Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Similar documents
5.1 Properties of Random Numbers

Special Instructions / Useful Data

Summary of the lecture in Biostatistics

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Parameter, Statistic and Random Samples

Continuous Distributions

Simulation Output Analysis

Lecture 3 Probability review (cont d)

Chapter 5 Properties of a Random Sample

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Random Variables and Probability Distributions

22 Nonparametric Methods.

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

STK4011 and STK9011 Autumn 2016

ρ < 1 be five real numbers. The

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture Notes Types of economic variables

CHAPTER VI Statistical Analysis of Experimental Data

Module 7. Lecture 7: Statistical parameter estimation

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

Chapter 14 Logistic Regression Models

Chapter 8: Statistical Analysis of Simulated Data

7. Joint Distributions

Chapter 5 Elementary Statistics, Empirical Probability Distributions, and More on Simulation

Construction and Evaluation of Actuarial Models. Rajapaksha Premarathna

Law of Large Numbers

Chapter 3 Sampling For Proportions and Percentages

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67.

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

STA 105-M BASIC STATISTICS (This is a multiple choice paper.)

Chapter 4 Multiple Random Variables

A New Family of Transformations for Lifetime Data

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Chapter 4 Multiple Random Variables

Econometric Methods. Review of Estimation

Unsupervised Learning and Other Neural Networks

Module 7: Probability and Statistics

Section l h l Stem=Tens. 8l Leaf=Ones. 8h l 03. 9h 58

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Functions of Random Variables

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

MEASURES OF DISPERSION

arxiv: v1 [math.st] 24 Oct 2016

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of Variance with Weibull Data

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Class 13,14 June 17, 19, 2015

Median as a Weighted Arithmetic Mean of All Sample Observations

Nonparametric Techniques

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

CODING & MODULATION Prof. Ing. Anton Čižmár, PhD.

BASICS ON DISTRIBUTIONS

Third handout: On the Gini Index

QR Factorization and Singular Value Decomposition COS 323

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

IFYMB002 Mathematics Business Appendix C Formula Booklet

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

STATISTICAL INFERENCE

Introduction to Probability

Mathematics HL and Further mathematics HL Formula booklet

Qualifying Exam Statistical Theory Problem Solutions August 2005

Multivariate Transformation of Variables and Maximum Likelihood Estimation

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

ENGI 3423 Simple Linear Regression Page 12-01

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Point Estimation: definition of estimators

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

GOALS The Samples Why Sample the Population? What is a Probability Sample? Four Most Commonly Used Probability Sampling Methods

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ.

Mu Sequences/Series Solutions National Convention 2014

Multiple Choice Test. Chapter Adequacy of Models for Regression

Confidence Interval Estimations of the Parameter for One Parameter Exponential Distribution

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

EECE 301 Signals & Systems

JAM 2015: General Instructions during Examination

Lecture 1 Review of Fundamental Statistical Concepts

Problem Solutions for BST 695: Special Topics in Statistical Theory, Kui Zhang, Solutions from Previous Homework

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

Chapter 13 Student Lecture Notes 13-1

9.1 Introduction to the probit and logit models

Goodness of Fit Test for The Skew-T Distribution

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

D KL (P Q) := p i ln p i q i

LINEAR REGRESSION ANALYSIS

Correlation and Regression Analysis

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

X ε ) = 0, or equivalently, lim

Bayes (Naïve or not) Classifiers: Generative Approach

Sampling Theory MODULE V LECTURE - 14 RATIO AND PRODUCT METHODS OF ESTIMATION

Hard Core Predicates: How to encrypt? Recap

Transcription:

adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0

adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used cotuous ad dscrete dstrbutos. Wdely-used techques are cosdered. outes programmg lbrares or bult to smulato laguage Iverse trasform techque, acceptace-rejecto techque All techques use a source of uform [0,] radom umbers,, f ( ), 0, 0 otherwse F 0, 0 ( ), 0, 0

Iverse-Trasform Techque Iverse-trasform techque ca be used to sample from Epoetal Uform Webull Tragular Emprcal Etc. It s uderlyg prcple for samplg from a wde varety of dscrete dstrbutos. 0

Iverse-Trasform Techque Epoetal Dstrbuto Probablty desty fucto (pdf) e f ( ) 0,, 0 otherwse The parameter ca be terpreted as the mea umber of occurrece per tme ut. If the terarrval tme X, X, X 3, had a epoetal dstrbuto wth rate, the could be terpreted as the mea umber of arrvals per tme ut. Epected value of X, E( X ) s the mea of terarrval tme. f() pdfs for several epoetal dstrbutos.0.8 0.5.6.4.5..0 0.8 0.6 0.4 0. 0.0 0.0 0. 0.4 0.6 0.8.0..4.6.8.0..4.6.8 3.0 0

Iverse-Trasform Techque Epoetal Dstrbuto Cumulatve dstrbuto fucto (cdf) F ( ) f ( t) dt t e dt, 0 0 e, 0 F( ) 0, 0 0 0 The goal s to develop a procedure for geeratg values X, X, X 3, that have a epoetal dstrbuto. Iverse-trasform techque ca be utlzed for ay dstrbuto If F - ca be computed easly the t s most useful 0

Iverse-Trasform Techque Step-by-step procedure o Epoetal Dstrbuto Step : Compute the cdf of the desred radom varable X. For the epoetal dstrbuto, cdf F( ) e, 0. Step : Set F()= o the rage of X. For the epoetal dstrbuto, e X, 0. Step 3: Solve the equato F()= for X terms of. For the epoetal dstrbuto, the soluto proceeds as follows: X e Step 4: Geerate (as eeded) radom varables,, ad compute the desred radom varates by For the epoetal case e X X l( ) X l( ) X F ( ) X l( ) or X l 0

= Eample 8. 3 4 5 0.306 0.04 0.6597 0.7965 0.7696 X 0.400 0.043.0779.59.4679 F()=-e - e X F( 0 ) =-e -X X X l( ) l( 0.306) l 0.8694 0.400 0 X X =-l(- ) 0 0

Iverse-Trasform Techque Uform Dstrbuto Probablty desty fucto (pdf) f() a b, f ( ) b a 0, a b otherwse Step: Cumulatve dstrbuto fucto (cdf) s gve by F() 0 Step: Set F(X)=(X-a)/(b-a)= a 0, a F( ), b a, Step3: Solvg for X terms of yelds X=a+(b-a) b a a b b 0

Iverse-Trasform Techque Webull Dstrbuto Probablty desty fucto (pdf) f ( ) 0 e ( / a), 0,otherwse Step: The s gve by F(X)=-e -(/), 0 Step: Set F X = e α β = Step3: Solvg for X terms of yelds X = α l /β 0

Iverse-Trasform Techque Tragular Dstrbuto Probablty desty fucto (pdf).0 0.8 0.6 0.4 0. 0.0 0 3 Cumulatve dstrbuto fucto.0 0.8 0.6 0.4 0. 0.0-0 3, 0 f ( ), 0, otherwse 0,, F( ) ( ), 0 0, For 0, For, ( ) X, ( ), 0 0

Iverse-Trasform Techque Emprcal Cotuous Dstrbuto-Eample 8. Fve observatos of fre-crew respose tme ( mutes) to comg alarms:.76.83 0.80.45.4 Arrage the data from smallest to largest () () (3) () Smallest value s cosderd as 0, so (0) =0 a Iterval (-) () / ( )/ Probablty / ( ) ( ) ( ) ( ) / Cumulatve Probablty, / Slope a 0.0 0.80 0. 0. 4 0.80.4 0. 0.4.5 3.4 0.45 0. 0.6.05 4.45.83 0. 0.8.90 5.83.76 0..0 4.65 X Fˆ ( ) ( ) ( ) a..0 0.8 0.6 0.4 0. 0.0 0.8; 0..45; 0.6.4; 0.4 3;.76;.83; 0.8 0; 0 0 3 4 0

Iverse-Trasform Techque Emprcal Cotuous Dstrbuto-Eample 8.. Iterval (-) () Probablty / Cumulatve Probablty, / Slope a 0.0 0.80 0. 0. 4 0.80.4 0. 0.4.5 3.4 0.45 0. 0.6.05 4.45.83 0. 0.8.90 5.83.76 0..0 4.65.0.76; 3; X a (4 ) / ) (4 ) 4 (.45.90(0.7 0.60).66 0.8 0.6.45; 0.6.83; 0.8 0.4.4; 0.4 0. 0.0 0.8; 0. 0; 0 0 0.5.5 X.5 3 3.5 0

Cotuous dstrbutos wthout Closed-Form Iverse A umber of cotuous dstrbutos do ot have closed form epresso for ther cdf or ts verse: For eample Normal Gamma Beta Iverse trasform techque for radom varete geerato s ot avalable for these dstrbutos. A appromato for verse trasform ca be used. Smple appromato to the verse cdf of stadard ormal dstrbuto, (Schmeser [979]) X F ( ) ( ) 0.795 0.35 0.35 Appromate Iverse Eact Iverse 0.0 -.363 -.3373 0.0 -.86 -.83 0.5-0.6745-0.673 0.50 0.0000 0.0000 0.75 0.6745 0.673 0.90.86.83 0.99.363.3373 0

Dscrete Dstrbutos All dscrete dstrbutos ca be geerated va verse trasform tecque, Numercally, through table-lookup procedure Algebracally, fal geerato scheme beg terms of a formula Other techques are sometme used for certa dstrbutos, e.g. Covoluto techque for bomal dstrbuto. 0

Dscrete Dstrbuto A Emprcal Dscrete dstrbuto Eample 8.4. Dstrbuto of umber of Shpmets, X The probablty mass fucto (pmf) P(0)=P(X=0)=0.5 P()=P(X=)=0.3 P()=P(X=)=0. Cumulatve dstrbuto fucto p() F() 0 0.50 0.50 0.30 0.80 0.0.00 0 0.5 F( ) 0.8 0 X 0 0 0.5 0.5 0.8 0.8.0 F() =0.73 X = 0 3 0

0 Dscrete Dstrbutos Uform Dstrbuto Dscrete uform dstrbuto o {,,,k} pmf Cdf = ad r =p()+p()+ +p( )=F( )=/k for =,,,k k k p,...,,, ) ( k k k k k k k F,, 3,, 0, ) ( k r k r k X k k k

Dscrete Dstrbutos Geometrc Dstrbuto Geometrc dstrbuto wth pmf p( ) p( p), 0,,,... Cdf F( ) p( j 0 p) j p ( p) ( p) F( ) ( p) Iverse trasform F( ) ( p) ( p) F( ) ( p ) ( p) ( )l( p) l( ) l( p) l( ) l( p) l( ) l( p) l( ) X l( p) 0

Acceptace-ejecto Techque X uformly dstrbuted betwee /4 ad Step: Geerate a radom umber Stepa: f /4, accept X= the go to Step 3. Stepb: f </4, reject the retur to Step. Step3: f aother uform vaete o [/4,] s eeded, go to Step else stop. 0

0 Dscrete Dstrbutos Posso Dstrbuto A Posso radom varable, N, wth mea >0 has pmf N=,,...,! ) ( ) ( e N P p t=0 t= t= A A A 3 A A A + A A A A A A A l l l l l l e

Dscrete Dstrbutos Posso Dstrbuto The procedure for geeratg a Posso radom varate, N, s gve by followg steps Step: Set =0, P= Step: Geerate a radom umber + ad replace P by P. + Step3: f P<e -, the N=. Otherwse, reject, crease by oe, ad retur to step. Eample 8.8 : =0. Frst compute e - =e - =0.887. Step: =0, P= Step: =0.4357, P=. =0.4357 Step3: sce P=0.4357<e - =0.887, accept N=0. Step-3: ( =0.446, leads to N=0) 0

Dscrete Dstrbutos Posso Dstrbuto Step: =0, P= Step: =0.8353, P=. =0.8353 Step3: sce P=0.8353e - =0.887, reject, ad retur step wth =. Step: =0.995, P=. =0.833 Step3: sce P=0.833e - =0.887, reject, ad retur step wth =. Step: 3 =0.8004, P=.. 3 =0.6654 Step3: sce P=0.833<e - =0.887, accept, N=. + P Accept/reject esult 0 0.4357 0.4357 P<e - accept N=0 0 0.446 0.446 P<e - accept N=0 0 0.8353 0.8353 Pe - reject 0.995 0.833 Pe - reject 0.8004 0.6654 P<e - accept N= 0

=4 buses per hour Pe -4 0.083 Dscrete Dstrbutos Posso Dstrbuto Whe s large, say 5 the rejecto techque becomes qute epesve. Z N Z s appromately ormal dstrbuted wth mea zero ad varace. + P Accept/reject esult 0 0.4357 0.4357 Pe - reject 0.446 0.806 Pe - reject 0.8353 0.508 Pe - reject 3 0.995 0.50 Pe - reject 4 0.8004 0.0 Pe - reject 5 0.7945 0.0955 Pe - reject 6 0.530 0.046 P<e - accept N=6 The posso varate ca be geerated N Z 0.5 0