DEFINITE INTEGRALS. f(x)dx exists. Note that, together with the definition of definite integrals, definitions (2) and (3) define b

Similar documents
Chapter 6. Riemann Integral

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Math 554 Integration

Fundamental Theorem of Calculus

For a continuous function f : [a; b]! R we wish to define the Riemann integral

Calculus in R. Chapter Di erentiation

The Riemann Integral

Review. April 12, Definition 1.2 (Closed Set). A set S is closed if it contains all of its limit points. S := S S

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Calculus II: Integrations and Series

The Fundamental Theorem of Calculus

1 The fundamental theorems of calculus.

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

Principles of Real Analysis I Fall VI. Riemann Integration

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

MAT137 Calculus! Lecture 27

Properties of the Riemann Stieltjes Integral

1 The fundamental theorems of calculus.

7.2 Riemann Integrable Functions

Calculus of variations with fractional derivatives and fractional integrals

The Regulated and Riemann Integrals

1. On some properties of definite integrals. We prove

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

QUADRATURE is an old-fashioned word that refers to

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Sections 5.2: The Definite Integral

Main topics for the First Midterm

INTRODUCTION TO INTEGRATION

Math 61CM - Solutions to homework 9

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

1 The Riemann Integral

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

Integrals - Motivation

arxiv: v1 [math.ca] 7 Mar 2012

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Week 10: Riemann integral and its properties

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

AP Calculus AB Unit 5 (Ch. 6): The Definite Integral: Day 12 Chapter 6 Review

Review of Calculus, cont d

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

Appendix to Notes 8 (a)

Advanced Calculus I (Math 4209) Martin Bohner

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Integration Techniques

Properties of the Riemann Integral

More Properties of the Riemann Integral

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

WENJUN LIU AND QUÔ C ANH NGÔ

IMPORTANT THEOREMS CHEAT SHEET

The Fundamental Theorem of Calculus

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Lecture 1: Introduction to integration theory and bounded variation

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

MATH , Calculus 2, Fall 2018

0.1 Chapters 1: Limits and continuity

Final Exam - Review MATH Spring 2017

Math 360: A primitive integral and elementary functions

Math 120 Answers for Homework 13

Calculus I-II Review Sheet

MAT137 Calculus! Lecture 28

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Math 3B: Lecture 9. Noah White. October 18, 2017

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Big idea in Calculus: approximation

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

The presentation of a new type of quantum calculus

Chapters 4 & 5 Integrals & Applications

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

Chapter 6 Notes, Larson/Hostetler 3e

arxiv: v1 [math.ca] 11 Jul 2011

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

Handout I - Mathematics II

MAA 4212 Improper Integrals

Math 324 Course Notes: Brief description

Chapter 8.2: The Integral

(4.1) D r v(t) ω(t, v(t))

The Evaluation Theorem

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Unit Six AP Calculus Unit 6 Review Definite Integrals. Name Period Date NON-CALCULATOR SECTION

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Riemann Integrals and the Fundamental Theorem of Calculus

MA 124 January 18, Derivatives are. Integrals are.

Math& 152 Section Integration by Parts

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

II. Integration and Cauchy s Theorem

Transcription:

DEFINITE INTEGRALS JOHN D. MCCARTHY Astrct. These re lecture notes for Sections 5.3 nd 5.4. 1. Section 5.3 Definition 1. f is integrle on [, ] if f(x)dx exists. Definition 2. If f() is defined, then f(x)dx. = 0. Definition 3. If f is integrle on [, ], then Note tht, together with the definition of definite integrls, definitions (2) nd (3) define f(x)dx whenever nd re contined in some intervl I contined in the domin of f or when = nd is in the domin of f. Theorem 1. The Existence of Definite Integrls If f is continuous on [, ], then f is integrle on [, ]. Proof. The proof of this theorem uses methods not covered in MTH 132. Theorem 2. Order of Integrtion If f is integrle on n intervl I nd, I, then Proof. First, consider the cse where <. Then, y definition, Secondly, consider the cse where =. Then, y definition (2), 0 nd 0 = 0 nd, hence, Thirdly, consider the cse where >. Then, y definition (3), f(x)dx nd, hence, ( f(x)dx) = Thus, in ll cses, Theorem 3. Zero Width Intervl If f() is defined, then f(x) = 0. Proof. By definition (2), 0. Theorem 4. Constnt Multiple If f is integrle on n intervl I nd, I, then k k Dte: Novemer 28, 2009. 1

2 J. MCCARTHY Proof. First, consider the cse where <. Let P : x 0 <... < x n e prtition of [, ] nd c i [x i 1, x i ], 1 i n. Let: (1) S. = nd: (2) R. = so tht: kf(c i )( (x)) i f(c i )( (x)) i (3) nd: k lim S (4) It follows from equtions (1) nd (2) tht: lim R. (5) S = kr. (6) Hence, y equtions (3), (4), nd (5): k lim S = lim kr = k lim R = k Secondly, consider the cse where =. Then, y definition (2), k k 0 nd k k k0 = 0. Hence, k k Thirdly, consider the cse where >. Then y the first cse nd definition (3), k k k k Corollry 5. Additive Inverse If f is integrle on n intervl I nd, I, then Proof. By Theorem 4: (7) ( 1) ( 1) Theorem 6. Sum If f nd g re integrle on n intervl I nd, I, then (f(x) + g(x))dx = g(x)dx.

DEFINITE INTEGRALS 3 Proof. First consider the cse where <. Let P : x 0 <... < x n e prtition of [, ] nd c i [x i 1, x i ], 1 i n. Let: (8) R. = (f(c i ) + g(c i ))( (x)) i, (9) S. = nd: (10) T. = so tht: f(c i )( (x)) i, g(c i )( (x)) i (11) (12) nd: (f(x) + g(x))dx = lim R, lim S, (13) g(x)dx = lim T. It follows from equtions (8), (9), nd (10) tht: (14) R = S + T. (15) Hence, y the sum rule for limits nd equtions (11), (12), (13), nd (14): (f(x) + g(x))dx = lim R = lim S + T = lim S + = g(x)dx. lim T Secondly, consider the cse where =. Then, y definition (2), (f(x) + g(x))dx = (f(x) + g(x))dx = 0 nd g(x)dx = g(x)dx = 0 + 0 = 0. Hence, (f(x) + g(x))dx = g(x)dx. Thirdly, consider the cse where >. Then, y the first cse nd definition (3), (f(x) + g(x))dx = (f(x) + g(x))dx = ( g(x)dx) = g(x)dx. Corollry 7. Difference If f nd g re integrle on n intervl I nd, I, then (f(x) g(x))dx = f(x)dx g(x)dx.

4 J. MCCARTHY Proof. It follows from Theorems 4 nd 6 tht: (16) (f(x) g(x))dx = (f(x) + ( 1)g(x))dx = = ( 1)g(x)dx = f(x)dx ( 1) g(x)dx. g(x)dx Theorem 8. Additivity If f is integrle on n intervl I nd,, c I, then Proof. Note tht there re severl cses to consider sed upon whether (i) <, =, or > ; (ii) < c, = c, or > c; nd (iii) < c, = c, or > c. Cse 1: < < c. Let P : x 0 <... < x m e prtition of [, ] nd Q : y 0 <... < y n e prtition of [, c]; c i [x i 1, x i ], 1 i m; nd d j [y j 1, y j ], 1 j n. Then let: (17) S. = nd: (18) T. = so tht: m f(c i )( (x)) i, f(d j )( (y)) j, j=1 (19) nd: lim S (20) lim T. Q 0 Now suppose tht ɛ is positive rel numer. By equtions (19) nd (20), there exist positive rel numers α nd β such tht if P < α nd Q < β, then: (21) S nd: (22) T f(x)dx < ɛ f(x)dx < ɛ. Note tht P Q : x 0 <... < x m = = y 0 <... < y n is prtition of [, c]. Let:

DEFINITE INTEGRALS 5 (23) R. = S + T = m f(c i )( (x)) i + f(d j )( (y)) j. Let δ = min{α, β}. Since α nd β re positive rel numers, δ is positive rel numer. Now suppose tht P Q < δ. Note tht P Q = mx{ P, Q }. Hence, P P Q < δ α nd Q P Q < δ β. It follows from equtions (21), (22), nd (23) tht: (24) R (. This implies tht: S f(x)dx) = (S f(x)dx + T (25) lim P Q 0 R = j=1 f(x)dx) + (T f(x)dx < ɛ + ɛ = 2ɛ. f(x)dx) Note tht R is Riemnn sum pproximtion for f(x)dx corresponding to the prtition P Q of [, c]. Thus: (26) lim R. P Q 0 It follows from equtions (25) nd (26) tht We shll now deduce the remining cses from Cse 1 nd the definitions of definite integrls. Cse 2: =. In this cse, y definition (2), 0. Hence, since = : (27) 0 + Henceforth, we ssume tht. Cse 3 = c. In this cse, y definition (2), 0. Moreover, y Theorem 2, f(x)dx, so tht 0. It follows tht Henceforth, we ssume tht c. Cse 4: = c. In this cse, y definition (2), (28) 0. Hence, since = c: Henceforth, we ssume tht c. 0 =

6 J. MCCARTHY Cse 5 < c <. By ssumption, f(x)dx, f(x)dx, nd f(x)dx exist. Hence, y Theorem 2, f(x)dx, c f(x)dx, nd f(x)dx exist. It follows from Cse 1 tht: (29) Tht is to sy: (30) nd, hence: c f(x)dx f(x)dx (31) Cse 6 < < c. By ssumption, f(x)dx, f(x)dx, nd f(x)dx exist. Hence, y Theorem 2, f(x)dx, f(x)dx, nd f(x)dx exist. It follows from Cse 1 tht: (32) Tht is to sy: (33) nd, hence: f(x)dx (34) Cse 7 c < <. By ssumption, f(x)dx, f(x)dx, nd f(x)dx exist. Hence, y Theorem 2, c f(x)dx, f(x)dx, nd c f(x)dx exist. It follows from Cse 1 tht: (35) Tht is to sy: c c (36) nd, hence: f(x)dx

DEFINITE INTEGRALS 7 (37) Cse 8 c < <. By ssumption, f(x)dx, Hence, y The- f(x)dx, nd f(x)dx exist. orem 2, c f(x)dx, f(x)dx, nd f(x)dx exist. It follows from Cse 1 tht: c (38) Tht is to sy: c c (39) nd, hence: f(x)dx f(x)dx (40) Thus, in ll cses: (41) Theorem 9. Constnts If,, c R, then cdx = c( ). Proof. First consider the cse where <. Suppose tht P : x 0 <... < x n is prtition of [, ] nd c i [x i 1, x i ], 1 i n. Then: (42) R. = Thus: (43) c( (x)) i = c ( (x)) i = c( ). lim R = lim c( ) = c( ). Secondly, consider the cse where =. Then, y definition (2), cdx = cdx = 0 nd c( ) = c( ) = c0 = 0. Hence, cdx = c( ). Thirdly, consider the cse where >. Then, y the first cse nd definition (3), cdx = cdx = c( ) = c( ). Theorem 10. Domintion If f nd g re integrle on [, ] nd f(x) g(x) for ll x [, ], then f(x)dx g(x)dx.

8 J. MCCARTHY Proof. Let A = f(x)dx nd B = g(x)dx, which exist since f nd g re integrle on [, ]. Let ɛ e positive rel numer. By the definition of definite integrl, there exist positive rel numers α nd β such tht if: (44) P : = x 0 <... < x m = nd: (45) Q : = y 0 <... < y n = re prtitions of [, ] with P < α nd Q < β nd: (46) c i [x i 1, x i ], 1 i m nd: (47) d j [y j 1, y j ], 1 j n, then: m (48) f(c i )( (x)) i A < ɛ nd: (49) f(d j )( (y)) j B < ɛ. j=1 Choose positive integer N such tht 1/N < α nd 1/N < β. Let m = n = N; (50) x i = + (( )i/n), 0 i N; (51) y i = + (( )i/n), 0 i N; (52) c i = x i, 1 i N; nd: (53) d i = y i, 1 i N. Note tht with these choices P = 1/N < α nd Q = 1/N < β. It follows from equtions (48) nd (49) tht: (54) A nd: N f(c i )( (x)) i < ɛ

DEFINITE INTEGRALS 9 N (55) g(d i )( (y)) i B < ɛ. Note tht c i = d i, 1 i N. Since f(x) g(x) for ll x [, ], it follows tht: (56) f(c i ) g(d i ), 1 i N. Note tht: (57) ( (x)) i = ( (y)) i = 1/N > 0, 1 i N. It follows from equtions (54), (55), (56), nd (57) tht: N N (58) A < f(c i )( (x)) i + ɛ g(d i )( (y)) i + ɛ < (B + ɛ) + ɛ = B + 2ɛ. This proves tht A < B + 2ɛ for every positive rel numer ɛ. Tht is to sy, A B. Theorem 11. If f(x) 0 on [, ], then f(x)dx 0. Proof. By Theorems 9 nd 10: (59) 0 = 0 ( ) = 0dx Theorem 12. Mx-Min Inequlity If f hs mximum vlue mxf nd minimum vlue minf on [, ], then: (60) (minf) ( ) Proof. By the definition of minf nd mxf: f(x)dx (mxf) ( ). (61) minf f(x) mxf for ll x [, ]. It follows from Theorems 9 nd 10 tht: (62) (minf) ( ) = (minf)dx f(x)dx (mxf)dx = (mxf) ( ).

10 J. MCCARTHY 2. Section 5.4 Theorem 13. The Men Vlue Theorem for Definite Integrls If f is continuous on [, ], then there exists c [, ] such tht: (63) f(c) = 1 Proof. Since f is continuous on [, ], it follows from the Extreme Vlue Theorem tht there exist c 1 [, ] nd c 2 [, ] such tht f(c 1 ) f(x) f(c 2 ) for ll x [, ]. It follows from Theorems 1, 9, nd 10 tht: (64) f(c 1 )( ) = f(c 1 )dx f(x)dx Since <, > 0. It follows from eqution (64) tht: (65) f(c 1 ) 1 f(x)dx f(c 2 ). f(c 2 )dx = f(c 2 )( ). Suppose, on the one hnd, tht c 1 = c 2. Then from eqution (65) we conclude tht: (66) f(c 1 ) = 1 Since c 1 [, ], the desired conclusion follows. Suppose, on the other hnd, tht c 1 c 2. Let: (67) L. = 1 It follows from equtions (65) nd (67) tht L is numer etween the vlues f(c 1 ) nd f(c 2 ) of f t the endpoints of closed intervl I contined in [, ]. Since f is continuous on [, ], f is continuous on I. It follows from the Intermedite Vlue Theorem tht there exists c I such tht: (68) f(c) = L = 1 Since c I [, ], the desired conclusion follows. Hence, in ny cse, the desired conclusion follows. Theorem 14. The Fundmentl Theorem of Clculus Prt 1 If f is continuous on [, ], then the rule: (69) F (x). = x f(t)dt defines continuous function F on [, ] which is differentile on (, ) such tht:

DEFINITE INTEGRALS 11 (70) F (x) = d dx x f(t)dt = f(x). Proof. Suppose tht x (, ). Let h e nonzero rel numer such tht x + h (, ). By Theorems 1 nd 8: (71) x+h f(t)dt = x By equtions (69) nd (71), it follows tht: (72) F (x + h) F (x) h f(t)dt + = 1 h x+h x x+h x f(t)dt. f(t)dt. Suppose, on the one hnd, tht h > 0. Since x, x + h [, ], [x, x + h] [, ]. Since f is continuous on [, ], it follows tht f is continuous on [x, x + h]. Thus, y Theorem 13, there exists c [x, x + h] such tht: (73) 1 h x+h x f(t)dt = f(c). Suppose, on the other hnd, tht h < 0. Since x, x + h [, ], [x + h, x] [, ]. Since f is continuous on [, ], it follows tht f is continuous on [x + h, x]. Thus, y Theorem 13, there exists c [x + h, x] such tht: (74) In other words, y Theorem 2: 1 x f(t)dt = f(c). ( h) x+h (75) Thus, in ny cse: 1 h x+h x f(t)dt = f(c). (76) 1 h x+h x f(t)dt = f(c) for some c etween x nd x + h. It follows from equtions (72) nd (76) tht: F (x + h) F (x) (77) = f(c) h for some c etween x nd x + h. Now suppose tht ɛ is positive rel numer. Since f is continuous on [, ] nd x (, ), f is continuous t x. Thus, there exists positive rel numer δ such tht if y x < δ, then f(y) f(x) < ɛ. Now suppose tht h 0 < δ. Since c is etween x nd x + h, it follows tht c x h = h 0 < δ. Hence, y the preceding prgrph, f(c) f(x) < ɛ. It follows from eqution (77) tht:

12 J. MCCARTHY F (x + h) F (x) (78) f(x) < ɛ. h Hence: F (x + h) F (x) (79) lim = f(x). h 0 h Tht is to sy, F (x) = f(x). This proves tht F is differentile on (, ) nd F (x) = f(x) for ll x (, ). A similr rgument shows tht the one-sided derivtives of F t nd re given y the equtions F +() = f() nd F () = f(). Thus, F hs one-sided derivtive t nd nd derivtive t x for ll x (, ). Since differentile functions re continuous, it follows tht F is continuous on [, ]. Theorem 15. The Fundmentl Theorem of Clculus Prt 2 If f is continuous on [, ] nd F is continuous function on [, ] such tht F is n ntiderivtive of f on (, ), then: (80) Proof. Let: F () F (). (81) G(x). = x f(t)dt for ll x [, ]. By Theorem 14, G is continuous on [, ] nd n ntiderivtive of f on (, ). Thus F nd G re ntiderivtives of f on (, ). It follows from Corollry 2 of the Men Vlue Theorem tht there exists constnt C such tht: (82) F (x) = G(x) + C for ll x (, ). Note tht F nd G re continuous on [, ] nd, hence, t nd. Thus: (83) lim F (x) = F (), x + (84) lim G(x) = G(), x + (85) lim F (x) = F (), x nd: (86) lim G(x) = G(). x

DEFINITE INTEGRALS 13 It follows from equtions (82), (83), (84), (85), nd (86), the sum rule for limits, nd the constnt rule for limits tht: (87) F () = lim x + F (x) = lim x + G(x) + C nd: = lim G(x) + lim C = G() + C, x + x + (88) F () = lim F (x) = lim G(x) + C x x = lim G(x) + lim C = G() + C, x x It follows from definition (2), equtions (81), (87), nd (88) tht: (89) F () F () = (G() + C) (G() + C) = G() G() = f(t)dt f(t)dt = f(t)dt 0 = f(t)dt. Since f(t)dt = f(x)dx, it follows from eqution (89) tht F () F (). Deprtment of Mthemtics, Michign Stte University, Est Lnsing, MI 48824-1027 E-mil ddress: mccrthy@mth.msu.edu URL: http://www.mth.msu.edu/~mccrthy/