Poularikas A. D. Fourier Transform The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC,

Similar documents
Review of Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

Fourier Series. Spectral Analysis of Periodic Signals

Chapter 4 The Fourier Series and Fourier Transform

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Fourier transform representation of CT aperiodic signals Section 4.1

Signal Processing Signal and System Classifications. Chapter 13

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

X. Chen More on Sampling

Ch 4: The Continuous-Time Fourier Transform

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5

Signals, Systems, and Society. By: Carlos E. Davila

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

Fourier transforms. Definition F(ω) = - should know these! f(t).e -jωt.dt. ω = 2πf. other definitions exist. f(t) = - F(ω).e jωt.

Fourier Series Example

27. The Fourier Transform in optics, II

EE 438 Essential Definitions and Relations

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1)

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

Representing a Signal

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

LOPE3202: Communication Systems 10/18/2017 2

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

CS711008Z Algorithm Design and Analysis

d n 1 f dt n 1 + K+ a 0f = C cos(ωt + φ)

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

Lecture 8 ELE 301: Signals and Systems

Solutions to Problems in Chapter 4

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

Signals and Systems Spring 2004 Lecture #9

Calculus I Sample Exam #01

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10

ENGIN 211, Engineering Math. Laplace Transforms

2.1 Basic Concepts Basic operations on signals Classication of signals

1. State the informal definition of the limit of a function. 4. What are the values of the following limits: lim. 2x 1 if x 1 discontinuous?

Lecture 4: Fourier Transforms.

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes.

Formulas that must be memorized:

Aspects of Continuous- and Discrete-Time Signals and Systems

Fourier Series. (Com S 477/577 Notes) Yan-Bin Jia. Nov 29, 2016

Mathematical Foundations of Signal Processing

Fourier-Bessel Transform for Tempered Boehmians

Notes 07 largely plagiarized by %khc

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Fourier and Partial Differential Equations

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

Overview. Signals as functions (1D, 2D) 1D Fourier Transform. 2D Fourier Transforms. Discrete Fourier Transform (DFT) Discrete Cosine Transform (DCT)

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt =

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

Linear second-order differential equations with constant coefficients and nonzero right-hand side

2 Frequency-Domain Analysis

Review of Linear Time-Invariant Network Analysis

Fourier Analysis and Power Spectral Density

Sinc Functions. Continuous-Time Rectangular Pulse

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited

sech(ax) = 1 ch(x) = 2 e x + e x (10) cos(a) cos(b) = 2 sin( 1 2 (a + b)) sin( 1 2

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

EE Homework 13 - Solutions

2.161 Signal Processing: Continuous and Discrete

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis

x f(x)

x f(x)

EC Signals and Systems

Notes and Problems for Applied Mathematics I

MATH FALL 2014 HOMEWORK 10 SOLUTIONS

Linear Systems Theory

Problem Sheet 1 Examples of Random Processes

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2]

The Gaussian transform. ALECU, Teodor, VOLOSHYNOVSKYY, Svyatoslav, PUN, Thierry. Abstract

Heisenberg's inequality for Fourier transform

System Identification & Parameter Estimation

Homework 9 Solutions

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Fourier Representations of Signals & LTI Systems

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3

Review of Discrete-Time System

Discrete-Time Signals: Time-Domain Representation

DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS

EE 224 Signals and Systems I Review 1/10

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform

The Fourier Transform

The Hilbert Transform

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

For more information visit

The solutions of time and space conformable fractional heat equations with conformable Fourier transform

Transcription:

Poularikas A. D. Fourier Transform The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, 999

3 Fourier Transform 3. One-Dimensional Fourier Transform Definitions Properties Tables 3.2 Two-Dimensional Continuous Fourier Transform Definitions References Appendix Examples 3. One-Dimensional Fourier Transform 3.. Definitions 3... Fourier Transform or 2π F( f) = f( t) e dt = F( f) e j2π ft f() t = F( f) e df j ft jφω ( ) If f(t) is piecewise continuous and absolutel integrable, then its Fourier transform is a bounded continuous function, bounded b F( ω ) dω. If F(ω) is absolutel integrable F( ω) then its inverse is f(t). jω t jφω ( ) F( ω) = f ( t) e dt = F( ω) e = R( ω) + jx( ω) jω t f() t = F( ω) e dω 2π 999 b CRC Press LLC

3...2 f(t) = f r (t) + j f i (t) is complex, f r (t) and f i (t) are real functions f()= t real F( ω) = [ f ( t)cos ωt + f ( t)sin ωt] dt j [ f ( t)sin ωt f ( t)cos ωt] dt R( ω) = [ f ( t)cos ωt + f ( t)sin ωt] dt X( ω) = [ f ( t)sin ωt f ( t)cos ωt] dt fr () t = 2π (f r (t) = f(t), f i (t) = 0) r i r i r r fi( t) = [ R( ω)sin ωt + X( ω)cos ωt] dω 2π i i [ R( ω)cos ωt X( ω)sin ωt] dω R( ω) = f ( t)cos ωt dt X( ω) = f ( t)sinωt dt R( ω) = R( ω) X( ω) = X( ω) F( ω) = F ( ω) jω t f() t = Re F( ω) e dω π f() t = j f () t is purel imaginar i (f r (t) = 0) R( ω) = f ( t)sin ωt dt X( ω) = f ( t)cosωt dt f() t is even [ f() t = f( t)] i R( ω) = R( ω) X( ω) = X( ω) F( ω) = F ( ω) R( ω) = 2 f ( t)cos ωt dt X( ω) = 0 o f() t is odd [ f() t = f( t)] f( t) = R( ω)cosωtdω π o R( ω) = 0 X( ω) = 2 f( t)sinωtdt f( t) = X( ω)sinωtdω π o o i 999 b CRC Press LLC

3..2 Properties 3..2. Properties of Fourier Transform TABLE 3. Properties of Fourier Transform Operation. Transform-direct f() t F( ω) f() t f() t e j ω t dt 2. Inverse transform jω t F( ω) e dω 2π F( ω) 3. Linearit af (t) + bf 2 (t) af (ω) + bf 2 (ω) 4. Smmetr Ft () 2πf( ω) 5. Time shifting f( t± t o ) ±ω j t e o F( ω) 6. Scaling 7. Frequenc shifting 8. Modulation 9. Time differentiation 0. Time convolution f( at) a F ω a ±ω j e o t f() t F ( ωm ωo ) f( t)cosω ot 2 [ F( ω+ ωo) + F( ω ωo)] f( t)sin ω ot 2 j [ F( ω ωo) F( ω+ ωo)] n d n dt f() t ( jω) F( ω) f() t h() t = f( τ) h( t τ) dτ F( ω) H( ω). Frequenc convolution f() t h() t F( ω) H( ω) = F( τ) H( ω τ) dτ 2π 2π 2. Autocorrelation f() t f *( t) = f( τ) f *( τ t) dτ F( ω) F*( ω) = F( ω) 2 3. Parseval's formula E = f() t dt 2 2 E = F( ω) dω 2π ( n) n F ( 0) 4. Moments formula mn = t f() t dt = n where ( j) 5. Frequenc differentiation 6. Time reversal 7. Conjugate function n ( n d F F ) ( ω) ( 0) =, n = 02,, L n dω ω= 0 df( ω) ( jt) f ( t) dω n n ( jt) f ( t) d F( ω) n dω f( t) F( ω) f *( t) F *( ω) 8. Integral ( F( 0) = 0) f() t dt t jω F( ω) 9. Integral ( F( 0) 0) t f() t dt jω F( ω) + πf( 0) δ( ω) 999 b CRC Press LLC

3..3 Tables 3..3. Graphical Representations of Some Fourier Transforms TABLE 3.2 Table of Fourier Transforms (x = t; = w) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) 999 b CRC Press LLC

f(x) F() 3.53 3.54 A -A s-a<x<s+a -s-a<x<-s+a -2Aj sin a sin s 3.55 A -A 0<x<2a -2a<x<0-4jA sin a sin a 3.56 999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) f(x) F() J 0 (x) 2-2 3.57 J (x) 2x - 2 3.58 j πx sqn = >0 0 =0 - <0 3.59 999 b CRC Press LLC

f(x) F() xe -πx2 -j 2 2π e - 4π 3.60 δ(x+a) - δ(x-a) 2j sin 2 3.6 tanhπx -j cosech 2 3.62 999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) f(x) F() e - x sinx x tan - 2 2 3.63 p(x) * p(x) * p(x) sin 3 3.64 sin ax πx p a (x) 3.65 999 b CRC Press LLC

f(x) F() x e -ax a>0 x 0 a 2-2 2a -j (a 2 + 2 ) 2 (a 2 + 2 ) 2 3.66 a 2 + x 2 π a e -a 3.67 cos bx a 2 + x 2 π 2a e -a -b + e -a +b 3.68 999 b CRC Press LLC

TABLE 3.2 Table of Fourier Transforms (x = t; = w) (continued) f(x) F() sin bx a 2 + x 2 π 2aj e -a -b - e -a +b 3.69 dδ(x) dx j 3.70 x 2πj dδ() d 3.7 999 b CRC Press LLC

f(x) F() sin w 0 x 0 x 0 x < 0 w 0 w 0 2-2 -j π 2 [δ(-w 0 ) - δ(+w 0 )] 3.72 cos w 0 x 0 x 0 x < 0 j w 0 2-2 + π 2 [δ(-w 0 ) - δ(+w 0 )] 3.73 x 0 x 0 x < 0 jπ dδ() d - 2 3.74 999 b CRC Press LLC

3.2 Two-Dimensional Continuous Fourier Transform 3.2. Definitions 3.2.. Two-Dimensional Fourier Transform 3.2..2 Properties of Two-Dimensional Fourier Transform TABLE 3.3 Properties of Two-Dimensional Fourier Transform Rotation f( ± x, ± ) F( ± ω, ± ω2) Linearit af ( x, ) + a2f2( x, ) af ( ω, ω2) + af 2 2( ω, ω2) Conjugation f *( x, ) F *( ω, ω2) Separabilit f( x) f2( ) F( ω) F2( ω2) 2 Scaling f( ax, b) ab F ω ω, a b ± j( ω Shifting f( x± xo, ± o) xo+ ω2o) e F( ω, ω2) ± j( ω Modulation cx+ ωc2) e f( x, ) F( ω mωc, ω2 mωc2) Convolution gx (, ) = hx (, ) f( x, ) G( ω, ω2) = H( ω, ω2) F( ω, ω2) Multiplication gx (, ) = hx (, ) f( x, ) G( ω, ω2) = H( ω, ω ) F( ω, ω ) 2 2 2 ( 2π) Correlation cx (, ) = hx (, ) µµ f( x, ) G( ω, ω ) = H( ω, ω ) F( ω, ω ) Inner Product 2 F{ f( x, )} = F( ω, ω ) = f( x, ) e dxd F 2 j( xω + ω ) + 2 2 2 2 j( ωx ω2) { F( ω, ω )} = F( ω, ω ) e dω dω ( 2π) 2 2 2 I = f( x, ) h*( x, ) dxd I = F( ω, ω ) H*( ω, ω ) dω dω ( 2π) 2 2 2 2 Parseval Formula I = f ( x, ) dx d 2 2 I = F( ω d d 2 2, ω2) ω ω2 ( π) References Bracewell, Ron, The Fourier Transform and Its Applications, McGraw-Hill Book Compan, New York, NY, 965. Campbell, G. A., and R. M. Foster, Fourier Integrals for Practical Applications, Van Nostrand Compan, Princeton, NJ, 948. Champenc, D. C., Fourier Transforms and Their Phsical Applications, Academic Press, New York, 973. Howell, K., Fourier transform, in The Transforms and Application Handbook, Edited b A. D. Poularikas, CRC Press Inc., Boca Raton, FL, 996. Papoulis, Athanasios, The Fourier Integral and Its Applications, McGraw-Hill Book Compan, New York, NY, 962. Walker, James S., Fourier Analsis, Oxford Universit Press, New York, NY, 988. 999 b CRC Press LLC

Appendix Examples. Gibbs Phenomenon Example 3. Let U(ω) be the spectrum of unit step function, and let the truncated spectrum U ( ω) = U(ω) for ω ω o ω o and zero otherwise. We can also write the truncated spectrum as follows: U ( ω) = U(ω) p ( ω), where ( ω) ω o ωo is a unit pulse of 2ω o duration and centered at the origin. The approximate step function pω o ot ua()=f t U p F U F sinω { ( ω) ω ( ω)} = { ( ω)} { p ( )} = u( t) = o ω ω o π t π t sinωτ o dτ τ and is shown in Figure 3.. FIGURE 3..2 Special Functions Example 3.2 Example 3.3 Example 3.4 ε t ε t j t ω F{sgn( t)} = F{lime sgn( t)} = lim e sgn( t) e dt ε 0 ε 0 o ( j ) t ( j ) t = lim ε ω ε+ ω e dt + e dt lim = 2 + = ε 0 ε 0 ε jω ε + jω jω o F{ ut ( )} = F{ + sgn( t)} = 2πδ( ω) + jω = πδ( ω) + j 2 2 2 2 ω 2 F n= jω t δ ( t nt)} = F{ combt ( t) = δ( t nt) e dt n= 999 b CRC Press LLC

But comb T (t) is periodic with the period ω o = 2π/T, and can be expanded in the complex form of Fourier series comb T (t) = jnω t o comb t e Hence T () =. T COMB n= ωo j( ω nωo ) t 2π ( ω) = e dt = δω ( nωo ) T T n= n= 999 b CRC Press LLC