Bisimulation, Games & Hennessy Milner logic

Similar documents
Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation

Hennessy-Milner Logic 1.

Bisimulation, Games & Hennessy Milner logic p.1/32

System Validation (IN4387) November 2, 2012, 14:00-17:00

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Transition systems (motivation)

CS 573 Automata Theory and Formal Languages

Nondeterministic Automata vs Deterministic Automata

Arrow s Impossibility Theorem

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Exercises with (Some) Solutions

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Section 1.3 Triangles

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Arrow s Impossibility Theorem

NON-DETERMINISTIC FSA

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

More on automata. Michael George. March 24 April 7, 2014

Electromagnetism Notes, NYU Spring 2018

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Coalgebra, Lecture 15: Equations for Deterministic Automata

Minimal DFA. minimal DFA for L starting from any other

1.4 Nonregular Languages

More Properties of the Riemann Integral

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Summer School Verification Technology, Systems & Applications

Finite State Automata and Determinisation

Lecture 1 - Introduction and Basic Facts about PDEs

Fundamentals of Computer Science

Exercise sheet 6: Solutions

Part 4. Integration (with Proofs)

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

Automata and Languages

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

Abstraction of Nondeterministic Automata Rong Su

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

1 From NFA to regular expression

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

y z A left-handed system can be rotated to look like the following. z

A Study on the Properties of Rational Triangles

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Lecture 1. Functional series. Pointwise and uniform convergence.

= state, a = reading and q j

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

Good-for-Games Automata versus Deterministic Automata.

arxiv: v1 [math.ca] 21 Aug 2018

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Formal Languages and Automata

Bisimulation. R.J. van Glabbeek

s the set of onsequenes. Skeptil onsequenes re more roust in the sense tht they hold in ll possile relities desried y defult theory. All its desirle p

Categorical approaches to bisimilarity

Behavior Composition in the Presence of Failure

1.3 Regular Expressions

Handout: Natural deduction for first order logic

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

Linearly Similar Polynomials

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Logic, Set Theory and Computability [M. Coppenbarger]

Solutions to Problem Set #1

Nondeterministic Finite Automata

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4)

Regular languages refresher

CSC 473 Automata, Grammars & Languages 11/9/10

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS. Circa 1870, G. Zolotarev observed that the Legendre symbol ( a p

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

On Determinism in Modal Transition Systems

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Regular expressions, Finite Automata, transition graphs are all the same!!

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

State Minimization for DFAs

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

1 Nondeterministic Finite Automata

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Well Centered Spherical Quadrangles

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

Boolean Algebra cont. The digital abstraction

MAT 403 NOTES 4. f + f =

Petri Nets and Regular Processes

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Chapter 2 Finite Automata

NFA and regex. the Boolean algebra of languages. non-deterministic machines. regular expressions

Recursively Enumerable and Recursive. Languages

Chapter 4 State-Space Planning

Bases for Vector Spaces

Chapter 3. Vector Spaces

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Solutions to Assignment 1

Compression of Palindromes and Regularity.

Transcription:

Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32

Clssil lnguge theory Is onerned primrily with lnguges, eg. finite utomt regulr lnguges; pushdown utomt ontext-free lnguges; turing mhines reursively enumerble lnguges; This is fine when we think of n utomton/tm s sequentil proess whih hs no intertions with the outside world during its omputtion. However, utomt whih ept the sme lnguges n behve very differently to n outside observer. Bisimultion, Gmes & Hennessy Milner logi p.2/32

The fmous offee mhine exmple Inserire soldi Cffè s s s Bevnd l gusto di tè l limone t t We will disuss the observtions one n mke bout suh systems. Bisimultion, Gmes & Hennessy Milner logi p.3/32

Lbelled trnsition systems A lbelled trnsition system (LTS) L is triple S,A,T where: S is set of sttes; A is set of tions; T S A S is the trnsition reltion. We will normlly write p p for (p,,p ) T. Lbelled trnsition systems generlise both utomt nd trees. They re entrl bstrtion of onurreny theory. Bisimultion, Gmes & Hennessy Milner logi p.4/32

Tre preorder Given stte p of n LTS L, the word σ = α 1 α 2...α k A is tre of p when trnsitions p α 1 α p 2 α 1 k...pk 1 p We will use p σ p s shorthnd. Suppose tht L 1 nd L 2 re LTSs. The tre preorder tr S 1 S 2 is defined s follows: p tr q σ A. p σ p q. q σ q Observtion 1. tr is reflexive nd trnsitive. Bisimultion, Gmes & Hennessy Milner logi p.5/32

Tre equivlene Tre equivlene is defined tr = tr tr, ie p tr q def = p tr q q tr p It is immedite tht when L 1 = L 2, tr is n equivlene reltion on the sttes of n LTS But tres re not enough: tre equivlene is very orse, sine the offee mhines hve the sme tres. s s s t tr t Bisimultion, Gmes & Hennessy Milner logi p.6/32

Simultion Suppose tht L 1 nd L 2 re LTSs. A reltion R S L1 S L2 is lled simultion whenever: if prq nd p p then there exists q suh tht q q nd p Rq. Observtion 2. The empty reltion is simultion nd rbitrry unions of simultions re simultions. Similrity s S 1 S 2 is defined s the lrgest simultion. Equivlently, p s q iff there exists simultion R suh tht (p,q) R. Observtion 3. Similrity is reflexive nd trnsitive. Observtion 4. Simultion equivlene s def = s s. Bisimultion, Gmes & Hennessy Milner logi p.7/32

Simultion exmple 1 Simultion is more sensitive to brnhing (ie non-determinism) thn tres: s p 1 s s p 2 s q 1 q 2 q 3 t s t 1 t 1 2 t 2 Bisimultion, Gmes & Hennessy Milner logi p.8/32

Simultion exmple 2 But it is not entirely stisftory. p p q 1 q q 2 b b r 1 r 2 r 1 r 2 r 1 Bisimultion, Gmes & Hennessy Milner logi p.9/32

Bisimultion Suppose tht L 1 nd L 2 re LTSs. A reltion R S L1 S L2 is lled bisimultion whenever: (i) if prq nd p p then there exists q suh tht q q nd p Rq ; (ii) if qrp nd q q then there exists p suh tht p p nd p Rq. Lemm 5. R is bisimultion iff R nd R op re simultions. Bisimultion, Gmes & Hennessy Milner logi p.10/32

Properties of bisimultions Lemm 6. is bisimultion. Proof. Vously true. Lemm 7. If {R i } i I re fmily of bisimultions then i I R i is bisimultion. Proof. Let R = i I R i. Suppose prq then there exists k suh tht pr k q. In prtiulr, qr k p nd so qrp, thus R is symmetri. If p p then there exists q suh tht q q nd p R k q. But p R k q implies p Rq. Corollry 8. There exists lrgest bisimultion. It is lled bisimilrity. If L 1 = L 2 then bisimilrity is n equivlene reltion. Bisimultion, Gmes & Hennessy Milner logi p.11/32

Exmples of bisimultions, 1 p q 1 q 2 q 3 q 4 q 5.. Lemm 9. p q 1. Proof. R = { (p,q i ) i N } is bisimultion. Bisimultion, Gmes & Hennessy Milner logi p.12/32

Exmples of bisimultions, 2 p p 1 p 2 q q 1 p b p 1 q 3 q q 2 b b b b q 1 q 4 Bisimultion, Gmes & Hennessy Milner logi p.13/32

Resoning bout bisimilrity To show tht sttes p, q re bisimilr it suffies to find bisimulion R whih reltes p nd q; It is less ler how to show tht p nd q re not bisimilr, one n: enumerte ll the reltions whih ontin (p, q) nd show tht none of them re bisimultions; enumerte ll the bisimultion nd show tht none of them ontin (p, q); borrow some tehiniques from gme theory... Bisimultion, Gmes & Hennessy Milner logi p.14/32

Bisimultion gme, 1 We re given two LTSs L 1, L 2. The onfigurtion is pir of sttes (p,q), p L 1, q L 2. The bisimultion gme hs two plyers: P nd R. A round of the gme proeeds s follows: (i) R hooses either p or q; (ii) ssuming it hose p, it next hooses trnsition p p ; (iii) P must hoose trnsition with the sme lbel in the other LTS, ie ssuming R hose p, it must find trnsition q q ; (iv) the round is repeted, repling (p,q) with (p,q ). Bisimultion, Gmes & Hennessy Milner logi p.15/32

Bisimultion gme, 2 Rules: An infinite gme is win for P. R wins iff the gme gets into round where P nnot respond with trnsition in step (iii). Observtion 10. For eh onfigurtion (p,q), either P or R hs winning strtegy. Theorem 11. p q iff P hs winning strtegy. (p q iff R hs winning strtegy.) Bisimultion, Gmes & Hennessy Milner logi p.16/32

P hs winning strtegy p q Let GE def = { (p,q) P hs winning strtegy }. Suppose tht (p,q) GE nd p p. Suppose tht there does not exist trnsition q q suh tht (p,q ) GE. Then R n hoose the trnsition p p nd P nnot respond in wy whih keeps him in winnble position. But this ontrdits the ft tht tht P hs winning strtegy for the gme strting with (p,q). Thus GE is bisimultion. Bisimultion, Gmes & Hennessy Milner logi p.17/32

p q P hs winning strtegy Bisimultions re winning strtegies: If p q then there exists bisimultion R suh tht (p,q) R. Whtever move R mkes, P n lwys mke move suh tht the result is in R. Clerly, this is winning strtegy for P. Bisimultion, Gmes & Hennessy Milner logi p.18/32

Exmples of non bisimilr sttes Bisimilrity is brnhing-sensitive. p p b q 1 q q 2 b r 1 r 2 r 1 r 2 Bisimultion, Gmes & Hennessy Milner logi p.19/32

Similrity nd bisimilrity Theorem 12. nd in generl the inlusion is strit. Proof. Any bisimultion nd its opposite re lerly simultions. On the other hnd, the following exmple shows tht bisimilrity is finer thn simultion equivlene. p p b q 1 q q 2 b r 1 r 2 r 1 r 2 r 1 Bisimultion, Gmes & Hennessy Milner logi p.20/32

Rep: equivlenes s tr Bisimilrity is the finest (=equtes less) equivlene we hve onsidered. Clim 13. Bisimilrity is the finest resonble equivlene, where resonble mens tht we n observe only the behviour nd not the stte-spe. We will give lnguge, the so-lled Hennessy Milner logi, whih desribes observtions/experiments on LTSs. Bisimultion, Gmes & Hennessy Milner logi p.21/32

Hennessy Milner logi Suppose tht A is set of tions. Let L ::= []L L L L L L L Given n LTS we define the semntis by struturl indution over the formul ϕ: q [A]ϕ if for ll q suh tht q q we hve q ϕ; q A ϕ if there exists q suh tht q q nd q ϕ; q ϕ if it is not the se tht q ϕ; q ϕ 1 ϕ 2 if q ϕ 1 or q ϕ 2 ; q ϕ 1 ϕ 2 if q ϕ 1 nd q ϕ 2 ; q lwys; q never; Bisimultion, Gmes & Hennessy Milner logi p.22/32

HM logi exmple formuls n perform trnsition lbelled with ; [] nnot perform trnsition lbelled with ; [b] n perform trnsition lbelled with to stte from whih there re no b lbelled trnsitions. ([b] )? Bisimultion, Gmes & Hennessy Milner logi p.23/32

Bsi properties of HM logi Lemm 14 ( De Morgn lws for HM logi). [] = ; = [] ; = ( ); = ( ); = ; =. In prtiulr, to get the full logi it suffies to onsider just the subsets {,,, } or {[],,, } or {, [],,,, }. Bisimultion, Gmes & Hennessy Milner logi p.24/32

Distinguishing formuls p p b q 1 q q 2 b r 1 r 2 r 1 r 2 ( b ) ( b ) p p b q 1 q q 2 b r 1 r 2 r 1 r 2 r 1 ( b ) ( b ) Bisimultion, Gmes & Hennessy Milner logi p.25/32

Logil equivlene Definition 15. The logil preorder L is reltion on the sttes of n LTS defined s follows: p < L q iff ϕ. p ϕ q ϕ It is lerly reflexive nd trnsitive. Definition 16. Logil equivlene is L def = L L. It is n equivlene reltion. Observtion 17. Atully, for HM, L = L = L. This is onsequene of hving negtion. Proof. Suppose p L q nd q ϕ. If p ϕ then p ϕ, hene q ϕ hene q ϕ, ontrdition. Hene p ϕ. Bisimultion, Gmes & Hennessy Milner logi p.26/32

Hennessy Milner & Bisimultion Definition 18. An LTS is sid to hve finite imge when from ny stte, the number of sttes rehble is finite. Theorem 19 (Hennessy Milner). Let L be n LTS with finite imge. Then L =. To prove this, we need to show: Soundness ( L ): If two sttes stisfy the sme formuls then they re bisimilr. Completeness ( L ): If two sttes re bisimilr then they stisfy the sme formuls. Remrk 20. Completeness holds in generl. The finite imge ssumption is needed only for soundness. Bisimultion, Gmes & Hennessy Milner logi p.27/32

Soundness L (Soundness) It suffies to show tht L is bisimultion. We will rely on imge finiteness. Suppose tht p L q nd p p. Then p nd so q thus there is t lest one q suh tht q q. The set of ll suh q is lso finite by the extr ssumption let this set be {q 1,...,q k }. Suppose tht for ll q i we hve tht p L q i. Then ϕ i suh tht p ϕ i nd q i ϕ i. Thus while p i k ϕ i we must hve q i k ϕ i, ontrdition. Hene there exists q i suh tht q q i nd p L q i. Bisimultion, Gmes & Hennessy Milner logi p.28/32

Completeness 1 L (Completeness) We will show this p < L q by struturl indution on formuls. Bse: p then q. Also, p then q. Indution: Modlities ( nd []): If p ϕ then p p nd p ϕ. By ssumption, there exists q suh tht q q nd p q. By indutive hypothesis q ϕ nd so q ϕ. If p []ϕ then whenever p p then p ϕ. First, notie tht p q implies tht if q q then there exists p suh tht p p with p q. Sine p ϕ, lso q ϕ. Hene q []ϕ. Bisimultion, Gmes & Hennessy Milner logi p.29/32

Completeness 2 Propositionl onnetives ( nd ): if p ϕ 1 ϕ 2 then p ϕ 1 or p ϕ 2. If it is the first then by the indutive hypothesis q ϕ 1, if the seond then q ϕ 2 ; thus q ϕ 1 ϕ 2. if p ϕ 2 ϕ 2 is similr. Note tht ompleteness does not need the finite imge ssumption thus bisimilr sttes lwys stisfy the sme formuls. In the proof, we used the ft tht {, [],,,, } is enough for ll of HM logi. Bisimultion, Gmes & Hennessy Milner logi p.30/32

Imge finiteness The theorem breks down without this ssumption: p 1....... } k...... times p 2....... } k...... times Esy to hek, using the bisimultion gme, tht p 1 p 2. Solution: Introdue infinite onjuntion to the logi. Bisimultion, Gmes & Hennessy Milner logi p.31/32

Sublogis of HM L tr ::= L tr Theorem 21. Logil preorder on L tr oinides with the tre preorder. L s ::= L s L s L s Theorem 22. Logil preorder on L s oniides with the simultion preorder. Bisimultion, Gmes & Hennessy Milner logi p.32/32