Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background

Similar documents
Mean-field Gauge Interactions in Five Dimensions I (The Torus)

Progress in Gauge-Higgs Unification on the Lattice

A non-perturbative view of the Higgs hierarchy problem

Progress in Gauge-Higgs Unification on the Lattice

The SU(2) quark-antiquark potential in the pseudoparticle approach

Gauge theories on a five-dimensional orbifold

A Lattice Study of the Glueball Spectrum

On the behaviour of the flux tube thickness near the deconfinement transition.

String Dynamics in Yang-Mills Theory

Confinement in Polyakov gauge

arxiv:hep-lat/ v1 6 Oct 2000

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE

arxiv:hep-lat/ v2 13 Oct 1998

Orientifold planar equivalence.

A construction of the Glashow-Weinberg-Salam model on the lattice with exact gauge invariance

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Nobuhito Maru (Kobe)

The lattice gluon propagator in numerical stochastic perturbation theory

Excited states of the QCD flux tube

LATTICE PREDICTIONS FOR THE INTERQUARK POTENTIAL* Eve Kovacs Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

I. Introduction: General

The ξ/ξ 2nd ratio as a test for Effective Polyakov Loop Actions

Beta function of three-dimensional QED

Real time lattice simulations and heavy quarkonia beyond deconfinement

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

PoS(Confinement X)058

Orthogonal Wilson loops in flavor backreacted confining gauge/gravity duality

Implications of Poincaré symmetry for thermal field theories

Large N reduction in deformed Yang-Mills theories

Bulk Thermodynamics: What do we (want to) know?

arxiv: v2 [hep-th] 21 Sep 2017

Is the up-quark massless? Hartmut Wittig DESY

QCD on the lattice - an introduction

String calculation of the long range Q Q potential

Bulk Thermodynamics in SU(3) gauge theory

String / gauge theory duality and ferromagnetic spin chains

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Fit to Gluon Propagator and Gribov Formula

Pion couplings to the scalar B meson. Antoine Gérardin

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Mass of Heavy Mesons from Lattice QCD

Properties of canonical fermion determinants with a fixed quark number

Lattice Quantum Gravity and Asymptotic Safety

Monte Carlo Calculation of Phase Shift in Four Dimensional O(4) φ 4 Theory

Phase transitions and finite-size scaling

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Q Q dynamics with external magnetic fields

Effective theories for QCD at finite temperature and density from strong coupling

t Hooft-Polyakov Monopoles on the Lattice

Higher dimensional operators. in supersymmetry

arxiv: v2 [hep-lat] 23 Dec 2008

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Deconfinement and Polyakov loop in 2+1 flavor QCD

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

S-CONFINING DUALITIES

arxiv: v1 [hep-lat] 15 Nov 2016

Heavy quark free energies and screening from lattice QCD

Asymptotic Safety in the ADM formalism of gravity

A New Regulariation of N = 4 Super Yang-Mills Theory

Universality check of the overlap fermions in the Schrödinger functional

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

Putting String Theory to the Test with AdS/CFT

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics

A Renormalization Group Primer

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

Spatial string tension revisited

Walking step by step on the lattice

Spin Models and Gravity

Surprises in the Columbia plot

Holographic Entanglement Entropy

arxiv: v1 [hep-lat] 31 Oct 2014

Quark Mass from Tachyon

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Color screening in 2+1 flavor QCD

Non-Perturbative Thermal QCD from AdS/QCD

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

Contact interactions in string theory and a reformulation of QED

Dimensional Reduction in the Renormalisation Group:

Introduction to Phase Transitions in Statistical Physics and Field Theory

Numerical Stochastic Perturbation Theory and The Gradient Flow

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Properties of monopole operators in 3d gauge theories

arxiv: v1 [hep-lat] 27 Sep 2011

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

Dense but confined matter as a new state in QCD

Introduction to AdS/CFT

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Physics 212: Statistical mechanics II Lecture XI

The QCD phase diagram at low baryon density from lattice simulations

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Thermodynamics for SU(2) gauge theory using gradient flow

arxiv:hep-lat/ v2 17 Jun 2005

Finite Temperature Field Theory

Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaros

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Transcription:

Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background Nikos Irges, Wuppertal U. Based on N.I. & F. Knechtli, arxiv:0905.2757 to appear in NPB + work in progress Corfu, Sept. 2009

Background. J. M. Drouffe and J. B. Zuber, Phys. Rept. 02 (983) 2. J. Zinn-Justin, Quantum Field Theories and Critical Phenomena 3. I. Montvay and G. Muenster, Quantum Fields on a Lattice 4. M. Creutz, Phys. Rev. Lett. 43 (979), 553 5. B. Svetitsky and L.G. Yaffe, Nucl. Phys. B20 (982) 423 6. Y.K. Fu and H.B. Nielsen, Nucl. Phys. B236 (984), 67 7. S. Ejiri, J. Kubo and M. Murata, Phys. Rev. D62 (2000), 05025 8. M. Luscher and P. Weisz, JHEP 0407:04, 2204

In 5 Dimensions... M 5 = E 4 S A M {A µ,a 5 } 5D gauge field SU(2) +φ(y +2πR) Z: 4D gauge field h: 4D Hi#s S S +ψ(y +2πR) φ(y) = n φ n e iny/r ψ(y) = n ψ x e iny/r 4D Georgi-Glashow (G-G) model + KK

The Anisotropic Lattice 4D slice U(n M,µ) - L β 5 β 4 N 5 U(n M, 5) β 4 = β N β 5 = βγ 5 γ L = 2πR γ l γ = anisotropy parameter

The mean-field expansion L, β, γ parameters: (we keep ) N 5 = L Z = DU DV DHe (/N )Re[trH(U V ) ]e S G[V ] Z = DV DHe Seff[V,H], Seff = S G [V ]+u(h) + (/N )RetrHV e u(h) = DUe (/N )RetrUH

To 0 th order The background is determined by V = u H H H = S G[V ] V V The free energy F (0) = N ln(z[v,h]) = S eff[v,h] N

To st order H = H + h V = V + v Seff = Seff[ V, H]+ 2 ( δ 2 Seff δh 2 h 2 +2 δ2 Seff V,H δhδv hv + δ2 Seff V,H δv 2 ) v 2 V,H δ 2 Seff δh 2 δ 2 Seff δv 2 δ 2 Seff δv δh h 2 = h i K (hh) ij h j = h T K (hh) h V,H v 2 = v i K (vv) ij v j = v T K (vv) v V,H v 2 = v i K (vh) ij h j = v T K (vh) h V,H

The Gaussian fluctuations z = Dv Dhe S(2) [v,h] S (2) [v, h] = 2 ( ) h T K (hh) h +2v T K (vh) h + v T K (vv) v z = (2π) h /2 (2π) v /2 det[( + K (hh) K (vv) )] Z () = Z[V,H] z = e S eff [V,H] z The free energy to first order F () = F (0) N ln(z) =F (0) + [ ( 2N ln det + K (hh) K (vv)) ] 2 FP

Observables O[V ]=O[V ]+ δo δv O = Z = O[V ]+ 2 Dv δ 2 O δv 2 <v i v j >= z v + δ 2 O V 2 δv 2 v 2 +... V Dv Dhv 2 e S(2) [v,h] z V Dh ( O[V ]+ 2 Dv δ 2 O δv 2 ) v 2 V e (Seff[V,H]+S (2) [v,h]) Dh v i v j e S(2) [v,h] =(K ) ij K = K (vh) K (hh) K (vh) + K (vv) < O >= O[V ]+ 2 tr { δ 2 O δv 2 } K V st order master formula

Correlators C(t) =< O(t 0 + t)o(t 0 ) > < O(t 0 + t) >< O(t 0 ) >= C (0) (t)+c () (t)+ C (0) (t) = 0 < O(t 0 + t)o(t 0 ) >= O (0) (t 0 + t)o (0) (t 0 )+ 2 tr { δ 2 (O(t 0 + t)o(t 0 )) δ 2 v K } + C () (t) = 2 tr { δ (,) (O(t 0 + t)o(t 0 )) δ 2 v K } = 2 tr { δ(,) (O(t 0 + t)o(t 0 )) δ 2 v K } C () (t) = λ c λ e E λt E 0 = m H, E = m H,

To 2nd order S eff = S eff [V,H]+ 2 + 6 ( δ 3 S eff δh 3 h3 + δ3 S eff δv 3 ( δ 2 S eff δh 2 h2 +2 δ2 S eff δhδv hv + δ2 S eff δv 2 v3 ) + 24 v2 ) ( δ 4 S eff δh 4 h4 + δ4 S eff δv 4 v4 ) + O[V ]=O[V ]+ δo δv v + 2 δ 2 O δv 2 v2 + 6 ( δ 2 ) O δ 3 O δv 3 v3 ++ 24 δ 4 O δv 4 v4 + 2nd order master formula < O >= O[V ]+ 2 + 24 ( δ 4 ) O i,j,l,m δv 4 ijlm δv 2 ij ( K ) ij ((K ) ij (K ) lm +(K ) il (K ) jm +(K ) im (K ) jl ) C (2) (t) = 24 ( δ 4 O c ) (t) ) ((K ) ij (K ) lm +(K ) il (K ) jm +(K ) im (K ) jl i,j,l,m δv 4 ijlm

Lattice Observables (Polyakov loops) The scalar The vector t0+t t0+t t! A n5 t0 k t0! A m = lim t ln C () (t) C () (t ) n5=0 n5=n5 m = lim t ln C (2) (t) C (2) (t )

The Wilson loop x or x 5 t t t : e Vt < O W >

Mean-field parametrization The SU(2) model U(n, M) =u 0 (n, M) + i k u k (n, M)σ k u α R,u α u α = V (n, M) =v 0 (n, M) + i k H(n, M) =h 0 (n, M) i k v k (n, M)σ k, h k (n, M)σ k, v α C h α C The propagator (in momentum space) K(p,M, α ; p,m, α )=δ p p δ α α C M M (p, α ) C M M (p, α ) = [Aδ M M + B M M ( δ M M )] [ A = ( δ α 0)+ ] δ α 0 2βv 2 0 cos (p b 2 b N)+ ξ sin2 (p M /2) N M ( ) ( ) ( ) ( p B M M = 4βv 0 [δ 2 α 0 cos M p cos M p +( δ α 0) sin M p sin M 2 2 2 2 ( I2 (h 0 ) b = (I 2 )) 2 (h 0 ) h 0 h 0 I (h 0 ) I (h 0 ) I 3(h 0 ) b 2 = v 0 h 0 )]

The static potential V (r) = 2 log(v 0 ) +3 p M 0,p 0 =0 4 2v 2 0 L 3 N 5 p M 0,p 0 =0 (2 cos(p Nr) 2) N 0 4 (2 cos(p N r) + 2) C00 (p, 0) N 0 C 00 (p, ) The scalar mass C () H (t) = N (P (0) 0 ) 2 p 0 cos (p 0t) p 5 ( ) (N5) (p 5) 2 K (p 0, 0,p 5), 5, 0; (p 0, 0,p 5), 5, 0 (m 5) (n 5 )= m 5 r=0 δ n5 r, ˆr = r +/2 v 0 (ˆr)

The vector mass C (2) V (0) (t) =2304(P N 2 0 ) 4 (v 0 (0)) 4 p k sin 2 (p k) ( ) 2 K (t, p, ) K ((p 0, p ), 5, α) = p 5,p 5 (N 5) (p 5) (N 5) ( p 5)K (p, 5, α; p, 5, α) K (t, p, α) = p 0 e ip 0 t K ((p 0, p ), 5, α) The free energy F () = F (0) + 2N p ln [ ( det + K (hh) α =0 ) ( (vv) K α =0 det + K (hh) α 0 K (vv) α 0 ) 3 ] 2 FP

A few remarks on the calculation. We fix the Lorentz gauge; We pick up a Fadeev-Popov determinant but no ghost loops at this order; Gauge dependent free energy but no worries 2. Torons appear always as 0/0 --> 0/0=0 regularization 3. Formulas are generalized to the anisotropic lattice --> 2 independent Wilson loops since the background is different along 4D and the 5th dimension 4. Analytical formulas are computed numerically 5. Our working assumption: whenever non-trivial, physical Keep this in mind

The phase diagram the mean-field background compact 4D x µ v 0 4 D E C v 05 x 5 3 2 confined (v 0 = v 05 = 0) O N non-compact 5D F I N (v 0 0, v 05 0) d-compact 4D E D layered 4D (v 0 0, v 05 = 0).68 2 3

compact 4D The d-compact phase is stable: 4 D E C!=2.3, "=0.25 3 2 confined O N non-compact 5D F I N d-compact 4D E D 0 layered 4D.68 2 3 0 F () 0 20 30 40 0 0.2 0.4 0.6 0.8 0 0.5 v 5 v The compact phase (for small ) is unstable to this order β

compact 4D The W is massless or perhaps exponentially light: 4 3 2 confined D E C O N non-compact 5D F I N 0.4!=2.36, "=0.25 layered 4D d-compact 4D E D 0.35.68 2 3 0.3 0.25 a 4 m W 0.2 0.5 0. 0.05 mf data linear fit a 4 m W (0)=0.000(5) 0 0 0.005 0.0 0.05 0.02 0.025 0.03 0.035 /L

compact 4D The d-compact phase is separated from the layered phase by a 2nd order phase transition: "=/4 4 3 2 confined D E C O N non-compact 5D F I N E D d-compact 4D.6 layered 4D.68 2 3.4 am H.2 0.8 0.6 0.4 ν =/2 agrees with Svetitski & Yaffe: dim reduction to 4d Ising 0.2 0 mf data fit #=0.5 2.5 2.2 2.25 2.3 2.35 2.4 2.45 2.5!

The Static Potential

The static potential on the isotropic lattice: 0.66!=2.36, "=, L=N 5 =00 0.65 0.64 0.63 av(r) 0.62 0.6 0.6 mf data 4d Coulomb 5d Coulomb 0.59 0.58 0.57 0 0 20 30 40 50 r/a

The static potential (Wilson loop) in the d-compact phase along the extra dimension:. 0.9 Potential along the extra dimension,!=2.36, "=0.25 L=32, N 5 =32 L=64, N 5 =64 L=64, N =32 5 It doesn t scale with L: a 4 V(r) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 0 5 0 5 r/a 5 0 2!=0.55, "=0.625 The 5D force vanishes in the infinite volumecontinuum limit: F 5 (r)/f 4 (r) 0 0 0 L=00 L=26 0 0 2 L=50 L=200 L=250 L=300 0 0.05 0. 0.5 0.2 0.25 0.3 r/l

We are looking at an array of non-interacting 4D hyperplanes 4D Wilson loop - 5D Force --> 0

The short distance static potential in the d-compact phase along the 4d hyperplanes: β 4 large and β 5 small 0.65!=2.36, "=0.25, L=N 5 =200 0.645 a 4 V(r) 0.64 0.635 0.63 mf data 4d Coulomb 5d Coulomb 0.625 0.62 0 20 30 40 50 r/a 4 In the stability region r=0...50 the potential is clearly 4d Coulomb, large Yukawa excluded dimensional reduction in the d-compact phase

We are looking at an array of non-interacting 4D hyperplanes where gauge interactions are localized. 4D Georgi-Glashow on each of the branes 4D Wilson loop - G G G G G G G G G G 5D Force --> 0 The localization is perfect in the infinite L limit

compact 4D Remember: 4D Georgi-Glashow model + KK 4 3 2 confined D E C O N non-compact 5D F I N d-compact 4D E D layered 4D Higgs.68 2 3 Gauge coupling Confined phase We are somewhere around here Higgs coupling

We are looking at an array of non-interacting 4D hyperplanes where gauge interactions are localized. 4D G-G on each of the branes. The 4D Wilson loop at large r must describe a string 4D Wilson loop - 5D Force --> 0

What are we trying to do (preliminary analysis)? In the Luescher & Weisz paper: Our formalism: # ' & '-./02345*6."7!"##6.#7!"8%# 97$!! 97$%8 97$#! 97%!! 97%#! 97&!!.!+(,* % %! $ c(r)!!"$ d'('%!!$.!!"!#!"$!"$#!"%!"%#!"& ()*!!"&!!"% '023456478,9!:!"##9":!")%# d'(')!!"%%!!"%!!"%'!!"%)!!"# $ r [fm] V (r) =µ + σr + c r + d r 2 + l log(r) -.*/!!"%(!!"& ;:$!!!!"&% ;:$%)!!"&' ;:$#! ;:%!!!!"&) ;:%#! ;:&!!!!"&( ;<5=->5*'0 ;<5=->5*#0!!"'!!"!#!"$!"$#!"%!"%#!"& *+,

Systematics are not under control yet... e.g. if the /r^2 or the log term is not included in the ansatz:!!!"!'!!"#!!"#' /0(2*3.#.456 /0(2*3.$.456 #)$.( %.78,(-)7( 925:+;5(.&7 925:+;5(.'7. ' & %./(0*2-#-345./(0*2-$-345 - +,(-!!"$!+(,* $ $!!"$' #!!"%!!"%'!!!"&.!!"#!"$!"%!"&!"' ()*!# -!!"#!"$!"%!"&!"' ()* also, if we move along the line of the phase transition,...the value of the Luescher term shifts a bit...

Conclusions. The non-perturbative regime of 4d gauge theories can be probed analytically by the mean-field expansion in 5d 2. The phase diagram has a 2nd order phase transition where the system reduces dimensionally to an array of non-interacting 3-branes and where the continuum limit can be taken 3. In a dimensionally reduced phase there are effects of confinement and of the associated string 4. Controlling the systematics is in progress I would like to thank the Alexander von Humboldt Foundation for finacial supportx

compact 4D The continuum limit can be taken:!=0.25, "=.44333 0.038 4 3 2 confined D E C O N non-compact 5D F I N 0.037 d-compact 4D E D 0.036 layered 4D.68 2 3 0.035 0.034 q 2 0.033 0.032 0.03 0.03 0.029 0.028 0 0.005 0.0 0.05 0.02 /L 2 The physical charge at fixed ρ = m W m H

The long distance static potential in the d-compact phase along the 4d hyperplanes: 0.76 0.75!=2.36, "=0.25, L=N 5 =200 mf data linear + log linear + log + /r 2 0.74 L(x) 0.73 0.72 0.7 0.7 0.69 50 60 70 80 90 x=r/a 4 Luescher term L(x) =a 4 [V (r)+π/(8r)] and fit to σx + µ + c 2 ln(x)

Comparison Mean-Field vs Monte Carlo: (sample) 0.48!=2.3, L=N 5 =6 0.46 a 4 V(r) 0.44 0.42 0.4 MC data, "=4 mf data, "=2 mf data, "=4 0.38 Comparison Mean-Field vs Monte Carlo: 0.36 0 2 (sample) 4 6 8 0 r/a 4 MC data generated by M. Luz

The raw data... 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0 0 20 30 40 50 60 70 80 90 00

Yes, it scales with the lattice size... 0.65 Potential in the 4d hyperplanes,!=2.36, "=0.25 0.6 0.55 a 4 V(r) 0.5 0.45 0.4 0.35 L=32, N 5 =32 L=64, N 5 =64 L=64, N 5 =32 0.3 0 5 0 5 r/a 4

No, it can not be 5D Coulomb or Yukawa: 0 Potential in the 4d hyperplanes c 5d (r) 0.2 0.4 0.6 0.8.2.4.6.8 L=00 L=25 L=50 L=200 2 0 20 40 60 80 00 r/a 4