DRIVE-TECHNOLOGY INKOMA - GROUP. SDA - Spindle direct drive actuator. Maschinenfabrik ALBERT GmbH Technologiepark 2 A Gampern - Austria

Similar documents
Compendium Screw Jacks

Actuators with ball monorail guidance system and ball screw drive MKUVE15-KGT, MKUVE20-KGT

Basic type. With cap. Max. energy absorption (J) Stroke absorption (mm) Collision speed (m/s)

Low Decibel Linear Way E

CTV series CHARACTERISTICS LINEAR UNITS

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes *

AF SERIES AWEA MECHANTRONIC CO., LTD. High Performance Vertical Machining Center AGENT ISO 9001 ISO 14001

Precision Ball Screw/Spline


Drive Units with Ball Screw Drives R310EN 3304 ( ) The Drive & Control Company

Theoretical Analysis of Flow Characteristics and Bearing Load for Mass-produced External Gear Pump

APEX DYNAMICS, INC. Staianless

Slide unit. Casing. Model. 3 Size. Linear Way E LWE. 6 Material type. 9 Interchangeable

1 High precision, high rigidity positioning table

Linear guide drives. Synchronous shafts The use of synchronous shafts enables several linear axes to be operated with one drive.

Check-Q-meter. Table of contents. Features. Functions. RE 27551/ /10 Replaces: Type FD

R-Plus System Frontespizio_R_PlusSystem.indd 1 11/06/ :32:02

Slide Bearing Type. ø16, ø20, ø25, ø32, ø40, ø50, ø63. Series MY1M. Simple guide type allows direct mounting of work pieces.

Points. Precision Positioning Table TU. Variation. Major product specifications With flange

ROTARY MOTION CONTROL

1. About Linear Ball Bearing

ElectroMechanical Cylinder LEMC

SKF actuators available for quick delivery. Selection guide

Product Description. Further highlights. Outstanding features. 4 Bosch Rexroth Corporation Miniature Linear Modules R310A 2418 (2009.

ZF Maschinenantriebe GmbH Industrial Drives. Planetary gearboxes Economy Series for Servomotors

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

ElectroMechanical Cylinder LEMC

Product description. Compact Modules. Characteristic features. Further highlights

LINE TECH Linear Modules. Ready to built-in linear modules with drive

Lexium integrated drives

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

HPG xxx 030 C1 C2 C3. High performance angle gearboxes. Output. Input. Drawings. C with option motor flange. View x. Centering View y.

Ball screw. Linear. Coupling cover. 1Positioning table of a structure with enhanced sealing property. 3 High corrosion resistance

The perfect Torque Limiting Clutch for

UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007 EC DIRECTIVE 2014/34/EU (ATEX) CERTIFIED MANAGEMENT SYSTEM

Identification system for short product names. Changes/amendments at a glance. 2 Bosch Rexroth AG OBB omega modules R ( )

Cam Roller Guides. The Drive and Control Company. Service Automation. Electric Drives and Controls. Linear Motion and Assembly Technologies

SV-2, SV-1, AVS, AVSL, SI Grilles

Model development for the beveling of quartz crystal blanks

BSD MODULFLEX R Torsionally Rigid Couplings

Rotary modules.

2D - STRIP ANCHOR LIFTING SYSTEM

Dimensional drawing face mount flange radial. R = bending radius min. 40 mm. Dimensional drawing face mount flange axial

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

DC/DC Power Modules W

APEX DYNAMICS, INC. Staianless

Backlash-free Torque Limiting Clutches

Design and development of multi-utility zero slip gripper system by application of mating worm system

VERSARAM ELECTROMECHANICAL LINEAR ACTUATORS AND SCREW SUPPORTS

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

Linear actuator Econom 2. Our intelligent model: Econom 2. Econom 2

Recent developments in the design of anchor bolts

INSTALLATION INSTRUCTIONS ATV Plow Blade Part Number: (50 ), (54 ), or (60 ) Application: All Terrain Vehicles

NCCI: Simple methods for second order effects in portal frames

Rail Guide Modular Linear Actuators DSM

8 Installation Equipment

ZF Series Force Transducers

Combining functions: algebraic methods

232 Calculus and Structures

Formulae and examples of calculation

Digital AC Motors MHD

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

Part 2: Introduction to Open-Channel Flow SPRING 2005

Front flange FLV. Max. [knm/stroke]

A 954 C HD. Technical Description Hydraulic Excavator. Machine for Industrial Applications

PUSH TUBE STANDARD DUTY

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en

2016 PRELIM 2 PAPER 2 MARK SCHEME

Standard Range Nominal Diameter 3-16 mm

Lightweight. Geislinger Gesilco

Selection table for guided systems (crank driven)

AE / AER Series. AER Series

R310EN 2403 ( ) The Drive & Control Company

Clausing Industrial, Inc. Variable Speed 20" Single and Multi-spindle, Belt Drive Industrial Drill Presses

Features of the Jergens Zero-Point Mounting System

INTRODUCTION AND MATHEMATICAL CONCEPTS

HARTING D-Sub Selection Guide

PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005

Improvement in the Design & Manufacturing of Twin Worm Self Locking Technique and applications

OPERATING INSTRUCTIONS ROTOKLICK MK 150 MULTIKLICK MK 150 MULTIDEX

second PLSA line R310EN 3308 ( )

Flow Divider Type MH2FA, Series 4X (Differential lock) Size 12 to 32 up to 420 bar up to 300 L/min

H a r m o n i c P l a n e t a r y

VOLUMEC. Valve Position Indicator 5

NORMACLAMP Hose Clamps

Miniature (SEB Type) Tapped-Hole rail Types: Slide guides with clearance holes are standard and tapped holes are available upon request.

3.1 Extreme Values of a Function

Chapter 9. τ all = min(0.30s ut,0.40s y ) = min[0.30(58), 0.40(32)] = min(17.4, 12.8) = 12.8 kpsi 2(32) (5/16)(4)(2) 2F hl. = 18.1 kpsi Ans. 1.

f a h f a h h lim lim

Selection Calculations For Linear & Rotary Actuators

Ballistic pendulum Operating Instructions Fig. 1: Ballistic pendulum SAFETY PRECAUTIONS

ø6, ø10, ø15, ø20, ø25, ø32, ø40, ø50, ø63 How to Order Switch rail Nil Standard stroke Refer to page 12 for standard stroke.

DRS 61: Incremental encoders, number of lines and zero pulse width freely programmable DRS 60: Incremental Encoders with Zero-Pulse-Teach

Dimensions of propulsion shafts and their permissible torsional vibration stresses

Krazy Katt, the mechanical cat

Planetary Screw Assemblies PLSA

Globe Valve, Metal. Sectional drawing. *see information on working medium on page 2

The electronic actuator for future-proof applications

Identification Number

M/60210/M Miniature rotary actuators

Transcription:

DRIVETECHNOLOGY ALBERTINKOMA GROUP SDA Spindle direct drive actuator Mascinenfabrik ALBERT GmbH Tecnologiepark A Gampern Austria pone: +/(0)0 fax: +/(0)0 email: office@albert.at internet: www.albert.at We reserve te rigt to make tecnical canges. MPOEe INKOMAGROUP INKOMA GROUP INKOMA ALBERT A I M

Product description Te ALBERT SDA is a modular direct drive linear actuator system for use in a wide range of applications and industries. Te actuators can operate wit fast linear speeds and ig duty in ig load conditions. Te SDA can be used as a single drive linear actuator. Alternatively, as ig precision motion control wit syncronisation between axis is possible, te SDA is a perfect solution as part of a multiaxis system. Available in different sizes wit a fully modular construction and vast array of accessories, te SDA can be configured to acieve bespoke application requirements. Te SDA as a rigid construction wit a fully sealed ousing, equipped wit robust axial and radial bearings and lifetime lubrication. Te use of a pivoting bracket attaced to te ousing, coupled wit a range of different spindle ends ensures a pivoting motion is possible. As te SDA is an electromecanical linear solution tere is no possibility of oil or air leaks as associated wit ydraulic and pneumatic cylinders. Te basic SDA version comprises of a selflocking trapezoidal spindle and running nut. Te input saft can be connected to a suitable motor and coupling to complete te drive arrangement. Te SDA is also available as a fully enclosed linear actuator solution were te spindle is enclosed witin a cover tube and te running nut is attaced to a pus rod. Te cover tube also as a guide bus fitted to elp guidance of te pus rod. As te construction of te SDA is fully modular a range of motor mounting flanges, bell ousings and couplings are available to connect various motor designs. For faster linear speeds and iger duty capability ball screw versions are available across te entire SDA range. Accessories: Lifting limitation Rotation prevention Safety nut Pivot pins Pivot mounting Couplings Motor adaptors Flanges Flanged bearings Support bearings Various front attacments and more. SDA Spindle direct drive actuator ALBERT SDA Spindle direct drive actuator

Contents list SDA Spindle direct drive actuator basic version and tube design Tecnical information i design features examples versions Dimensions SDAB SDAB, SDAB, SDAB, SDAB SDA basic version wit trapezoidal spindle page page Dimensions SDAKB SDAKB, SDAKB, SDAKB, SDAKB SDA basic version wit ball screw spindle page Dimensions SDAR + SDAKR SDAR, SDAR, SDAR, SDAR SDAKR, SDAKR, SDAKR, SDAKR SDA tube design page Dimensions SDA motor adaptor page i Tecnical information / calculations lifting reserve, protective measures input power P, life calculation L [] page i i i Input power torque input power permitted input torque to worm saft M Calculations critical spindle speed n Calculations critical buckling loads F crit. crit. [/min] [kn] on te spindle page page page 0

Tecnical information Design features max. dynamic axial forces of te sizes: SDA SDA SDA SDA,kN kn kn kn lifting speed from 0, m/min to m/min depending on load and duty selflocking due to trapezoidal design lifetime lubrication due to igquality long life grease and encapsulated ousing design stroke lengts according to customer requirements (allowing for critical buckling and rotational speed values) electronic syncronisation of multiple actuators is possible special spindle diameters, leads and multistart treads are possible Examples Te ALBERT SDA is an economical drive solution in mecanical engineering as dynamic feed drives for orizontal, inclined or vertical lifting movements in building engineering, automated andling and automobile manufacturing for dynamic linear adjustment movements for locks and sewage treatment facilities in particular te ALBERT SDA tube version in te enclosed design provides protection against contamination in te food and paper industry, aerospace engineering, crane construction, for all external applications If you ave any questions or problems, just call on our engineers and field representatives for support. We will be appy to advise you or provide our experience for preparing actuator specifications. Versions SDA basic version SDAB wit trapezoidal spindle SDAKB wit ball screw spindle Te SDA basic versions are equipped wit eiter a selflocking trapezoidal spindle or ball screw spindle wit mating flanged nut. Te input saft can be connected to a suitable motor and coupling to complete te drive arrangement. SDA tube design SDAR wit trapezoidal spindle SDAKR wit ball screw spindle Te SDA tube design as a fully enclosed spindle and nut wit a corrosion proof cover tube and pus rod.

Dimensions SDAB, SDAB, SDAB and SDAB Basic version wit trapezoidal spindle Ø W Ø W x 0 Spindle end 0 A stroke X) ) X L L L L L H H Ø W W deep Ø W H H Ø H View A Spindle end Ø d Ø d d Ø W Ø W f L L Ø W H d Ø W L + stroke L L d Ø W Ø W 0, t L +stroke Ø w Ø w DIN A W deep H H H Flanged nut dimensions Version only wit bolt Version only wit ole n x t = 0 S x R0, Ø D Ø D Ø D d Ø P Ø P f U Ø U H S T E E Ø D T E Ø D Ordering example: Spindle direct drive actuator wit trapezoidal spindle Size Basic version Spindle Stroke lengt 0 mm SDA B x 0 Spindle end

Initial selection table max. tensile / compressive load Spindle Lift per revolution dyn. load rating of axial bearing increased dyn. load rating of axial bearing max. input power at an ambient temperature of C and % duty ED (%/) Overall efficiency Basic mass SDA(K) Additional mass of SDA(K) per mm stroke Basic mass SDA(K)R Additional mass of SDA(K)R per mm stroke F max [kn] d [mm] [mm/ rev.] Cdyn. [kn] C inc.dyn. [kn] tot. [%] m basic [kg] m add [kg] m basicr [kg] m addr [kg] SDABx, x, 0,, 0,, SDABx x, 0,, 0,, SDABx SDABx x x,,,,,,,, 0,,, SDABx SDAB0x x 0x,,,,, Hole pitc d d d d D D D D D E E E n [] t [ ] n [] t [ ] t [ ] SDABx 0 0 SDABx 0 0 0 SDABx SDABx 0, 0, 0 0 0 0 SDABx SDAB0x 0 0 0 0 H H H H H H H H H L L L L L SDABx 0 SDABx 0, 0 SDABx SDABx,,,, SDABx SDAB0x 0 0 0 0 L L L L L L P P S S T T U U SDABx, M SDABx M SDABx SDABx,, M M SDABx SDAB0x 0 0 M M W W W W W W W W W W W ) X DIN A SDABx 0,,, xx SDABx 0,, xx SDABx SDABx, xx, xx SDABx SDAB0x 0 0 0 0,, 0 0,, 0 0 xx xx ) Reserve

Dimensions SDAKB, SDAKB, SDAKB and SDAKB Basic version wit ball screw spindle Ø W Ø W x 0 Spindle end 0 A stroke X) ) X L L L L L H H Ø W W deep Ø W H H Flanged nut dimensions Version only wit bolt Version only wit ole S x R0, Ø D Ø D g 0, Ø D 0, Ø P Ø P f U Ø U H Ø W L + stroke L L Ø H View A Spindle end Ø d Ø d H d d d Ø W Ø W f L L Ø W Ø W Ø W 0, t L +stroke Ø w Ø w DIN A W deep H H SDAK SDAK SDAK SDAK H 0 d 0 E E E Ø D Ø D H S T T Ordering example: Spindle direct drive actuator wit ball screw spindle Size Basic version Spindle Stroke lengt 0 mm SDAK B x 0 Spindle end

Initial selection table max. tensile / compressive load Spindle Lift per revolution dyn. load rating of axial bearing increased dyn. load rating of axial bearing dyn. load rating of spindle max. input power at an ambient temperature of C and % duty ED (%/) Overall efficiency Basic mass SDA(K) Additional mass of SDA(K) per mm stroke Basic mass SDA(K)R Additional mass of SDA(K)R per mm stroke F max [kn] d [mm] [mm/ rev.] Cdyn. [kn] C inc.dyn. [kn] C sp. [kn] tot. [%] m basic [kg] m add [kg] m basicr [kg] m addr [kg] SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx,, Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x,,,,,,,,,,,00,,0,,, ) ) ) ) ) ) ) ) 0, 0, 0, 0,,,,,,,,, ) see power table on page Hole pitc d d d d D D D D D E E E H H n [] t [ ] t [ ] SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx 0 0 0 0,, 0 0 0 0 0 0 0 0 0 0 0 H H H H H H H L L L L L L L SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDABx SDABx,,,, 0 0 0 0,, 0 0 0 0,, L L L L P P S S T T U U W SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx 0 0,, M M M M M M M M W W W W W W W W W W X ) DIN A SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx SDAKBx 0 0 0 0 0 0 0 0,,,,,, 0 0,,,,,,,,,, 0 0 xx xx xx xx xx xx xx xx ) Reserve

Dimensions SDAR, SDAR, SDAR and SDAR SDAKR, SDAKR, SDAKR and SDAKR Tube design t sown rotated by t L L + stroke L Ø W Ø W x 0 Ø w w L Ø w L Furter ead designs: H H Ø W Ø d 0,0 R Ød Ø W L DIN A W deep Ø W H H L + stroke L k ead design I Ø H k k L II k k k Ø d k k Ø d L +stroke H Ø W 0, Ø W L L Ø W k III H H Ø d Ø d H k Ø d Version only wit bolt Version only wit ole k Ø d S x IV k k k k Ø d Ø P Ø P f R0, U Ø U H S T Ordering example: SDA R x II 0 Spindle direct drive actuator wit trapezoidal spindle Size Tube design Spindle Head design Stroke lengt 0 mm T

d d d d d d d d d k k k k k k k k SDARx SDAKRx SDAKRx SDARx SDAKRx SDAKRx SDARx SDARx SDAKRx SDAKRx SDARx SDAR0x SDAKRx SDAKRx 0 0 0 0 0 0 Hole pitc k k k k k k k H H H H H H H H H L n [] t [ ] t [ ] SDARx SDAKRx SDAKRx SDARx SDAKRx SDAKRx SDARx SDARx SDAKRx SDAKRx SDARx SDAR0x SDAKRx SDAKRx 0 0 0 R R R R 0 0,, 0 0, 0 0 0 0 0 L L L L L L L L L L L P P R S S T SDARx SDAKRx SDAKRx SDARx SDAKRx SDAKRx SDARx SDARx SDAKRx SDAKRx SDARx SDAR0x SDAKRx SDAKRx, 0,, T U U W W W W W W W W W DIN A lifting reserve SDARx SDAKRx SDAKRx SDARx SDAKRx SDAKRx SDARx SDARx SDAKRx SDAKRx SDARx SDAR0x SDAKRx SDAKRx, M M M M,,, xx ± xx ±, xx ± 0 0, 0 xx ±

Dimensions SDA Motor adaptor Ø L K Ø d i l f Ø d B x0 Dimensions according to offer and customer's requirements Mounting flange t x0 Mounting oles Ø d x t Ø d Holes for adapter flange Ø d Ø d x t Ød Ordering example: Spindle direct drive actuator Size SDA MGA Motor adaptor Hole pitc SDAMGA d d d t d i d B l f L K n [], t [ ] t [ ], ) ) ) ) 0 SDAMGA, ) ) ) ) 0 SDAMGA SDAMGA, ) ) ) ) 0, ) ) ) ) 0 ) Flange dimensions depend on motor specification

Tecnical information Lifting reserve Depending upon linear speed, lead of spindle and metod of motor control it may be necessary to increase te stroke reserve wit te actuator. In tis case te additional spindle lengt will need to be added to te required stroke lengt. For applications wit stroke limit switces, please indicate te required stroke lengt. Protective measures Were contamination from dirt, dust or oter abrasive materials may be a factor, te following solutions are available: Addition of folding bellows For ball screw spindle ball nut wit scraper Tese measures result in an extension of te ALBERT SDA spindle direct drive actuator. Please contact our engineers. SDA Spindle direct drive actuator Calculations Input power P Te input power P for te SDA spindle direct drive actuator is calculated as follows: P = F dyn. [kn] V lift [m/min] 0 Life calculation L [] ball screw spindle / ball bearing Te life L [] for te ball screw spindle or bearing is calculated as follows: L [] = ( ) C dyn. [kn] F dyn. [kn] 0 n [/min] Explanation: F dyn. V lift L C dyn. n [kn] [m/min] [] [] [kn] [/min] input power lifting force lifting speed total working efficiency life dyn. load rating input speed

Power tables for size Input power torque Input power Permitted input torque to saft M V lift n SDAB / SDAR wit x Input speed n [/min] 0 0 0 0 SDAB / SDAR Lifting speed V [m/min] lift x 0, 0,,, Dynamic load [kn] x,kn, 0,0, 0,0, 0,, 0,, 0,, 0, x kn, 0,0, 0,, 0,, 0,, 0,, ) 0, ) x,kn, 0,0, 0,, 0,, 0,, ) 0, ), ), ) x kn, 0,, 0,, 0,, ) 0, ), ), ), ), ) x,kn, 0,, 0,, 0,, ) 0, ), )), )), )),0 )) ) L < 0 of te axial bearing ) pxv value of te spindle exceeded SDAKB / SDAKR wit Ku x / Ku x Input speed n [/min] 0 0 0 0 SDAKB / SDAKR Lifting speed V [m/min] lift Ku x Ku x 0, 0, 0,,, Dynamic load [kn] Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x,kn,kn kn kn,kn,kn kn kn,kn,kn,,,,,,,,,, 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, 0,0 0,, 0,0, 0,0, 0,0, 0,,, 0,0, 0,, 0,, 0,,, 0,0, 0,, 0,, 0,,, 0,, 0,, 0,, 0,,, 0,0, 0,, 0,, ) 0, ), ), 0,, 0,, 0,, ) 0, ), ), 0,, ) 0, ), ) 0, ), ) 0, ), ), 0,, ) 0, ), ) 0, ), ),0 ), ), ) 0, ), ) 0, ), ) 0, ), )) 0, )), )), ) 0, ), ) 0, ), ) 0, ), )), )), )) 0, 0, 0, 0, 0, ),0 ) 0, ), ) 0,0 )),0 )) ) L < 0 of te axial bearing ) L < 0 of te Ku spindle

Power tables for size Input power torque SDA Spindle direct drive actuator Input power Permitted input torque to saft M V lift n SDAB / SDAR wit x Input speed n [/min] 0 0 0 0 SDAB / SDAR Lifting speed V [m/min] lift x 0, 0,,,, Dynamic load [kn] x kn, 0,0, 0,, 0,, 0,, 0,, ) 0, ) x kn, 0,, 0,, 0,, 0,, ), ), ), ) x kn, 0,, 0,, 0,, ), ), ),0 ), ),0 ) x kn, 0,, 0,, ), ), ), ), )), )), )), )) x kn, 0,, 0,, ), ), )),0 )), )), )), )), )) ) L < 0 of te axial bearing ) pxv value of te spindle exceeded SDAKB / SDAKR wit Ku x / Ku x Input speed n [/min] 0 0 0 0 SDAKB / SDAKR Lifting speed V [m/min] lift Ku x Ku x 0, Dynamic load [kn] Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x kn kn kn kn kn kn kn kn kn kn,,,,,,,,,, ) 0,0 0, 0, 0, 0, 0, 0, 0, 0, 0, ),,,,,,,, ),, ) 0, 0, 0, 0, 0, 0, 0, 0, ) 0,,0 ),,,,,, ),, ),, ) 0, 0, 0, 0, 0,, ) 0,, ) 0,,0 ),,,,,, ),, ), ), ) 0, 0, 0,, 0,, ),, ), ),0 ),,,, ),, ), ), ), ), ) 0,,0 0,,0 ),,0 ), ), ), ), ),,,, ),, ), ), ), ), ) 0,,,, ),0, ), ), ), ), ) ) L < 0 of te axial bearing ) L < 0 of te Ku spindle

Power tables for size Input power torque Input power Permitted input torque to saft M V lift n SDAB / SDAR wit x / x Input speed n [/min] 0 0 0 0 SDAB / SDAR Lifting speed V lift [m/min] x x 0, 0, 0, 0,,,,,,, Dynamic load [kn] x x x x x x x x x x kn kn kn kn kn kn kn kn kn kn,,,,,,,, ), ) 0, 0, 0, 0, 0, 0, 0, 0, 0, ),0 ),,,,,, ), ), ), ) 0, 0, 0, 0,,0,, ), ), ), ),,,, ), ), ), ), ), ) 0, 0,,,, ), ), ), ) ), ),, ), ), )), )), )), )), )), )),0,, ), ), )), )), )), )), )), )),, ), ), )), )), )), )), )), )),,, ), ), )), )), )), )),0 )), )),,,, ), ) ), ), )), )), )), )), )),0 )), )), )), )), )), )), )) ) L < 0 of te axial bearing ) pxv value of te spindle exceeded SDAKB / SDAKR wit Ku x / Ku x Input speed n [/min] 0 0 0 0 SDAKB / SDAKR Lifting speed V [m/min] lift Ku x Ku x 0, Dynamic load [kn] Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x kn kn kn kn kn kn kn kn kn kn,,,,,,,, ), ), ) 0, 0, 0, 0, 0, 0, 0, 0, ) 0, ),0 ),,,,,, ), ), ), ), ) 0, 0, 0, 0, 0,, ) 0, ), ),0 ),0 ),,,,, ), ), ), ), ), ) 0, 0, 0,,, ), ), ), ),0 ), ),,,, ), ), ), ), ), ), ) 0,,,, ), ), ), ), ),0 ), ),,,, ), ), ), ), ), ), ) 0,,,, ), ), ), ), ), ), ),,,, ), ), ), ), ), ), ),0,0,0, ),0 ), ), ), ), ), ) ) L < 0 of te axial bearing ) L < 0 of te Ku spindle

Power tables for size Input power torque Input power Permitted input torque to saft M V lift n SDAB / SDAR wit x / 0x Input speed n [/min] 0 0 0 0 SDAB / SDAR Lifting speed V [m/min] lift x 0 x 0, 0, 0,,,,,,,, Dynamic load [kn] x 0 x x 0 x x 0 x x 0 x x 0 x x 0 x kn kn kn kn kn kn kn kn kn kn kn kn,,,,,,,,,,, 0, 0, 0, 0,,,,,,,,0,,,,,,,,,, ), ) 0, 0, 0,,,,,,,,, ), ),,,,,,,, ), ), )), )) 0, 0,,,,,,0, ), ), )),0 )),, 0,,0,,,,,,,,,,,,,,,,,,,0 ), ), ), ) ), ), ), ) ), ), ),0 ), ), ), ), ), ), ), ), ), ),0 ), ), ), ), ), ), ), )), )), ), ), ), ), )), )), )), )), )), )), )), )), )), )), )),0 )), )), )) ) L < 0 of te axial bearing ) pxv value of te spindle exceeded SDAKB / SDAKR wit Ku x / Ku x Input speed n [/min] 0 0 0 0 SDAKB / SDAKR Lifting speed V [m/min] lift Ku x Ku x 0, 0,,,, Dynamic load [kn] Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x Ku x kn kn kn kn kn kn kn kn kn kn kn kn,,,,,,,,,,, ), ) 0, 0, 0, 0, 0, 0, 0,,0 0,,,0 ),0 ),,,,,,,,,,, ), ) 0, 0, 0, 0, 0,, 0,,,,, ), ),,,,,,,,, ), ), )), )) 0, 0, 0, 0, 0,,,0,0, ), ),0 )), )),,,,,,, ), ), ), ), )), )) 0, 0, 0,,,,, ),0 ), ), ),0 )), )),,,,,,, ), ), ), ), )), )) 0, 0, 0,,,,,0 ), ), ), ), )), )),, 0,,0,,,0,0,,,0,, ), ), ), ), )),0 )), )), )), )), )), )), )) ) L < 0 of te axial bearing ) L < 0 of te Ku spindle

Calculations Critical spindle speed n crit. [/min] Rotating spindles are subject to vibration due to resonance. All rotating spindles sould be cecked for critical speed n [/min] vs permitted speed. Metod: 00 00 x Ku x/ x Ku x/ x Ku x/. Determination of te spindle speed n [/min] n [/min] = V [m/min] 0 lift P [mm] 000. Obtain te critical spindle speed n crit. [/min] from te grap. Te spindle size and te lengt L n [mm] is required.. Determination of te permitted spindle speed n [/min]: perm. n crit. [/min] 00 n [/min] = 0, n [/min] f [] perm. crit. n. Te permitted spindle speed n [/min] must be greater perm. tan te actual spindle speed n 0 n > n perm. 0 f = 0, n 0 L n 00 00 x Ku x/ x 0x f = n 00 L n n crit. [/min] 00 f =, n 0 0 0 0 00 0 00 00 00 0 00 00 0 0 00 00 0 L [mm] n L n L [mm] n

Calculations Critical buckling loads F crit. [kn] on te spindle Under compressive loading slim spindles tend to buckle. For tis reason all compressively loaded spindles must be cecked for permitted axial loading. System lengt System lengt System lengt Euler case I Euler case II Euler case III Euler I buckling curve Lifting force [kn] 0 0 0 x Ku x Ku x Ku x x / Ku 0x 0 0 0 0 0 0 00 0 00 00 0 00 0 0 00 00 System lengt [mm]

Euler II buckling curve 0 0 x Ku x Ku x Ku x x / Ku 0x Lifting force [kn] 0 0 0 0 0 00 00 0 0 00 00 0 00 00 00 00 00 00 System lengt [mm] Euler III buckling curve 0 0 x Ku x Ku x Ku x x / Ku 0x Lifting force [kn] 0 0 0 0 0 00 00 0 0 00 00 0 00 00 00 00 00 00 0 0 00 00 00 0 System lengt [mm]