OPTIMIZED CAPTURE MECHANISM FOR A MUON COLLIDER/ NEUTRINO FACTORY TARGET SYSTEM. HISHAM SAYED 1 X. Ding 2, H. Kirk 1, K.

Similar documents
The High-Power-Target System of a Muon Collider or Neutrino Factory

Compact Muon Production and Collection Scheme for High- Energy Physics Experiments

Technology Development. Overview and Outlook

Muon Front-End without Cooling

Marcos Dracos IPHC-IN2P3/CNRS Strasbourg. 2 December 2008 M. Dracos, BENE 1

Overview of HEMC Scheme

NEUTRINO FACTORY / MUON STORAGE RING

Pros and Cons of the Acceleration Scheme (NF-IDS)

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Update on MOMENT s Target Station Studies

Higgs Factory Magnet Protection and Machine-Detector Interface

Muon Experiments. Masaharu Aoki, Osaka University. NP02 International workshop on Nuclear and Particle Physics at 50-GeV PS Kyoto

Optimization of the Buncher and Phase Rotator for Neutrino Factory

General Considerations

Emittance Measurement in the Muon Ionization Cooling Experiment

Theory English (Official)

ALetterofIntentto The J-PARC 50 GeV Proton Synchrotron Experiments. The PRISM Project. A Muon Source of the World-Highest Brightness by Phase Rotation

Tools of Particle Physics I Accelerators

THE MERIT HIGH-POWER TARGET EXPERIMENT AT THE CERN PS

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Overview of Acceleration

A final report of the Interna/onal Design Study for a Neutrino Factory

The MERIT High-Power Target Experiment

Energy deposition for intense muon sources (chicane + the rest of the front end)

PoS(EPS-HEP2015)522. The status of MICE Step IV

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

Time of Flight Technique

Measurement of emittance with the MICE scintillating fibre trackers

MICE: The Trackers and Magnets

PRISM system status and challenges

The Mu2e Transport Solenoid

PoS(NuFact2017)088. EMuS in CSNS. Guang Zhao 1. Institute of High Energy Physics Beijing, China

The NuMAX Long Baseline Neutrino Factory Concept *

HELICAL COOLING CHANNEL PROGRESS*

HARP a hadron production experiment. Emilio Radicioni, INFN for the HARP collaboration

Demonstrating 6D Cooling. Guggenheim Channel Simulations

Measurement of emittance in the Muon Ionization Cooling Experiment


COMET muon conversion experiment in J-PARC

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

RESEARCH AND DEVELOPMENT OF FUTURE MUON COLLIDER*

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

Beam at the Paul Scherrer Institut

TeV Scale Muon RLA Complex Large Emittance MC Scenario

Low Energy RHIC electron Cooling (LEReC)

Discovery of muon neutrino

SPIN2010. I.Meshkov 1, Yu.Filatov 1,2. Forschungszentrum Juelich GmbH. 19th International Spin Physics Symposium September 27 October 2, 2010

Polyethylene Wedge Absorber in MICE

Compressor Lattice Design for SPL Beam

A high intensity p-linac and the FAIR Project

Ionization Cooling Demonstration

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

Tau-neutrino production study at CERN SPS: Novel approach by the DsTau experiment

RF LINACS. Alessandra Lombardi BE/ ABP CERN

Muon Colliders. R. B. Palmer (BNL) School. Chicago Oct DEFINITIONS AND UNIT CONVENTIONS 2 2 WHY CONSIDER A MUON COLLIDER 7

Neutrino Factory in Japan: based on FFAG

Absolute D Hadronic Branching Fractions at CLEO-c

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

G4beamline A beam/particle simulation program based on Geant4. Muons, Inc. Innovation in research

Preliminary Design of m + m - Higgs Factory Machine-Detector Interface

Reconstruction in Collider Experiments (Part IX)

MuSIC- RCNP at Osaka University

Accelerator design concept for future neutrino facilities

EVOLUTIONARY ALGORITHM FOR THE NEUTRINO FACTORY FRONT END DESIGN

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

Transverse Collection of Pions

Study of Baryon Form factor and Collins effect at BESIII

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

CESR and CLEO. Lepton Photon 99 Klaus Honscheid Ohio State University. Klaus Honscheid, LP 99 1

Neutron Structure Functions and a Radial Time Projection Chamber

High Pressure, High Gradient RF Cavities for Muon Beam Cooling

Particle production vs. energy: how do simulation results match experimental measurements?

Neutrino beamline prospects, concepts Milorad Popovic

The achievements of the CERN proton antiproton collider

Digital Imaging Calorimetry for Precision Electromagnetic and Hadronic Interaction Measurements

Experimental Searches for Muon to Electron Conversion

Target Simulations. Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

1.1 Machine-Detector Interface

Neutrino Factory in Japan: based on FFAG

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Updated results of the OPERA long baseline neutrino experiment

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

UCLA Ring Cooler Simulation

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

New Hadroproduction results from the HARP/PS214 experiment at CERN PS

Induced radioactivity in the target and solenoid of the TT2A mercury target experiment (ntof11)

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Advanced Neutrino Sources

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

arxiv: v1 [physics.acc-ph] 21 Oct 2014

Near detector tracker concepts. D. Karlen / U. Vic. & TRIUMF T2K ND280m meeting August 22, 2004

The CNGS neutrino beam

Compact Linac for Deuterons (Based on IH Structures with PMQ Focusing)

THE FUTURE PROSPECTS OF MUON COLLIDERS AND NEUTRINO FACTORIES

Particle Physics Homework Assignment 4

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Transcription:

OPTIMIZED CAPTURE MECHANISM FOR A MUON COLLIDER/ NEUTRINO FACTORY TARGET SYSTEM HISHAM SAYED 1 X. Ding 2, H. Kirk 1, K. McDonald 3 1 BROOKHAVEN NATIONAL LABORATORY 2 University of California LA 3 Princeton University NUFACT 213

INTRODUCTION & LAYOUT 2 Muon Capture in Target & Front END Ø Capture Solenoid Field Study: Ø Optimizing quantity: Muon (Pions) count transverse capture - Target Solenoid peak field - Final end field Ø Optimizing quality: Muon (Pions) longitudinal phase space (transverselongitudinal coupling) transverse-longitudinal capture - Taper field profile Ø LOW ENERGY LOW POWER C TARGET Ø Optimizing the time of flight of incident beam (Buncher-Rotator RF phase) Ø Transverse focusing field in decay-channel-buncher-rotator Ø Match to ionization cooling channel for every end field case 1. T à 3. T Ø Performance of front end as a function of proton bunch length Ø Realistic Coil Design & performance optimization

MUON COLLIDER/NEUTRINO FACTORY LAYOUT 3 Target System Solenoid: Baseline: Capture µ ± of energies ~ 1-4 MeV from a 4-MW proton beam (E ~ 8 GeV). Low Power: Capture µ ± of energies ~ 1-4 MeV from a 1-MW proton beam (E ~ 3 GeV).

TARGET SYSTEM CURRENT BASELINE DESIGN SC magnets 4 Ø Ø Production of 1 14 µ/s from 1 1 p/s ( 4 MW proton beam) Proton beam readily tilted with respect to magnetic axis. Ø Hg Target Ø Proton Beam Ø E=8 GeV Ø Solenoid Field Ø IDS12h à 2 T peak field at target position (Z=-37.) Ø Aperture at Target R=7. cm - End aperture R = 3 cm Ø Fixed Field Z = 1 m à Bz=1. T Tungsten beads Ø Production: Muons within energy KE cut 4-18 MeV end of decay channel Ø N μ+π+k /N P =.3-.4 Proton beam and Mercury jet Resistive magnets Mercury collection pool With splash mitigator -T copper magnet insert; 1-T Nb3Sn coil + -T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 2-T HTS insert).

LOW ENERGY LOW POWER TARGET SYSTEM SC magnets Ø Ø Ø Ø Graphite target 1-MW proton beam power E=3 GeV Solenoid Field IDS12h 2 T peak field at target position Ø LOWER peak field is being considered ( 2-1T) Tungsten beads Proton beam and Resistive magnets -T copper magnet insert; 1-T Nb3Sn coil + -T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 2-T HTS insert). cm y z

6 TAPERED TARGET SOLENOID OPTIMIZATION Bz(z,R) [T] Initial peak Field B1 Taper length z End Field B2 Inverse-Cubic Taper B z (, zi < z < z f ) = B1' a1 = pb1 B1 [1+ a1 (z z1 ) + a2 (z z1 )2 + a3 (z z1 )3 ] p (B1 / B2 )1/ p 1 2a1 a2 = 3 (z2 z1 )2 z2 z1 (B1 / B2 )1/ p 1 a1 a3 = 2 + 3 (z2 z1 ) (z2 z1 )2 2 18 16 14 12 1 8 6 4 2 1 1 2 2 z [m] Ltaper= [m] Ltaper=1 [m] Ltaper=2 [m] Ltaper=3 [m] 1 1. T 1 1 2 z [m] 2 3 3 Ltaper= [m] Ltaper=1 [m] Ltaper=2 [m] Ltaper=3 [m] 1 1. T 2 3 3 1 1 2 2 z [m] 3 3 1 1 2 z [m] 2 3 1 2 z [m] 3 2 3 3 Ltaper= [m] Ltaper=1 [m] Ltaper=2 [m] Ltaper=3 [m] 1 3. T 1 1 2. T 2 1 Bz [T] 1 1 2 z [m] Ltaper= [m] Ltaper=1 [m] Ltaper=2 [m] Ltaper=3 [m] 1 Bz [T] 1 3. T 2 2 1 Bz [T] 2. T 3 Ltaper= [m] Ltaper=1 [m] Ltaper=2 [m] Ltaper=3 [m] 1 1 3 2 Ltaper= [m] Ltaper=1 [m] Ltaper=2 [m] Ltaper=3 [m] 1 Bz [T] 1 Bz [T] 2 Bz [T] 2..4.4.3.3.2.2 R [m].1.1. 1 1 2 z [m] 2 3 3

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER) 7 End of taper Long adiabatic taper 4 m End of Decay Short taper 4 m

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER) 8 Longitudinal phase space at end of decay channel Long Taper 4 m Short Taper 4 m Long Solenoid taper: Ø More particles Ø Large time spread à large longitudinal emittance Short Solenoid taper: Ø Smaller time spread à smaller longitudinal emittance Ø Fits more particles within the acceptance of buncher/rotator

PHASE SPACE - SHORT VERSUS LONG TAPER 9 Pz-T Correlations at end of decay channel of good particles Green: Initial distribution of good particles which were bunched and cooled in 4D cooling channel Pz [GeV/c] 1.8.6.4 Short Taper Bz=2-1. Long Taper z= m Ltaper=4. Good Ltaper=4. Good.2 Short Taper Long Taper 16 18 2 22 24 26 28 3 T [nsec] Good Particles

DEPENDENCE OF TIME SPREAD & TRANSVERSE EMITTANCE ON TAPER LENGTH 1 Transverse emiiance shaped by capture solenoid Time spread shaped by capture solenoid Difference from Initial Value % -1-2 -3-4 - -6-7 -8 Transverse Emittance % 1 1 2 2 3 3 4 Capture Solenoid Taper Length [m] Difference from Initial Value % 9 8 7 6 4 3 2 1 Increase in Time Spread 1 1 2 2 3 3 4 Capture Solenoid Taper Length [m] Transverse emiiance decreases by 8% with solenoid taper length going 8à 4 m Time Spread increase by 9% with solenoid taper length going 8à 4 m

MARS SIMULATIONS & TRANSMISSION 11 Muon count within energy cut at end of decay channel MARS1 Simulation: Counting muons at m with K.E. 8-14 MeV R ini =7.-1 cm.42 B i =2-1 T r final =3 cm.41.4 N[muons]/N[p].39.38 Muon count at z= increases for longer solenoid taper.37.36 Bz=2 -> 1. T 1 -> 1. T 1 -> 1.66 T 1 -> 1.8 T.3 1 1 2 2 3 3 4 4 Zend [m] L taper [cm]

FRONT END PERFORMANCE 12 Muon count within accelerauon acceptance cuts at end of ionizauon cooling channel Before optimizing ionization cooling channel μ+ only After optimizing ionization cooling channel Muon/proton.12.11.1.9.8.7.6..4.3.2 ~ 3% Bz=2-1.T Bz=1-1.T Bz=1-2.T 1 1 2 2 3 3 4 Taper Length [m] Muon/proton.12.12.11.11.1.1.9.9.8.8 ~ 3% Bz=2-1.T Bz=1-1.T Bz=1-2.T 1 1 2 2 3 3 4 Taper Length [m] Shorter taper provide better quality muons à More muons at end of ionization cooling channel

PERFORMANCE DEPENDENCE ON TIME OF FLIGHT (RF PHASE) 13.8.7.6..4.3.2 TOA Protons at z=- 7 cm MARS11 212 OLD OLD TOA Protons at z=- 2 cm 18 16 14 12 1 8 6 4 t=2.44e-9 sec t=2.44e-9 sec t=3.44e-9 sec t=3.44e-9 sec t=4.44e-9 sec t=4.44e-9 sec -BSLINE t=.44e-9 sec t=.44e-9 sec t=6.44e-9 sec t=6.44e-9 sec.1 2 Muon+/proton 12 1 8 6 4-1 1 TOA=.3812e-9 TOA=4.8814e-9 TOA=3.8819e-9 TOA=2.8823e-9 TOA=1.8828e-9 TOA=1.383e-9 TOA=8.8321e-1 TOA=3.8343e-1 TOA=-6.19613e-1 TOA=-1.6197e-9 TOA=-2.119e-9 TOA=-3.119e-9 TOA=-4.11946e-9 Muon 9 8 7 6 4 2 4 6 8 1 Time [nsec] "output.all.dat" u 2 Optimizing RF Phase 2 3 1 1 2 2 3 3 z [m] 2 1 1 2 2 3 3 Iteration

FRONT END PERFORMANCE 14 μ+ only Nmuon/Nproton.14.13.12.11.1 Bz=2 1.T Bz=2 2.T Bz=2 2.T Bz=1 1.T Bz=1 2.T Bz=1 2.T.9.8 1 1 2 Taper Length [m] High statistics tracking of Muons through the front end

MUON YIELD VERSUS END FIELD 1 Performance of FE as function of Constant solenoid filed in Decay Channel Buncher Rotator (matched to +/- 2.8 T ionization cooling channel) Muon+/proton Proton Bunch length= nsec.16 Bz(Target)=2 T.1.1.14.14.13 Baseline.13.12.12.11 1. 2 2. 3 3. Constant Bz [T] Muon yield versus end field 2% for every 1 T increase in constant field μ+ only

PROTON BUNCH LENGTH 16 Muon yield versus Proton Bunch Length.14.13 Bz(Target)=1 T Bz(Target)=2 T Muon+/proton.13.12.12.11.11. 1 1. 2 2. 3 Proton Bunch Length [nsec] ~ 3% loss per 1 nsec increase in bunch length

LOW ENERGY LOW POWER CARBON TARGET 17 Ø Ø Ø Ø Graphite target 1-MW proton beam power E=3 GeV Solenoid Field IDS12h 2 T peak field at target position Ø LOWER peak field is being considered ( 2-1T) MARS112 simulauons for producuon Muon(Pion)/Proton.8.7.6..4.3.2.1 Distribution at z=. pi+/k+/mu+ pi-/k-/mu- pi+/pi-/k+/k-/mu+/mu-.1.2.3.4..6.7.8.9 1 Distribution at z=. Pt [GeV/c] Distribution at z=..12.1 pi+/k+/mu+ pi-/k-/mu- pi+/pi-/k+/k-/mu+/mu-.7.6 pi+/k+/mu+ pi-/k-/mu- pi+/pi-/k+/k-/mu+/mu- Muon(Pion)/Proton.8.6.4 Muon(Pion)/Proton..4.3.2.2.1. 1 1. 2 2. 3 3. 4. 1 1. 2 2. 3 3. 4 Pz [GeV/c] P [GeV/c]

18 LOW ENERGY LOW POWER CARBON TARGET Distribution at z=..6 pi 3 GeV mu 3 GeV Muon(Pion)/Proton..4.3.2.1. 1 1. 2 2. Pz [GeV/c] Distribution at z=..8 Distribution at z=. 2. All Particles 3 GeV Good Particles.7 Pz [GeV/c] Muon(Pion)/Proton 2.6..4.3 1. 1.2..1 2e-9 4e-9 6e-9 Time [sec] 8e-9 1e-8 1 2 3 4 Time [nsec] 6 7 8

OPTIMIZED CAPTURE/FRONT END 19 OPTIMZATION: Ø Solenoid taper profile Bz=2-2. T (Ltaper = m) Ø Solenoid decay channel Ø Time of arrival Ø Broadband match to ionizauon cooling channel Ø Cooling channel B z [T] OpUmum Capture Solenoid Field 2 1 1 L taper = [m] L taper =1 [m] L taper =2 [m] L taper =3 [m] μ+ only 1 1 2 2 3 3 z [m].9.4.8.3 Muon/proton.7.6..4.3 Muon/proton.3.2.2.1 6% less than 8 GeV protons on Hg baseline.2.1.1 Cut 1<Pz<3 MeV/c 1 1 2 2 3 3 Z [m]. Cut 1<Pz<3 MeV/c Amp<.3 m 1 1 2 2 3 3 Z [m]

NEW SHORT TARGET CAPTURE REALISTIC MAGNET (WEGGEL) 2 Y [m] 2 1. 1. B z =2 T Taper Magnets B z =1.T Decay channel Triplet On axis field [scale /2 T] Muon Target Capture Magnet Short Taper length =7 m- B=2-1. T. 1 1. Target Magnets 2 1 1 2 2 Z [m] 3 2 Taper Magnets Decay channel Triplet 1 B z =2 T Muon Target Capture Magnet Short Taper length = m- B=2-2. T Y [m] B z =2.T On axis field [scale /2 T] 1 2 Target Magnets 3 1 1 2 2 Z [m]

NEW SHORT TARGET CAPTURE MAGNET (WEGGEL) 21 Muon Target Short Taper Magnet taper length =7 m- B=2-1. & 2. T 2 18 16 14 12 1 8 6 4 2 Bz [T].2.2.3 1 Z [m] 1 2 2..1.1 R [m] Target SC Magnets Field Map calculated from realistic coils 2 18 16 14 12 1 8 6 4 2 Engineering (V. Grave) IDS12_2-1.T7m2+ Cryo 1

NEW DECAY CHANNEL REALISTIC MAGNET (WEGGEL) 22 Ø The pions produced in the target decay to muons in a Decay Channel ( m) Ø Three superconducting coils (-m-long ) Bz(r=) ~ 1. or 2. T solenoid field. Ø Suppress stop bands in the momentum transmission. 1.6 1. 7 m m 1. 1.4 1.4 1.3 1.3 2 4 6 8 1 Axial-field profile of two Decay-Channel modules IDS12L2-1.T 7m Magnet Length [m] Inner R [m] Outer R [m] J [A/mm 2 ] 1.19.6.68 47.18 2 3.8.6.63 4. 3.19.6.68 47.18

REALISTIC COIL BASED DECAY CHANNEL SOLENOID STOP BAND STUDY 23 Suppression of stop bands in the Decay Channel: Tracking muons through decay channel 1 cells ( m) optimize magnet design for best performance Transmission: Constant 1. Solenoid Field %67 IDS12L2to1.T7m %62 Modified IDS12L2to1.T7m %66 N 1 9 8 7 6 4 3 2 1 IDS12L2to1.T7m Modified 1. T Channel v2 1. T Channel v2 Optimization Muon..1.1.2.2.3.3.4.4.. P [GeV/c] 8 7 6 4 3 2 1 IDS12L2to1.T7m 1. T constant solenoid field Field generated from Coils..1.1.2.2.3.3.4.4.. Ptot [GeV/c]

CONCLUSION & SUMMARY 24 1- Target Solenoid parameters that affect the particle Capture & Transmission at target or after cooling Initial peak Field Taper length End Field 2- Impact: Short taper preserves the longitudinal phase-space à muons can be captured efficiently in the buncher-phase rotation sections and more muons at the end of cooling. The maximum yield requires taper length of 7- m for all cases (2-1T) (1.-3.T) for any bunch length. 3- Final constant end field increases the yield by 2% for every 1 T increase in the field beyond the 1. T baseline 4- Initial proton bunch length influence the muon/proton yield at the end of the cooling channel ~ 3% reduction per 1 nsec increase in bunch length. - 1-MW proton beam power E=3 GeV à.4 Muon+/proton at end of cooling channel 6- Realistic Coil design for the capture target and decay channel.