Supporting Information

Similar documents
A Straightforward Protocol for the Highly Efficient Preparation of. Main-chain Azo Polymers Directly from Bisnitroaromatic Compounds

Supporting Information

Supporting Information Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers

ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules

4-cyanopentanoic acid dithiobenzoate (CPADB) was synthesized as reported by Y.

Electronic Supporting Information for

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

Appendix A SYNTHESIS AND CHARACTERIZATION OF SIDE-GROUP LIQUID CRYSTAL POLYMERS

Supporting Information. M13 Virus-Incorporated Biotemplates on Electrode Surfaces to Nucleate Metal Nanostructures by Electrodeposition

Title. CitationCatalysis Science & Technology, 2(8): Issue Date Doc URL. Rights. Type. Additional There Information

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3.

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

The Department of Chemistry, Brown University, Providence, RI The Department of Chemistry, Yale University, New Haven, CT 06520

Electronic Supplementary Information

Analytical Techniques Chromatography

22.Analytical Techniques Chromatography

Supplemental Material

Aluminizing of Nickel-Based Superalloys Grade IN 738 by Powder Liquid Coating

Electronic supporting information

Morphology characterization. (a), SEM image of PS template nanospheres showing

Supplementary Information

Hydrothermal saline promoted grafting: A new route to sulfonic acid SBA-15 silica with ultra-high acid site loading for biodiesel synthesis

Chemistry Practice Exam

supplementary information

The Stirling Engine: The Heat Engine

Supporting Information

Supporting Information

Supporting Information

SUPPLEMENTAL INFORMATION

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes.

Appendix A: HVAC Equipment Efficiency Tables

Low temperature RAFT/MADIX gel polymerisation: access to controlled ultra-high molar mass polyacrylamides

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

Supplementary Figures.

Poly(vinylamine) Microgels: ph-responsive Particles with High Primary Amine Contents

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS

Supplementary Information

Chapter 4rth LIQUIDS AND SOLIDS MCQs

Construction of right-handed-, left-handed- and racemic helical. coordination polymers. Enantioselective recognition via chiral.

Synthesis, Characterization, and Polymerization of Sulfonamide Based Bifunctional Monomers

University of Sioux Falls. MAT204/205 Calculus I/II

Research Article Hydrothermal Synthesis of Ni/Al Layered Double Hydroxide Nanorods

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35.

Supporting Information

Silicon Nanowire Based Single-Molecule SERS Sensor

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R

Supporting Information

Supplementary Information. High-Performance Mixed-Dimensional Perovskite Solar Cells with Enhanced

Supporting Information

Supporting information

CALCULATING REACTING QUANTITIES

Synthesis of chiral 2-methyl-5,6,7,8-tetrahydroquinolines from naturally occurring monoterpenes

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Electronic Supplementary Information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Calix-Tris-Tröger s Bases A New Cavitand Family

Colorimetric detection and separation of chiral tyrosine. based on N-acetyl-L-cysteine modified gold. nanoparticles

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Supporting Information

Chemical Equilibrium

Structural Effect of Thioureas on the Detection of Chemical Warfare Agent Simulants

Supporting Information

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Enhanced Photocatalytic CO 2 -Reduction Activity of Anatase TiO 2 by Coexposed {001} and {101} Facets

Facile Multistep Synthesis of Isotruxene and Isotruxenone

CEM143 MWF 8:00 8:50 am. October 5, 2018

CEM143 MWF 8:00 8:50 am. October 5, 2018

Supporting Information

Thermal energy 2 U Q W. 23 April The First Law of Thermodynamics. Or, if we want to obtain external work: The trick of using steam

Supporting Information

Downloaded on T09:14:59Z

SUPPORTING INFORMATION

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

Momentum and Energy Review

Applied. Grade 9 Assessment of Mathematics. Multiple-Choice Items. Winter 2005

Babak Karimi* and Majid Vafaeezadeh

H SERIES. Algebra Basics. Algebra Basics. Solutions. Curriculum Ready.

Electronic Supplementary Information

Chemical Equilibrium. Problem Set: Chapter 16 questions 25, 27, 33, 35, 43, 71

Lecture 6: Coding theory

Supporting Information

Supporting Information for

Supporting Information

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination

STABILITY EVALUATI ON OF ph AND TEMPERATURE RESPONSIVE PARTICLES FROM STEADY-STATE RHEOLOGICAL MEASUREM ENTS

SUPPLEMENTARY INFORMATION

ES-TA-3..1 Six- and Ten-Input E-Stop Safety Modules with DeviceNet

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Exceptional Organic Solvents Uptake by Disulfide linked Polymeric. Networks

Spacetime and the Quantum World Questions Fall 2010

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Compounds and equations SAMPLE

Transcription:

Nnoporous Polymers Inorporting Sterilly Confine N-Heteroyli Crenes For Simultneous CO 2 Cpture n Conversion t Amient Pressure Siulu Niu Tlpneni, Onur Buyukkir, Sng-hyun Je, Smpth Srinivsn, Yongeom Seo, Kyriki Polyhronopoulou # n Ali Coskun, * Grute Shool of Energy, Environment, Wter n Sustinility (EEWS), Kore Avne Institute of Siene n Tehnology (KAIST), Dejeon 305-701, Repuli of Kore. Center for Nnomterils n Chemil Retions, Institute for Bsi Siene (IBS), Dejeon, Repuli of Kore. # Deprtment of Mehnil Engineering, Khlif University, Au Dhi, UAE. Deprtment of Chemistry, Kore Avne Institute of Siene n Tehnology (KAIST), Dejeon 305-701, Repuli of Kore. Emil: oskun@kist..kr Supporting Informtion * Corresponene Aress Professor Ali Coskun Grute Shool of EEWS n Deprtment of Chemistry Kore Avne Institute of Siene n Tehnology (KAIST) 373-1 Guseong Dong, Yuseong Gu, Dejeon 305-701 (Repuli of Kore). Tel: (+82)-42-350-1724 Fx: (+82)-42-350-1710 E-Mil: oskun@kist..kr

Contents: Setion 1. Mterils n Instrumenttion S3-S4 Setion 2. Experimentl protools for the preprtion of NP-Imine, NP-Imizolium n NP-N- Heteroyli rene (NP-NHC) S4 Setion 3. Synthesis of onventionl sterilly onfine N-heteroyli rene (NHC) S5-S6 Setion 4. Synthesis n routine hrteriztion of tetrphenyl methne inorporting 2,6- iisopropyl niline hyrohlorie (Compoun6. HCl) S6-S14 Setion 5. Synthesis of non-steri porous NHC (PNHC) s ontrol polymer S15-S16 Setion 6. Routine nlysis of nnoporous polymers S17-S28 Setion 7. Ctlyti onversion of CO 2 to yli rontes on NP-NHC orgnotlyst y using epoxies S29 Setion 8. Chrteriztion of yli rontes y 1 H NMR n gs hromtogrphy (GC) S30-S39 Setion 9. Referenes S40 S2

Setion 1. Mterils n Instrumenttion All mnipultions involving ir- n/or moisture-sensitive ompouns were rrie out using glove ox or stnr Shlenk line tehniques uner Ar tmosphere. Air-sensitive liquis were trnsferre vi syringe n were injete into the retion flsk through ruer sept. Moisture sensitive solis were trnsferre in ry gloveox uner Ar tmosphere. Anlytil thin-lyer hromtogrphy ws performe using sili gel pre-ote on luminum sheets. Visuliztion of evelope hromtogrms ws performe y exposure to UV or ioine vpor. Flsh olumn hromtogrphy ws rrie out using 230-400 mesh sili. All hemils n solvents were purhse from Sigm-Alrih n use without further purifition. The 1 H NMR spetr were reore on Bruker DMX 300 MHz n 13 C NMR spetr were otine using Bruker Avne 400 MHz NMR instrument. Chemil shifts in 1 H NMR spetr re reporte in prts per million (ppm) from tetrmethylsilne, with the solvent resonne use s n internl stnr. Dt re presente in the following orer: hemil shift, multipliity (s = singlet, = oulet, t = triplet, q = qurtet, qn = quintet, sx = sextet, h = heptet, o = otet, m = multiplet, n r = ro), oupling onstnt in Hz, n integrtion. Chemil shifts for 13 C NMR spetr re reporte in prts per million (ppm) from tetrmethylsilne, using the entrl pek of the solvent resonne s the internl stnr. Quntittive nlysis ws onute y Shimzu GC-2010 system running with HP-5MS pillry olumn ws use. FT-IR spetr were reore on ATR moe y using Shimzu FTIR Spetrometer y verging 200 sns with resolution of 2 m -1, mesuring in trnsmission moe. 1 H n 13 C spetr were ollete on Bruker Avne 300 MHz NMR n Agilent 400 MHz NMR spetrometers t mient temperture. Soli-stte rosspolriztion mgi ngle spinning (CP/MAS) 13 C NMR spetr of polymers were tken using Bruker Digitl Avne III HD 400 WB (400 MHz) NMR spetrometer t mient temperture with mgi ngle spinning rte of 7.0 khz. The Ar sorption n esorption isotherms were mesure t 87 K on Mirometris 3Flex Surfe Chrteriztion Anlyzer. All smples were outgsse t 100 o C for 16 h prior to the nlysis. The speifi surfe res of smples were lulte using the BET n Lngmuir moel in the pressure rnge where the term V(1-P/P 0 ) ontinuously inreses with P/P 0 in the Rouquerol plot. The pore size istriutions of smples were lulte from rgon isotherms S3

oring to Nonlol Density Funtionl Theory (NLDFT) metho using zeolite ylinril pore moel. The morphology of the mterils ws oserve on Hithi S-4800 fiel emission snning eletron mirosope using n elerting voltge of 5.0 kv. Elementl nlysis (C, H, N) ws one on FlshEA 2000 (Series) [C, H, N, S] Elementl Anlyzer. Power X-ry iffrtion (PXRD) ptterns of the smples were quire from 2 to 70 y Rigku D/MAX- 2500 (18 kw) mirore X-ry iffrtometer. Thermogrvimetri nlysis (TGA) ws performe on NETZSCH-TG 209 F3 instrument uner nitrogen or CO 2 tmospheres (flow rtes: 10 ml min -1 ). Quntittive nlysis ws onute y Shimzu GC-2010 system running with HP-5MS pillry olumn ws use. Setion 2. Experimentl protools for the synthesis of NP-Imine, NP- Imizolium n NP-N-Heteroyli rene (NP-NHC) Synthesis of NP-Imine. A 10-mL pyrex tue ws hrge with the orresponing romti tetrmine tetrhyrohlorie (50 mg, 0.04 mmol), glyoxl of 40 wt% in H 2 O (5.0 mg, 0.125 ml, 0.085 mmol), n 2.4 ml mixture of ioxne n 3M eti i (1/0.2 in v/v). The mixture ws ultrsonite for 30 min t 25 C n egsse using three freeze-pump-thw yles. The tue ws then sele n kept in n utolve t 120 C for 3 ys. The preipitte ws filtere off, wshe with ry ioxne (2 x 100 ml), THF (2 x 100 ml) n CH 2 Cl 2 (2 x 100 ml), n ws lyophilize t room temperture for 16 h to yiel NP-Imine s power in 90% yiel. Elementl nlysis (Clulte): C: 86.8%, N: 5.26%, H: 7.05%; Elementl nlysis (Experimentl): C: 82.36%, N: 4.86%, H: 7.64%. Synthesis of NP-Imizolium. To 50.0 mg of the NP-Imine in 2.0 ml of THF, n exess of prformlehye (14.2 mg, 0.47 mmol) ws e t one. Afterwrs, the retion mixture ws hete to 100 C until most of prformlehye ws issolve. It ws then oole to 40 C n 0.14 ml of HCl (0.47 mmol, 4M in ioxne) ws e vi syringe uner Ar tmosphere. The retion mixture ws hete to 80 C n kept t this temperture for 2 ys n then kept t room temperture for 24 h. The light rown preipitte ws ollete y filtrtion n wshe with THF (2 x 100 ml), n ws lyophilize t room temperture for 16 h to yiel NP- Imizolium in power form in 80% yiel. Elementl nlysis (Clulte): C: 81.6%, N: 4.82%, H: 7.46%, Cl: 5.95%; Elementl nlysis (Exp): C: 79.19%, N: 4.57%, H: 7.53%. Synthesis of NP-NHC. To mixture of 55 mg of the NP-Imizolium in 2 ml of ry THF, 57.0 mg of potssium tert-utoxie (0.5 mmol) ws e. The resulting mixture ws stirre for 3 ys t room temperture. The preipitte ws filtere off n wshe with exess THF (3 x 100 ml) n ethnol (2 x 100 ml). The resulting power ws lyophilize t room temperture for 16 h to yiel NP-NHC (45 mg, 93%). Elementl nlysis (Clulte for NP-NHC): C: 87.09%, N: 4.63%, H: 7.77 %; Elementl nlysis (Experimentl): C: 81.19%, N: 4.57%, H: 7.50%. S4

Setion 3. Synthesis of onventionl sterilly onfine N-heteroyli rene (NHC) The onventionl IPr NHC ws prepre y following the syntheti proeure reporte y Noln et l. 1 n use s referene to nlyze struturl fetures of NP-NHC. Formi i H O NH 2 N N N N + H O Ethnol / RT / 2 Toluene / 100 o C / 70 o C to RT / 2 H Cl 72% p-formlehye / HCl 42% IPr.HCl N N IPr.NHC KO t Bu THF / RT / 4 h 69% Figure S1. Syntheti sheme for the preprtion of onventionl IPr NHC. 1 Synthesis of is(2,6-iisopropylphenyl)izutiene. A 100 ml roun-ottom flsk ws hrge with 10 g (56.4 mmol) of 2,6-iisopropylniline, 4.1 ml (28.2 mol, 40% in wter) of glyoxl n 50 ml of solute EtOH. A few rops of formi i were e s tlyst. The olor of the retion mixture turne from olorless to yellow immeitely n the formtion of yellow preipitte ws oserve fter few hours. The retion mixture ws stirre for two ys t room temperture. The yellow soli ws ollete y filtrtion n wshe with ol MeOH to ffor the nlytilly pure ompoun. Yiel = 7.5 g (72%). Synthesis of Synthesis of IPr HCl. To solution of is(2,6-iisopropylphenyl)izutiene (6 g, 16 mmol) in toluene (120 ml) ws e 0.48 g (16 mmol) of prformlehye in soli form. The retion mixture ws hete to 100 C until most of prformlehye ws issolve. It ws then oole to 40 C n 4.5 ml of HCl (16 mmol, 4 M in ioxne) ws e vi syringe. The retion mixture ws hete to 70 C for 5 h uring whih the olor of the retion mixture turne rown n the formtion of white preipitte ws oserve. The retion mixture ws then llowe to stir t room temperture for 36 h. The off-white preipitte ws ollete y filtrtion n wshe with THF. Yiel = 2.9 g (42%). Synthesis of Synthesis of IPr NHC. To mixture of IPr.HCl (1.5 g, 3.46 mmol) n KO t Bu (0.43 g, 3.81 mmol) ws e THF (15 ml) t room temperture. The olor of the solution turne to rown olor immeitely n the formtion of white preipitte ws oserve. The S5

retion mixture ws stirre for 4 h t room temperture. The solvent ws remove uner vuum n the resiue ws tken up in hot toluene (70 C). The retion mixture ws then filtere through Celite n the evportion of the voltiles ffore rown soli. Yiel = 0.9 g (69%). Setion 4. Synthesis n routine hrteriztion of tetrphenyl methne inorporting 2,6-iisopropyl niline hyrohlorie (ompoun 6.HCl) Br 2 NH 2 Br NH 2 DCM / MeOH / 25 o C / 20 h 92% Benzophenone TEOS / t. H 2 SO 4 Br N 150 o C / 3 1 45% 2 O B O N 3 Bis(Pinolto)ioron / [PCl 2 (ppf)] / KOA DMSO / 80 o C / 2 50% N Br Br 4 Br Br + O B O 3 N [PCl 2 (ppf)] / CsF Dioxne : Wter (1:1) Reflux / 2 30% N N N NH 2 5 H 2 N Figure S2. Synthesis of ompoun 6.HCl. NH 2.4HCl 6 NH 2 4M HCl THF / 80 o C / 16 h 80% S6

Synthesis of ompoun 1. 2 To suspension of 2,6-iisopropyl niline (18.8 g, 106 mmol) in 50 ml CH 2 Cl 2 : MeOH (1:1) mixture, Br 2 (17.07 g, 214 mmol) in 50 ml CH 2 Cl 2 : MeOH (1:1) mixture ws e ropwise over 30 min. The mixture ws stirre t 25 C for 20 h, yieling rk olore suspension. After omplete onsumption of the strting mteril, the solvent ws remove uner reue pressure. The otine rue prout ws rerystllize from 1:1 mixture of CH 2 Cl 2 : hexne (50 ml). The preipitte ws filtere n wshe with 20 ml of ol hexne. The resiue ws neutrlize y treting with 150 ml (5 ml g -1 ) of 20 wt% queous NOH solution for 4 h. Upon extrtion with iethyl ether for three times, the orgni extrts were omine, rie over soium sulfte, n filtere. Removl of voltiles uner reue pressure yiels 25.0 g (92%) of the ompoun 1 s yellow oil. 1 H NMR (300 MHz, CDCl 3 ) = δ 10.08 (r, 2H), 7.37 (s, 2H), 3.77 3.62 (m, 2H), 1.30 (, J = 6.7 Hz, 12H) ppm. X X Figure S3. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of ompoun 1. Synthesis of ompoun 2. Compoun 2 ws prepre y following the moifie proeure reporte y Lee et l. 2 To 250 ml flsk ontining ompoun 1 (8.0 g, 33.2 mmol) n enzophenone (8.53 g, 46.8 mmol) were e tetrethylorthosilite (130 ml, 582.2 mmol) n S7

H 2 SO 4 (0.5 ml). The solution ws hete for 2 ys t 150 C uner Ar tmosphere. The retion mixture ws oole to room temperture, ilute with iethyl ether n wshe with 1M queous NOH solution n susequently with rine solution. Orgni lyer ws seprte, rie over N 2 SO 4 n onentrte uner reue pressure. The onentrte solution ws ilute with ethnol n 10 ml of ethnoli 1 M KOH (issolve in EtOH) solution ws e. The resulting mixture ws stirre t room temperture overnight. The suspension ws filtere n remining soli ws wshe with exess of iethyl ether. The omine filtrtes were wshe with H 2 O n rine solution. The orgni lyer ws rie over N 2 SO 4, filtere n evporte. The rue prout ws sujete to sili gel olumn hromtogrphy with hexne s the moile phse. Conentrte olumn frtions were llowe to rystlize in hexne to yiel reish yellow olore ompoun 2 (6.3g, 45%). 1 H NMR (300 MHz, CDCl 3 ) = δ 7.79 (, J = 7.3 Hz, 2H), 7.44 (, J = 6.7 Hz, 3H), 7.32 7.17 (m, 3H), 7.07 (, J = 2.3 Hz, 4H), 2.83 (m, J = 13.6, 6.8 Hz, 2H), 1.12 (, J = 6.4 Hz, 6H), 0.93 (, J = 6.5 Hz, 6H) ppm. Figure S4. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of ompoun 2. S8

Synthesis of ompoun 3. In flme-rie 250 ml triple nek roun ottom flsk, ompoun 2 (2.0 g, 4.75 mmol) ws isperse in 80 ml of Argon purge ry DMSO. Bis(pinolto)ioron (1.27 g, 4.98 mmol), KOA (1.4 g, 14.25 mmol) n P(ppf)Cl 2 (0.12 g, 0.14 mmol) were e into the retion mixture while vigorously stirring the solution. The retion mixture ws then hete to 80 C for 2 ys. After ooling own to the room temperture, the retion mixture ws ilute with toluene n wshe with exess mount of H 2 O n rine in orer to remove DMSO. The toluene lyer ws rie over N 2 SO 4, filtere n evporte. The rue prout ws sujete to sili gel olumn hromtogrphy. The unrete strting mteril ws reovere with CHCl 3 : hexne (1:1) eluent n then the prout elute with CHCl 3. The olumn frtions were onentrte to yiel yellow olore ompoun 3 (1.1 g, 50 %). 1 H NMR (300 MHz, CDCl 3 ) = δ 7.78 (s, 2H), 7.43 (m, 4H), 7.26 (s, 6H), 2.86 (m, J = 13.7, 6.9 Hz, 2H), 1.33 (s, 12H), 1.12 (, 6H), 1.06 0.96 (, 6H) ppm. 13 C NMR (100 MHz, CDCl 3 ) = δ 165.7, 145.8, 145.1, 138.9, 135.9, 135.0, 131.2, 129.2, 128.9, 127.9, 127.5, 125.5, 121.2, 63.9, 28.4, 23.8, 21.8 ppm. MALDI-TOF-MS for C 31 H 38 BNO 2 (lulte: 467.45), foun: 467.31 ([M] + ). Figure S5. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of ompoun 3. S9

Figure S6. 13 C NMR (100 MHz, CDCl 3, 298 K) spetrum of ompoun 3. Synthesis of ompoun 4. The synthesis of ompoun 4 ws performe using previously reporte literture proeure. 3 A 150 ml roun ottom flsk equippe with mgneti stir r n wter-oole reflux onenser ws hrge with tetrphenylmethne (9 g, 28 mmol). Net Br 2 (10 ml, 196 mmol) ws slowly e n the resulting solution ws stirre for 1 h t room temperture. The rk slurry ws ilute with ethnol (200 ml) n further stirre for 30 min. The preipitte ws then filtere n oile in mixture of EtOH : CHCl 3 (1:1 v/v, 400 ml) for 10 min. The solution ws llowe to ool to room temperture. The preipitte soli ws filtere n rie uner ynmi vuum to ffor ompoun 4 s n off white soli (11.7 g, 66% yiel). 1 H NMR (300 MHz, CDCl 3 ): δ 7.39 (, J = 8.8 Hz, 8H), 7.01 (, J = 8.8 Hz, 8H) ppm. X X Figure S7. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of ompoun 4. S10

Synthesis of ompoun 5. Compoun 3 (3 g, 6.42 mmol), ompoun 4 (0.7g, 1.07 mmol), CsF (1.95 g, 12.85 mmol) n P(ppf)Cl 2 (0.175g, 0.21 mmol) were e into Shlenk flsk insie gloveox. Degsse ioxne (14 ml) n egsse H 2 O (7 ml) were e to the flsk whih ws then sele n hete to reflux for 2 ys. After ooling own to the room temperture, the retion mixture ws ilute with EtOA n filtere. The filtrte ws wshe with wter n rine solutions suessively. The EtOA lyer ws rie over N 2 SO 4, filtere n evporte. The otine rue prout ws sujete to sili gel olumn hromtogrphy with EtOA : hexne s n eluent. Column frtions were omine n onentrte to yiel rk yellow olore ompoun 5 (0.5g, 30%). 1 H NMR (300 MHz, CDCl 3 ) = δ 7.81 (, J = 7.0 Hz, 8H), 7.60 7.28 (m, 34H), 7.26 7.06 (m, 22H), 3.01 2.83 (m, 8H), 1.18 (, J = 5.9 Hz, 24H), 0.97 (, J = 6.1 Hz, 24H) ppm. 13 C NMR (100 MHz, CDCl 3 ) = δ 164.9, 149.3, 134.6, 129.3, 129.0, 127.7, 83.1, 28.3, 24.8 ppm. MALDI-TOF-MS for C 125 H 120 N 4 (lulte: 1678.32), foun: 1678.95 ([M] + ). S11

X X g f e e, f & g & X e f & g & Figure S8. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of ompoun 5. Figure S9. 13 C NMR (100 MHz, CDCl 3, 298 K) spetrum of ompoun 5. S12

Synthesis of ompoun 6. Compoun 5 (0.5 g, 0.3 mmol) ws issolve in 150 ml of THF n hrge with 20 ml of 4 N queous HCl. The resulting solution ws sujete to heting t 70 C n kept t this temperture for 12 h. The olor of the solution hnge from yellow to olorless uring the ourse of the retion. After ooling own to the room temperture, the retion mixture ws filtere n the preipitte ws stirre in EtOA (to remove the enzophenone imine y prout) for 2 h n gin filtere to yiel white olor ompoun 6 (0.3g, 80%). Compoun 6 ws neutrlize using 1 M queous NOH solution n extrte with EtOA to get the orresponing free mine. 1 H NMR (300 MHz, CDCl 3 ) = δ 7.49 (, J = 8.1 Hz, 8H), 7.37 (, J = 8.2 Hz, 8H), 7.31 (s, 8H), 3.79 (r, 8H), 2.97 (m, J = 13.6, 6.8 Hz, 8H), 1.32 1.21 (, 48H) ppm. 13 C NMR (100 MHz, CDCl 3 ) = δ 144.8, 139.5, 139.3, 132.6, 131.3, 130.8, 125.4, 125.3, 121.5, 63.8, 27.9, 22.4 ppm. MALDI-TOF-MS for C 73 H 88 N 4 (lulte: 1021.51), foun: 1021.71 ([M] + ). e X e f e X f Figure S10. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of ompoun 6. S13

Figure S11. 13 C NMR (100 MHz, CDCl 3, 298 K) spetrum of ompoun 6. S14

Setion 5. Synthesis of non-steri porous NHC (PNHC) s ontrol polymer In orer to emonstrte the importne of steri onfinement in NP-NHC, non-steri porous NHC (PNHC) 4 hs een prepre uner ientil syntheti onitions to tht of NP-NHC strting from tetrkis(4-minophenyl)methne s shown elow. PImin PNHC PImCl Figure S12. Syntheti sheme for the preprtion of non-steri porous imine (PImin), imizolium hlorie (PImCl), N-heteroyli rene (PNHC). The lines t terminl positions imply the extension of perioi strutures. 4 S15

Non-steri porous imine (PImin). A 10-mL pyrex tue ws hrge with tetrkis(4- minophenyl)methne (60 mg, 0.15 mmol), glyoxl of 40 wt% in H 2 O (18.3 mg, 0.45 ml, 0.315 mmol), n 3.0 ml mixture of ioxne n 3M queous eti i solution (1/0.2 in v/v). The mixture ws ultrsonite for 30 min t 25 C n egsse using three freeze-pump-thw yles. The tue ws then sele n kept in n utolve t 140 C for 3 ys. The preipitte ws filtere off, wshe with ioxne (2 x 100 ml), THF (2 x 100 ml) n CH 2 Cl 2 (2 x 100 ml), n ws lyophilize t room temperture for 16 h to yiel PImin in 95% yiel. Non-steri porous imizolium hlorie (PImCl). To 70.0 mg of the PImin in 3.0 ml of THF n exess of prformlehye (15.8 mg, 0.525 mmol) ws e in soli form. The retion mixture ws hete to 100 C until most of prformlehye ws issolve. It ws then oole to 40 C n 0.15 ml of HCl (0.52 mmol, 4 M in ioxne) ws syringe in. The retion mixture ws hete to 80 C for 2 ys n llowe to stir t room temperture for itionl 24 h. The rown olore preipitte ws ollete y filtrtion n wshe with THF (100 ml), n lyophilize t room temperture for 16 h to yiel PImCl in 85% yiel. Non-steri porous N-heteroyli rene (PNHC). To mixture of 75 mg of the PImCl in 3 ml of ry THF, 70.0 mg of potssium tert-utoxie (0.63 mmol) ws e. The resulting mixture ws stirre for 3 ys n filtere off n the preipitte ws wshe with THF (3 x 100 ml) n EtOH (2 x 100 ml). The resulting power ws lyophilize t room temperture for 16 h to yiel PNHC (yiel: 70 mg, 93%). S16

Trnsmission (%) -NH 2 :3400 Amine NP-Imine 4000 3000 2000 1000 Wvenumer, m -1 Figure S13. FT-IR spetr of sterilly onfine nnoporous imine (NP-Imine) n the orresponing extene romti tetrmine erivtive. S17

NHC-CO 2 :1621 Trnsmission (%) NP-NHC NP-Imizolium C=N:1705 NP-Imine 1800 1500 1200 900 600 Wvenumer, m -1 Figure S14. Enlrge (1800 600 m -1 ) FT-IR spetr of sterilly onfine nnoporous imine (NP-Imine), imizolium (NP-imizolium) n N-heteroyli rene (NP-NHC). Re otte lines inite key FT-IR ns ssoite with the rene n orresponing imizolium roxylte moieties. S18

Trnsmission (%) Crene 1700 Ipr-CO 2 :1675 IPr IPr.HCl C=N:1625 Imine 1800 1500 1200 900 600 Wvenumer, m -1 Figure S15. Enlrge (1800 600 m -1 ) FT-IR spetr of onventionl imine, imizolium n N-heteroyli rene (IPr NHC). Re otte line inites omplete ispperne of imine strething ns following yliztion. In ition hrteristi IR signtures of rene is lso highlighte. S19

Trnsmission (%) PNHC PImizolium PImine 1800 1500 1200 900 600 Wvenumer, m -1 Figure S16. Enlrge (1800 600 m -1 ) FT-IR spetr of non-steri ontrol polymer, PImine, PImCl n PNHC. Re otte line inites omplete ispperne of imine strething ns following yliztion. In ition hrteristi IR signtures of rene is lso highlighte. S20

Intensity (.u.) NP-Imine NP-Imizolium NP-NHC 10 20 30 40 2θ (Degree) Figure S17. Power X-ry iffrtion (XRD) ptterns of NP-Imine, NP-Imizolium n NP- NHC. S21

NP-Imine NP-Imizolium NP-NHC Figure S18. Fiel emission snning eletron mirosopy (FE-SEM) imges of NP-imine, NPimizolium n NP-NHC. SEM imges show the formtion of irregulr size spheril prtiles. S22

100 80 NP-Imine NP-Imizolium NP-NHC Mss (%) 60 40 20 0 0 200 400 600 800 Temperture ( o C) Figure S19. Thermogrvimetri nlysis (TGA) of NP-Imine, NP-Imizolium n NP-NHC uner ir tmosphere up to 800 C t rte of 10 C min -1. S23

150 () V(1-P/P 0 ), m 3 g -1 100 50 V(1-P/P 0 ), m 3 g -1 150 100 50 0 0 0.00 0.04 0.08 0.12 Reltive pressure, P/P 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0010 () Reltive pressure, P/P 0 0.0008 1/[Q(P 0 /P - 1] 0.0006 0.0004 0.0002 BET : 483 ± 5 m²/g R 2 : 0.9999 y = 0.007950x + 4X10-6 0.0000 0.00 0.04 0.08 0.12 Reltive pressure, P/P 0 Figure S20. () Clulte Rouquerol plot for NP-Imine (Inset: enlrge plot) long with the pressure rnges use for the BET surfe re lultions. We hve use the pressure rnge where the term V(1-P/P 0 ) ontinuously inreses with P/P 0 for the surfe re lultions; () BET plot of NP-Imine otine from rgon isotherms t 87 K. The selete points re lote in the pressure rnges of 0.01 to 0.12 oring to the Rouquerol plots. S24

150 () V(1-P/P 0 ), m 3 g -1 100 50 V(1-P/P 0 ), m 3 g -1 150 100 50 0 0 0.00 0.04 0.08 0.12 Reltive pressure, P/P 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0010 0.0008 () Reltive pressure, P/P 0 1/[Q(P 0 /P - 1] 0.0006 0.0004 0.0002 BET : 537 ± 6 m²/g R 2 : 0.9999 y = 0.007145x + 3X10-6 0.0000 0.00 0.04 0.08 0.12 Reltive pressure, P/P 0 Figure S21. () Clulte Rouquerol plot for NP-Imizolium (Inset: enlrge plot) long with the pressure rnges use for the BET surfe re lultions. We hve use the pressure rnge where the term V(1-P/P 0 ) ontinuously inreses with P/P 0 for the surfe re lultions; () BET plot of NP-Imizolium otine from rgon isotherms t 87 K. The selete points re lote in the pressure rnges of 0.01 to 0.12 oring to the Rouquerol plots. S25

125 () V(1-P/P 0 ), m 3 g -1 100 75 50 25 V(1-P/P 0 ), m 3 g -1 125 100 75 50 25 0 0 0.00 0.04 0.08 0.12 Reltive pressure, P/P 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0009 () Reltive pressure, P/P 0 1/[Q(P 0 /P - 1] 0.0006 0.0003 BET : 473.2203 ± 0.4047 m²/g R 2 : 0.9999993 y = 0.008109x + 7X10-6 0.0000 0.00 0.02 0.04 0.06 0.08 0.10 Reltive pressure, P/P 0 Figure S22. () Clulte Rouquerol plot for the NP-NHC (Inset: enlrge plot) long with the pressure rnges use for the BET surfe re lultions. We hve use the pressure rnge where the term V(1-P/P 0 ) ontinuously inreses with P/P 0 for the surfe re lultions; () BET plot of NP-NHC otine from rgon isotherms t 87 K. The selete points re lote in the pressure rnges of 0.01 to 0.12 oring to the Rouquerol plots. S26

Quntity sore, m 3 g -1 250 200 150 100 50 () PImin PImCl PNHC 0 0.0 0.2 0.4 0.6 0.8 1.0 Reltive pressure, P/P 0 Differentil pore volume, m 3 g -1 0.5 () PImin PImCl 0.4 PNHC 0.3 0.2 0.1 0.0 0 2 4 6 8 10 Pore size, nm Smple nme S BET (m 2 g -1 ) Lngmuir (m 2 g -1 ) V miro (m 3 g -1 ) miro (nm) S ext (m 2 g -1 ) S miro (m 2 g -1 ) V totl e (m 3 g -1 ) PImin 306 653 0.03 0.64 182 123 0.21 PImCl 357 755 0.035 0.61 215 141 0.25 PNHC 100 393 -- -- 92 -- 0.10 Brunuer Emmett Teller (BET) surfe re lulte over the pressure rnge (P/P 0) 0.01 0.12. Miropore volume lulte using the t-plot metho. Miropore imeter lulte from NLDFT metho. Miropore surfe re lulte from the sorption isotherm using the t-plot metho. e Totl pore volume otine t P/P 0 = 0.99. Figure S23. ) Argon sorption esorption isotherms (open n lose symols represent esorption n sorption, respetively) n () NLDFT pore-size istriutions ( re squres: PImin, lue tringles: PImin, n green imons: PNHC) long with texturl prmeters of non-steri PImin, PImCl n PNHC mesure t 87 K. S27

CO 2 Fixing effiieny (%) 160 o C N 2 25 20 15 10 5 0 160 o C N 2 25 / 40 / 80 / 120 o C 25 / 40 / 80 / 120 o C CO 2 CO 2 25 o C 40 o C 80 o C 120 o C 0 100 200 300 400 500 600 700 Time (min) Figure S24. TGA urves for CO 2 pture-relese performne of non-steri PNHC t 25, 40, 80 n 120 o C. Prior egssing ws rrie out using N 2 flow (40 ml min -1 ) t 160 C for 60 min in orer to tivte the smple n remove ny pture tmospheri CO 2. S28

Quntity sore (mmol g -1 ) 3.0 2.5 2.0 1.5 NP-Imine-CO 2 t 273 K NP-Imizolium-CO 2 t 273 K NP-Imine-CO 2 t 298 K NP-Imizolium-CO 2 t 298 K NP-Imine-CO 2 t 323 K NP-Imizolium-CO 2 t 323 K 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Pressure (Br) Figure S25. CO 2 gs sorption n esorption isotherms of NP-Imine n NP-Imizolium mesure up to 1 r t 273, 298 n 323 K. Fille n empty symols represent sorption n esorption, respetively. S29

Setion 7. Ctlyti onversion of CO 2 to yli rontes on NP-NHC orgnotlyst y using epoxies Ctlyti tests. A 50 ml glss line stinless-steel retor equippe with mgneti stirring r n pressure ontroller ws hrge with NP-NHC tlyst (5 wt%) n the orresponing epoxie (5.0 mmol). The vessel ws pressurize with CO 2 (0.1 MP). After stirring for 24 h t 120 C, the retion ws stoppe y ooling the retor to room temperture. The retion mixture ws filtere off n wshe thoroughly with ry CH 2 Cl 2 to ensure omplete removl of the prout n ny unrete strting mterils from the pores of the NP-NHC orgnotlyst. The filtrte ws onentrte uner reue pressure n the rue smples were nlyze y 1H NMR spetrosopy. After eh yle, the tlyst ws sujete to 160 C heting uner vuum to remove ll the solvents n use it for the next yles. Figure S26. Plusile tlyti yle n retion pthwy for the formtion of yli rontes through tom eonomy retion etween CO 2 n epoxies tlyze y the NP-NHC. 5, 6 S30

Setion 8. Chrteriztion of yli rontes y 1 H NMR n gs hromtogrphy (GC) X X X X Figure S27. 1 H NMR (300 MHz, CDCl 3, 298 K) spetr of (±)-propylene oxie n its orresponing yli ronte ( 1 H NMR spetrum ws otine from the rue smple). S31

S32 Figure S28. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of 1,2-epoxyhexne n its orresponing yli ronte ( 1 H NMR spetrum ws otine from the rue smple). f & f X g e g e X e,& e f f g g X

S33 Figure S29. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of (±)-epihlorohyrin n its orresponing yli ronte ( 1 H NMR spetrum ws otine from the rue smple). X X X X X

Figure S30. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of styrene oxie n its orresponing retion mixture ( 1 H NMR spetrum ws otine from the rue smple). S34

e e Figure S31. 1 H NMR (300 MHz, CDCl 3, 298 K) spetrum of epoxypropylene enzene n its orresponing retion mixture ( 1 H NMR spetrum ws otine from the rue smple). S35

Figure S32. Representtive GC t otine for propylene oxie n its orresponing yli ronte fter yloition of CO 2 over NP-NHC (Gs hromtogrm ws otine from the rue retion mixture). S36

Figure S33. Representtive GC t otine for epoxy hexne n its orresponing yli ronte fter yloition of CO 2 over NP-NHC (Gs hromtogrm ws otine from the rue retion mixture). S37

Figure S34. Representtive GC t otine for (±)-epihlorohyrin n its orresponing yli ronte fter yloition of CO 2 over NP-NHC (Gs hromtogrm ws otine from the rue retion mixture). S38

Retion mixture GC Figure S35. Representtive GC t otine for styrene oxie n its orresponing retion mixture fter yloition of CO 2 over NPNHC (Gs hromtogrm ws otine from the rue retion mixture). S39

Retion mixture GC Figure S36. Representtive GC t otine for 2,3-epoxy propyl enzene n its orresponing retion mixture fter yloition of CO 2 over NPNHC (Gs hromtogrm ws otine from the rue retion mixture). S40

Setion 9. Referenes 1. Jfrpour, L.; Stevens, E. D.; Noln, S. P., A sterilly emning nuleophili rene:1,3-is(2,6-iisopropylphenyl)imizol-2-yliene). Thermohemistry n tlyti pplition in olefin metthesis. J. Orgmet. Chem. 2000, 606, 49-54. 2. Lee, B. Y.; Kwon, H. Y.; Lee, S. Y.; N, S. J.; Hn, S.; Yun, H.; Lee, H.; Prk, Y.-W., Bimetlli nilio-limine zin omplexes for epoxie/co 2 opolymeriztion. J. Am. Chem. So. 2005, 127, 3031-3037. 3. Pney, P.; Frh, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kntziis, M. G.; Hupp, J. T.; Nguyen, S. T., A lik-se porous orgni polymer from tetrherl uiling loks. J. Mter. Chem. 2011, 21, 1700-1703. 4. Thiel, K.; Zehe, R.; Roeser, J.; Struh, P.; Enthler, S.; Thoms, A., A polymer nlogous retion for the formtion of imizolium n NHC se porous polymer networks. Polymer Chem. 2013, 4, 1848-1856. 5. Zhou, H.; Zhng, W.-Z.; Liu, C.-H.; Qu, J.-P.; Lu, X.-B., CO 2 uts of N-heteroyli renes: Therml stility n tlyti tivity towr the oupling of CO 2 with epoxies. J. Org. Chem. 2008, 73, 8039-8044. 6. Kyki, Y.; Ymmoto, M.; Ikriy, T., N-Heteroyli renes s effiient orgnotlysts for CO 2 fixtion retions. Angew. Chem. Int. E. 2009, 48, 4194-4197. S41