < 22) S. Capstick and N. Isgur, Phys. Rev. D34 (986) 289 Perhaps only the tip of the iceberg has been discovered? ** 25 *** ** Mass [MeV] 2 5 * S *** ** ** ** 2. Excitation Band: (56, + 2 ), (56, 2+ 2 ) (7, + 2 ), (7, 2+ 2 ) ( ) (2, + 2 )? * ** S S ***. Excitation Band: (7, ) Theory Experiment J π /2+ 3/2+ 5/2+ 7/2+ 9/2+ /2+ 3/2+ /2-3/2-5/2-7/2-9/2- /2-3/2-

Quarks, QCD, and Confinement Structure of Baryon Resonances Mass [MeV] Spectrum of N Resonances N J P (L 2I,2J ) 2 22 3 N(44) /2 + (P ) N(52) 3/2 (D 3 ) N(535) /2 (S ) N(65) /2 (S ) ** N(675) 5/2 (D 5 ) 25 N(68) 5/2 + (F 5 ) N(685) *** N(7) 3/2 (D 3 ) N(7) /2 (P ) + N(72) 3/2 + (P 3 ) ** 2 N(86) 5/2 + ** * N(875) 3/2 * S ** ** N(88) S /2 + ** S N(895) /2 N(9) *** 3/2 + (P 3 ) *** 5 N(99) 7/2 + (F 7 ) N(2) 5/2 + (F 5 ) N(28) D 3 N(29) S N(24) 3/2 + N(26) 5/2 N(2) /2 + (P ) N(22) 3/2 J π /2+ 3/2+ 5/2+ 7/2+ 9/2+ /2+ 3/2+ N(29) /2-7/2 3/2- (G 7 5/2- ) 7/2-9/2- /2-3/2- N(22) D 5 V.C. & W. Roberts, Rep. Prog. Phys. 76 (23) N(222) 9/2 + (H 9 )

Quarks, QCD, and Confinement Structure of Baryon Resonances Mass [MeV] Spectrum of N Resonances N J P (L 2I,2J ) 2 22 3 N(44) /2 + (P ) N(52) 3/2 (D 3 ) N(535) /2 (S ) N(65) /2 (S ) ** N(675) 5/2 (D 5 ) 25 N(68) 5/2 + (F 5 ) N(685) *** N(7) 3/2 (D 3 ) N(7) /2 (P ) + N(72) 3/2 + (P 3 ) ** 2 N(86) 5/2 + ** * N(875) 3/2 * S ** ** N(88) S /2 + ** S N(895) /2 N(9) *** 3/2 + (P 3 ) *** 5 N(99) 7/2 + (F 7 ) N(2) 5/2 + (F 5 ) N(28) D 3 N(29) S N(24) 3/2 + N(26) 5/2 N(2) /2 + (P ) N(22) 3/2 J π /2+ 3/2+ 5/2+ 7/2+ 9/2+ /2+ 3/2+ N(29) /2-7/2 3/2- (G 7 5/2- ) 7/2-9/2- /2-3/2- N(22) D 5 V.C. & W. Roberts, Rep. Prog. Phys. 76 (23) N(222) 9/2 + (H 9 )

Quarks, QCD, and Confinement Structure of Baryon Resonances Polarization Transfer in γp K + Λ : Cx, C z C x, C z without N(9)P 3 C x, C z with N(9)P 3-678 733 787-678 733 787-838 889 939-838 889 939-987 235 28-987 235 28-226 269 222-226 269 222-2255 2296 2338-2255 N(9)P 3, N(2)F 5, N(99)F 7 2296 2338 - -.5.5 2377 -.5.5 246 2454 -.5.5 cos θ K - -.5.5 2377 Bonn-Gatchina PWA requires N(9)P 3 No quark-diquark oscillations! 246 2454 -.5.5Both -.5 oscillators.5 need to be excited. cos θ K R. Bradford et al. [CLAS Collaboration], Phys. Rev. C 75, 3525 (27) Fits: BoGa-Model, V. A. Nikonov et al., Phys. Lett. B 662, 245 (28)

CLAS g9b GRAAL Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances Complete Experiment for K + Y :.65 < W < 2.2 GeV W + Target Asym. [.9, for K Λ (.9<W<.95.95] GeV) GeV γp K + Λ K + Σ W [2., 2.5] GeV + Target Asym. for K Σ (2.<W<2.5 GeV).5 TTx T.5 -.5 T z -.5 - - -.8 -.6 -.4 -.2.2.4.6.8 cos θ cm W [.85,.9] GeV + T x for K Λ (.85<W<.9 GeV) W [.9,.95] GeV + T z for K Λ (.9<W<.95 GeV) T x - - -.8 -.6 -.4 -.2.2.4.6.8 cos θ cm W [.95, 2.] GeV + T x for K Σ (.95<W<2. GeV).5.5.5 -.5 - - -.8 -.6 -.4 -.2.2.4.6.8 cos θ cm N. Walford et al. [CLAS Collaboration], FROST run group -.5 - - -.8 -.6 -.4 -.2.2.4.6.8 cos θ cm BoGa MAID -.5 - - -.8 -.6 -.4 -.2.2.4.6.8 cos θ cm

Quarks, QCD, and Confinement Structure of Baryon Resonances Excited-State Baryon Spectroscopy from Lattice QCD R. Edwards et al., Phys. Rev. D 84, 7458 (2) Missing states? (7) N(938) (232) (62) m π = 396 MeV Exhibits broad features expected of SU(6) O(3) symmetry Counting of levels consistent with non-rel. quark model, no parity doubling

Gluonic Excitations on the Lattice Quarks, QCD, and Confinement Structure of Baryon Resonances J. J. Dudek and R. G. Edwards, Phys. Rev. D 85, 546 (22) m π = 524 MeV m π = 396 MeV m u = m d = m s m π = 72 MeV The mass scale is m m ρ for mesons and m m N for baryons. Common scale of.3 GeV for gluonic excitation, but hybrid baryons are difficult to identify experimentally.

Quarks, QCD, and Confinement Structure of Baryon Resonances Helicity Amplitudes for the Roper Resonance A /2 ( 3 GeV /2 ) 8 6 4 2-2 -4-6 -8 2 3 4 Q 2 (GeV 2 ) S /2 ( 3 GeV /2 ) 7 6 5 4 3 2 2 3 4 Q 2 (GeV 2 ) Consistency between both channels (Nππ, Nπ): sign change, magnitude,... At short distances (high Q 2 ), Roper behaves like radial excitation. Low Q 2 behavior not well described by LF quark models: e.g. meson-baryon interactions missing Gluonic excitation likely ruled out! Data from CLAS A /2 and S /2 amplitudes: e.g. V. Mokeev et al., PRC 86, 3523 (22); PRC 8, 4522 (29). Quark-model calculations: - q 3 radial excitation - - - - q 3 G hybrid state

Outline Introduction Electromagnetic Probes Mission Goal: Complete Experiments Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances 2 Electromagnetic Probes Mission Goal: Complete Experiments 3 Photoproduction of π and π + Mesons off the Proton 4

Electromagnetic Probes Mission Goal: Complete Experiments E γ [GeV] Reaction Thresholds 3, W [GeV] 2.6 2.6 In addition: SPring-8 J-PARC.66.6 γp pηη γp pπ ω γp pπ η γp pη γp pπππ γp pππ γp pπ 2, γp KΛ KΣ,.9.7 Common efforts at ELSA, JLab, and MAMI (Double-)polarization measurements, γp & γn reactions, etc.., ELSA CLAS MAMI-C GRAAL

Electromagnetic Probes Mission Goal: Complete Experiments The CLAS Spectrometer at Jefferson Laboratory g8b linear beam polarization FROST double polarization

Electromagnetic Probes Mission Goal: Complete Experiments Extraction of Resonance Parameters Double-polarization measurements Measurements off neutron and proton to resolve isospin contributions: A(γN π, η, K) I=3/2 2 A(γN π, η, K) I=/2 N Re-scattering effects: Large number of measurements (and reaction channels) needed to extract full scattering amplitude. Coupled Channels Maid Said BoGa... Jülich, Gießen, EBAC, etc.

Electromagnetic Probes Mission Goal: Complete Experiments Why are Polarization Observables Important? For single-meson production: γp pπ E γ [MeV] dσ dω = σ { δ l Σ cos 2φ + Λ x ( δ l H sin 2φ + δ F ) Λ y ( T + δ l P cos 2φ) Λ z ( δ l G sin 2φ + δ E)} Box Chiang & Tabakin, Phys. Rev. C55, 254 (997) In order to determine the full scattering amplitude without ambiguities, one has to carry out eight carefully selected measurements: four double-spin observables along with four single-spin observables. Box Eight well-chosen measurements are needed to fully determine production amplitudes F, F 2, F 3, and F 4.

Example: Ambiguities in γ p pπ Electromagnetic Probes Mission Goal: Complete Experiments Bonn-Gatchina (2-2) SAID (SN, CM2) MAID σ /2 Example: E = N N 2Λ z δ N + N σ 3/2 2. 3. 4.

Electromagnetic Probes Mission Goal: Complete Experiments Helicity Asymmetry E in γ p pπ @ ELSA E E = σ /2 σ 3/2 σ /2 +σ 3/2 E γ [.6, 2.2] GeV CBELSA/TAPS Maid Said (CM2) BoGa (2_2) Angular distributions sensitive to interference between resonances. M. Gottschall et al., Phys. Rev. Lett. 2, 23 (24) cosθ π

Outline Introduction Photoproduction of π and π + Mesons off the Proton Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances 2 Electromagnetic Probes Mission Goal: Complete Experiments 3 Photoproduction of π and π + Mesons off the Proton 4

Asymmetry G in γ p pπ @ ELSA Photoproduction of π and π + Mesons off the Proton.6.4.2 -.2 dσ dω =σ { δ l Σ cos 2φ + Λ x ( δ l H sin 2φ + δ F ) Λ y ( T + δ l P cos 2φ) Λ z ( δ l G sin 2φ + δ E)} -.4 -.6 -.8.6 - - -.8 -.6 -.4 -.2.2.4.6.8.4.2 -.2 -.4 -.6 -.8 Surprisingly, π production also not well understood at lower energies: BoGa - - SAID... MAID - cosθ π A. Thiel et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 9, 2 (22)

Asymmetry G in γ p pπ @ ELSA θ π = 9±5 θ π = 3±5 A. Thiel et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 9, 2 (22) Photoproduction of π and π + Mesons off the Proton dσ dω = σ { δ l Σ cos 2φ + Λ x ( δ l H sin 2φ + δ F ) Λ y ( T + δ l P cos 2φ) Λ z ( δ l G sin 2φ + δ E)} Surprisingly, π production also not well understood at lower energies. Below GeV, discrepancies can be traced to the E + and E 2 multipoles, which are related to certain resonances: E +: N(535) 2, N(65) 2, (62) 2 E 2 : N(52) 3 2, (7) 3 2

Photoproduction of π and π + Mesons off the Proton Beam Asymmetry Σ in γ p pπ @ CLAS (g8b) SAID DU3. SAID CM2 MAID 7... BoGa 2-2 dσ dω = σ { δ l Σ cos 2φ} M. Dugger et al. [CLAS Collaboration], Phys. Rev. C 88, 6523 (23)

Photoproduction of π and π + Mesons off the Proton Beam Asymmetry Σ in γ p pπ @ CLAS (g8b) SAID DU3. SAID CM2 MAID 7... BoGa 2-2 M. Dugger et al. [CLAS Collaboration], Phys. Rev. C 88, 6523 (23) Largest changes in SAID DU3 Improved mapping of dip near 6 Couplings of (7) 3 2 (95) 5 + 2

Photoproduction of π and π + Mesons off the Proton Beam Asymmetry Σ in γ p nπ + @ CLAS (g8b) SAID DU3. SAID CM2 MAID 7... BoGa 2-2 dσ dω = σ { δ l Σ cos 2φ} M. Dugger et al. [CLAS Collaboration], Phys. Rev. C 88, 6523 (23)

Photoproduction of π and π + Mesons off the Proton Helicity Difference E in γ p nπ + @ CLAS (FROST) SAID ST4. MAID 7 BoGa 2-2... Jülich 4 + N 2 pπ : 3 I = 3 2, I 3 = 2 3 I = 2, I 3 = 2 nπ + : 3 I = 3 2, I 3 = 2 2 + 3 I = 2, I 3 = 2 S. Strauch SC, under CLAS collaboration review

Photoproduction of π and π + Mesons off the Proton Target Asymmetry T in γ p nπ + (CLAS FROST) MAID 7 SAID BoGA 2 Early-stage results (g9b) Transverse Target Polarization M. Dugger (ASU), CLAS g9b run group cosθ c.m. cosθ c.m.

Photoproduction of π and π + Mesons off the Proton Observable F in γ p nπ + (CLAS FROST-g9b) MAID 7 SAID 2 BoGa not shown dσ dω =σ { δ l Σ cos 2φ Box + Λ x ( δ l H sin 2φ + δ F ) Λ y ( T + δ l P cos 2φ) Λ z ( δ l G sin 2φ + δ E)} M. Dugger (ASU), CLAS g9b run group cosθ c.m. Transv. target pol. & circ. beam pol. Early-stage analysis Reasonable agreement among predictions for W <.7 GeV Much to learn at the higher energies

Photoproduction of π and π + Mesons off the Proton Overview of CLAS Polarization Measurements Measurements off the proton γp pπ, nπ + γp pη, pη (I. Senderovich, R. Tucker et al.) Frozen-Spin Target (FROST) γp pπ + π, pφ, pω (CMU, CU, Florida State) Measurements off the neutron γn pπ γn nπ + π HD Ice Target Complete experiment possible in Strangeness Photoproduction (S. Fegan, N. Walford et al.) γp K Y (Y = Λ, Σ, Σ + ) γn K + Σ, K Λ Cross sections (K. Moriya, 2:3 PM) (also Λ(45), Λ(52))

Photoproduction of π and π + Mesons off the Proton Beam-Target Polarization Observables in γ p p ππ I = I {( + Λ i P) + δ (I + Λ i P ) + δ l [ sin 2β( I s + Λ i P s )+ cos 2β( I c + Λ i P c )]} W. Roberts et al., Phys. Rev. C 7, 552 (25) Double-Meson Final States (5 Observables) At higher excitation energies: Multi-meson final states important. Search for states in decay cascades!

Photoproduction of π and π + Mesons off the Proton W [.74; -..77] < cos( θπ GeV, ) < -.9 cosθ p -.9 < c.m. cos( ) < -.8 + θπ >.5 + -.8 < cos( θπ + ) < -.7 -.7 < cos( θπ + ) < -.6 -.6 < cos( θπ + ) < -.5.5.5 Polarization Beam Observable Asymmetry I I s s.5 -.5 -.5 -.5 -.5 -.5 - -2 2 -.5 < cos( θπ + ) < -.4-2 2. < cos( θπ + ) <. -2 2.5 < cos( θπ + ) <.6-2 2-2 2.5 -.5 -.5 -.5 -.5 -.5 - -2 2-2 2 -.4 < cos( θπ + ) < -.3-2 2. < cos( θπ + ) <.2-2 2.6 < cos( θπ + ) <.7.5 -.5 -.5 -.5 -.3 < cos( θπ + ) < -.2-2 2.2 < cos( θπ + ) <.3 -.5 -.5 -.5 -.5 -.5-2 2 -.2 < cos( θπ + ) < -. -2 2.3 < cos( θπ + ) <.4 -.5 -.5 -.5 -.5 -.5-2 2 -. < cos( θπ + ) <. -2 2.4 < cos( θπ + ) <.5 - - - -2 2-2 2-2 2 Data of unprecedented statistical quality.7 < cos( θπ + ) <.8.8 < cos( θπ + ) <.9.9 < cos( θπ + ) <..5.5.5 I = I {( + Λ i P)+ δ (I + Λ i P ) -.5 -.5 -.5 + δ - - l [ sin 2β( I s + Λ - i P s )+ -2 2-2 2-2 2-2 2 φ π + -2 2-2 2-2 2-2 2 φ π + cos 2β( I c + Λ i P c )]} Charles Hanretty (FSU), approved by CLAS collaboration

Photoproduction of π and π + Mesons off the Proton s Polarization Beam Asymmetry Observable I I s - Fix & Arenhoevel CLAS-g9b CLAS-g8b -. < cos( θπ + ) < -.8. < cos(θπ ) <.2 + -.8 < cos( θπ + W [.76;.77] GeV.2 < cos( θπ + ) < -.6 ) <.4 -.6 < cos( θπ +.4 < cos( θπ + ) < -.4 ) <.6 -.4 < cos( θπ +.6 < cos( θπ + ) < -.2 ) <.8 -.2 < cos( θπ +.8 < cos( θπ + ) <. ) <. - -2 2-2 2-2 2-2 2-2 2 φ π + Priyashree Roy (Florida State), CLAS g9b (FROST)

Photoproduction of π and π + Mesons off the Proton Polarization Observable I.2 -.2.3.2.2. -. -.2 -.2.2 -.3 -.2.2 -.2 Fix & Arenhoevel W. Roberts (FSU) CLAS-g9a CLAS-gc W =.4 GeV W =.6 GeV.3.2. -. -.2 W = 2.8 3 GeV 4 5 -.3 6 W = 2. GeV W =.45 GeV W =.65 GeV.3.2. -. -.2 W = 2.85 3 GeV 4 5 -.3 6 W = 2.5 GeV φ π + W =.5 GeV.3 W =.7 GeV.2. -. -.2 -.3.2. -. -.2 W = 2.9 3 GeV 4 5 -.3 6 W = 2. GeV W =.55 GeV W 2=.75 3 GeV 4 5 6 W = 2.95 3 GeV 4 5 6.3 Data of unprecedented statistical quality. Butanol I = I {( + Λ i P)+ δ (I + Λ i P ).2 Butanol(wQ) Phys.Rev.Lett. FSU-Model -. A.Fix-Model -.2 + δ l [ sin 2β( I s + Λ i P s )+ -.3 2 3 4 5 6 2 4 6 2 4 6 2 4 6 2 4 6 φ π + Sungkyun Park (FSU), under collaboration review cos 2β( I c + Λ i P c )]}

Photoproduction of π and π + Mesons off the Proton.2 Fix and Arenhoevel W. Roberts (FSU) CLAS Data (g9a) W =.4 GeV W =.45 GeV W =.5 GeV W =.55 GeV Polarization Observable P z -.2.3.2.2. -. -.2 -.2.2 -.3 -.2.2 -.2 W =.6 GeV.3.2. -. -.2 W = 2.8 3 GeV 4 5 -.3 6 W = 2. GeV W =.65 GeV.3.2. -. -.2 W = 2.85 3 GeV 4 5 -.3 6 W = 2.5 GeV φ π + W =.7 GeV.3.2. -. -.2 W = 2.9 3 GeV 4 5 -.3 6 W = 2. GeV W =.75 GeV W = 2.95 3 GeV 4 5 6.3 Data of unprecedented statistical quality. I = I {( + Λ i P)+ δ (I + Λ i P ).2 Butanol(wQ) FSU-Model -. A.Fix-Model -.2 + δ l [ sin 2β( I s + Λ i P s )+ -.3 2 3 4 5 6 2 4 6 2 4 6 2 4 6 2 4 6 φ π + Sungkyun Park (FSU), under collaboration review cos 2β( I c + Λ i P c )]}

Photoproduction of π and π + Mesons off the Proton Fix and Arenhoevel W. Roberts (FSU) CLAS Data (g9a) W =.4 GeV W =.45 GeV W =.5 GeV W =.55 GeV Polarization Observable P z.8.6.4.2 -.2 -.4 -.6 -.8 - W =.6 GeV.8.6.4.2 -.2 -.4 -.6 -.8 2 3 4 5 6 - W =.8 GeV W = 2. GeV W =.65 GeV.8.6.4.2 -.2 -.4 -.6 -.8 2 3 4 5 6 - W =.85 GeV W = 2.5 GeV φ π + W =.7 GeV.8.6.4.2 -.2 -.4 -.6 -.8 2 3 4 5 6 - W =.9 GeV W = 2. GeV W =.75 GeV W = 2.95 3 GeV 4 5 6 Data of unprecedented statistical quality.8 Butanol(wQ).6.4.2 I = I {( + Λ i P)+ δ (I + Λ i P ) FSU-Model -.2 -.4 A.Fix-Model -.6 + δ l [ sin 2β( -.8 I s + Λ i P s )+ - 2 3 4 5 6 2 4 6 2 4 6 2 4 6 2 4 6 φ π + cos 2β( I c + Λ i P c )]} Sungkyun Park (FSU), under collaboration review

Outline Introduction Quarks, QCD, and Confinement Structure of Baryon Resonances 2 Electromagnetic Probes Mission Goal: Complete Experiments 3 Photoproduction of π and π + Mesons off the Proton 4

Our understanding of baryon resonances has made great leaps forward. There is good evidence that most of the known states (listed in the PDG) will also be confirmed in photoproduction and that new states will be revealed: Goal of performing (almost) complete experiments has been (almost) achieved; significant contributions from (double-)polarization experiments. Still too early to nail down relevant degress of freedom in excited baryons. Some states might be generated dynamically... N(86) 5 + 2 N(875) 3 2 N(88) + 2 N(895) 2 N(9) 3 + 2 N(26) 5 2 (94) 3 2 πn γn πn γn ΛK ΣK πn γn ΛK ΣK πn γn ηn ΛK ΣK πn γn ηn ΛK ΣK π πn γn ηn ΣK πn γn η (!) New States in PDG 22.