DIELS-ALDER REACTION OF 1,3-BUTADIENE AND MALEIC ANHYDRIDE TO PRODUCE 4-CYCLOHEXENE-CIS-1,2-DICARBOXYLIC ACID. Douglas G. Balmer. (T.A.

Similar documents
ACID-CATALYZED DEHYDRATION OF 2-METHYLCYCLOHEXANOL. Douglas G. Balmer. (T.A. Mike Hall) Dr. Dailey

22. The Diels-Alder Cycloaddition Reaction

12BL Experiment 1: The Diels-Alder Reaction

The Diels-Alder Reaction of Anthracene with Maleic Anhydride

Experiment 17 Preparation of Methyl Orange

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I

Experiment 12: Grignard Synthesis of Triphenylmethanol

ExA1. Unsaturated Hydrocarbons. Olefins. Experiment: Next Week. Structure Addition Reactions Mechanisms

Experiment 30: Identification of a Conjugated Diene from Eucalyptus Oil

Experiment 8 Synthesis of Aspirin

As you can see from the reactions below for the reduction of camphor, there are two possible products, borneol and isoborneol.

Experiment 5 : The Diels-Alder reaction

Scheme 2: Formation of Di- Halide via Chloronium Intermediate

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation

Exp t 111 Structure Determination of a Natural Product

Experiment V: Multistep Convergent Synthesis: Synthesis of Hexaphenylbenzene

Chemistry 283g- Experiment 4

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

Aspirin Synthesis H 3 PO 4

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Chemistry 254 Lab Experiment 1: Qualitative Organic Analysis Summer 2004

THE LABORATORY NOTEBOOK

Lisa Barton CHEM 2312 Organic Chemistry Performed: 2/4/12. Synthesis of Aspirin

Lab #3 Reduction of 3-Nitroacetophenone

Experiment 7: Synthesis of an Alkyne from an Alkene

2. Synthesis of Aspirin

Synthesis of Benzoic Acid

EXPERIMENT 8 Reactions of Hydrocarbons

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction.

Sodium Borohydride Reduction of Benzoin

GRIGNARD REACTION Synthesis of Benzoic Acid

TOSYLHYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE EXPERIMENT A

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction

18 Macroscale and Microscale Organic Experiments

ORG1 Syntheses of Acetaminophen and Aspirin

Expt 9: The Aldol Condensation

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test.

Honors Cup Synthetic Proposal

Experiment # 13 PREPARATION OF ASPIRIN

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene

2 (CH 3 CH 2 ) 2 NH diethylamine

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2)

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

Recovery of Copper Renee Y. Becker Manatee Community College

DATE: Friday February 18 th Experiment #3 (A) : p - acetotoluidide. TITLE: PABA and its Chemistry RESULTS: p toludine

media), except those of aluminum and calcium

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

The Synthesis and Analysis of Aspirin

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

CHEM 254 EXPERIMENT 5. Solubility and Enthalpy of Fusion of Ammonium Oxalate in Water

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

Experiment 1: Preparation of Vanillyl Alcohol

CHEM 123L Lab Report. Synthesis of Acetaminophen. [Type the author name]

Synthesis of Tetraphenylcyclopentadienone. Becky Ortiz

Solutions Solubility. Chapter 14

Green Chemistry Experiment: A Template-Directed [2+2] Photodimerization Conducted in the Solid State

Terpenoids: Investigations in Santonin Chemistry

Experiment 17. Synthesis of Aspirin. Introduction

CHMA2000 EXPT 7: The Physical and Chemical Properties of Alcohols

7/30/07 MIKE HALL ALKENE FORMATION: ACID-CATALYZED DEHYDRATION OF AN ALCOHOL

Multi-Step Synthesis of Betaine-30

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

18. Arene Diazonium Ion Reactions

Some Reactions of Hydrocarbons Experiment #2

CONDENSATION OF N1TROMETHANE AND NITROETHANE WITH ETHYL MALEATE AND FUMARATE IN THE PRESENCE OF POTASSIUM FLUORIDE*

Nitration of Methyl Benzoate

EXPERIMENT THREE THE CANNIZARO REACTION: THE DISPROPORTIONATION OF BENZALDEHYDE

Working with Hazardous Chemicals

Electronic Supplementary Information

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

Week 10 Chemical Synthesis

Working with Hazardous Chemicals

Experiment 5 Reactions of Hydrocarbons

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET)

Nucleophilic Addition to Carbonyl: Grignard Reaction with a Ketone

Supporting Information for

O OCH standard work-up (A) (B) (P)

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Aspirin Synthesis. Figure 1 Acetylsalicylic acid (aspirin), C 9 H 8 O 4

Experiment: Synthesis of Aspirin

5.37 Introduction to Organic Synthesis Laboratory

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

THE ACTION OF ACETIC ANHYDRIDE AND PYRIDINE ON AMINO ACIDS.

Supplementary Information. Low volume shrinkage polymers by photo Polymerization of 1,1- Bis(ethoxycarbonyl)-2-vinylcyclopropanes

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

12A Lab Activity Notes

Synthesis of cis- and trans- Diamminedichloroplatinum(II)

Review Experiments Formation of Polymers Reduction of Vanillin

Chapter 14: Conjugated Dienes

Electronic Supplementary Information

Synthesis of γ-lactams from the Spontaneous Ring Expansion of β-lactams. Second-Semester Student

Transcription:

DIELS-ALDER REACTIN F,3-BUTADIENE AND MALEIC ANYDRIDE T PRDUCE 4-CYCLEXENE-CIS-,2-DICARBXYLIC ACID Douglas G. Balmer (T.A. Mike all) Dr. Dailey Submitted August 2007

Balmer Introduction: The purpose of this experiment is to carry out a Diels-Alder reaction of,3- butadiene and maleic anhydride to produce 4-cyclohexene-cis-,2-dicarboxylic anhydride. This type of reaction is named in honor of the German scientists, tto Diels and Kurt Alder, who studied the reactions of,3-dienes with dienophiles to produce cycloadducts. Their research earned them the 950 Nobel Prize in chemistry. The saturation of anhydride will be tested with bromine and Bayer tests. It will also be observed that the product is in the cis position and not the trans position which indicates a concerted, single-step, reaction. Finally the product will be hydrolyzed to produce 4- cyclohexene-cis-,2-dicarboxylic acid. Main Reaction and Mechanism: 3-sulfolene was used to synthesize,3-butadiene in the reaction flask. It was easier to start with solid 3-sulfolene and then decompose it, rather than starting with gaseous,3-butadiene (Fig.). The dienophile, maleic anhydride, attacks the diene forming 4- cyclohexene-cis-dicarboxylic anhydride (Fig.2). The final step of the mechanism is to add water to the anhydride to produce 4-cyclohexene-cis-dicarboxylic acid (Fig.3). S 64-65 o C S + FIGURE The decomposition of 3-sulfolene to produce,3-butadiene.

Balmer 2 + FIGURE 2 The Diels-Alder reaction between,3-butadiene and maleic anhydride to produce 4- cyclohexene-cis-,2-dicarboxylic anhydride. + + + FIGURE 3 The hydrolysis of 4-cyclohexene-cis-dicarboxylic anhydride to form 4-cyclohexenecis-dicarboxylic acid.

Balmer 3 Table of Reactants: Reactant xylene solvent C 24 30 3-sulfolene C 4 6 2 S Maleic anhydride C 4 2 3 Structure S Mol. Wt. (amu) Vol. Mass Moles Stoich. Required (mol) 38.50 ml -- 8.502 98.058 2.53g 2.4mmol.46g 4.9mmol, L.R. Properties Colorless liquid ρ = 0.862g/mL ρ vap = 3.7 f.p. = 25 C b.p. = 40 C P vap = 5.mmg Sol.=0.075g/00mL 2 ρ =.34g/cm 3 f.p. = 2 C white/pale yellow crystal m.p.=64-65 o C (decomp) Sol. = 5-0g/00mL 2 @ 6 o C Colorless or white solid. Penetrating odor ρ =.34g/cm 3 ρ vap = 3.4 f.p. = 03 C m.p. = 52.8-60 C P vap = 0.6mmg Decomposes in hot solvent

Balmer 4 Table of Products: Product Structure Mol. Wt. (amu),3-butadiene intermediate C 4 6 54.094 4-cyclohexene-cisdicarboxylic anhydride C 8 8 3 CAS: 85-43-8 52.494 Theor. Yield Intermediate --- 4.9mmol 2.27g Stoich. Required Properties Colorless gas, mildly aromatic ρ vap =.8 m.p. = -08.4 C b.p. = -4.4 C Sol.= 0.05g/00mL 2 m.p. = 97-03 C 4-cyclohexene-cis-,2-dicarboxylic acid C 8 0 4 CAS: 2305-26-2 70.646 4.9mmol 2.54g m.p. = 67-68 C Alfa Aesar Yield Data: Maleic anhydride served as the limiting reactant in this experiment. 4.9mmol of maleic anhydride should produce 2.27g of 4-cyclohexene-cis-dicarboxylic anhydride and 2.54g of 4-cyclohexene-cis-,2-dicarboxylic acid (Eqs. and 2). The mass of the dicarboxylic anhydride before drying was.90g. The mass of the dried dicarboxylic acid was.06g, resulting in a 4.7 % yield. 4.9mmol maleic anhydride x 4.9mmol maleic anhydride x molar ratio 52.494g x = 2.27g dicarboxylic anhydride () mol 70.646g molar ratio x = 2.54g dicarboxylic acid (2) mol

Balmer 5 Experimental Procedure: 3-sulfolene (2.53g), maleic anhydride (.46g), and dry xylene (.0mL) were placed in a 25mL round bottom flask with a magnetic stir bar. A reflux apparatus was assembled with a gas trap (Fig.4). to gas trap to faucet from faucet FIGURE 4 Reflux apparatus connected to an Erlenmeyer-flask gas trap. The reaction flask was gently refluxed with the Thermowell heater set at 30V until all of the solids were dissolved. It took 3 minutes to completely dissolve. Afterwards, the reaction flask was moderately refluxed for 30 minutes with the Thermowell heater set at 70V. The reaction was refluxing at a rate of drop every 3 seconds. The resulting mixture was tan. The reaction flask was cooled before adding an additional 0mL of xylene which cleared up the solution. The solution was transferred to an Erlenmeyer flask. It crystallized during the transfer, so the mixture had to be heated before finishing the transfer. eating the solution prior to transferring would prevent the solution from crystallizing during the transfer. Petroleum ether (5mL) was added to the solution so that it became cloudy. The solution was cooled in an ice

Balmer 6 bath and rinsed with 5mL of cold petroleum ether. The precipitate was vacuum filtered and air dried. The mass of the wet dicarboxylic anhydride was.90g. A small sample was used to perform bromine and Baeyer unsaturation tests. Another small sample was dried for a week before measure the melting point. A small sample (0.05g) of dicarboxylic anhydride was dissolved in 0 drops of methylene chloride in a test tube. A bromine solution (0.M in methylene chloride) was added dropwise until a light orange persisted. The orange color rapidly dissipated, indicating a positive test for unsaturation. Another small sample (0.05g) of dicarboxylic anhydride was dissolved in 2mL of 95% ethanol. Potassium permanganate (0.M) was added dropwise. The solution turned brownish-purple and cloudy. This indicated that Mn 2 was precipitated, a positive test for unsaturation. The remaining dicarboxylic anhydride (~.4g) was placed in an Erlenmeyer flask with 7mL of water. The flask was heated on a hot plate until it boiled. The solution was cooled to room temperature. The flask was scratched at the interface between the liquid and air and then cooled in an ice-bath. The dicarboxylic acid was vacuum filtered and dried for a week. The mass of the dry dicarboxylic acid was.06g. The sample tested positive for unsaturation in both the bromine and Baeyer tests. Properties of Products: Product 4-cyclohexene-cisdicarboxylic anhydride 4-cyclohexene-cis-,2- dicarboxylic acid Mass (g) omine Test Baeyer Test.90 wet positive positive.06 positive positive Melting Point #3 ( o C) Uncorrected: 96.0-99.0 Corrected: 92.0-95.0 Uncorrected: 73.4-74.5 Corrected: 69.9-7.0 Appearance ff-white powder White, fluffy solid Turned blue litmus paper pink

Balmer 7 Significant Side Reactions: The 4-cyclohexene-cis-,2-dicarboxylic acid can rotate between two boat conformations and a twisted boat conformation (Fig.5). The first boat conformer, which is favored, has both carboxyl groups equatorial. This twisted boat conformer has one carboxyl group equatorial and the other axial. The second boat conformer, which is least the least stable, has both carboxyl groups axial. C C C C C C FIGURE 5 Conformations of 4-cyclohexene-cis-,2-dicarboxylic acid. The stability increases from right to left. A positive bromine test for unsaturation is indicated by the rapid clearing of the orange bromine solution. omine attacks the double bond in a stepwise, ionic addition (Fig. 6). The result of this stepwise addition is a trans-dibromo product.

Balmer 8 (orange) + (clear) FIGURE 6 Stepwise, ionic addition of bromine to 4-cyclohexene-cis-,2-dicarboxylic acid. The bromine atoms are trans to the ring. A positive Baeyer test for unsaturated is indicated by the purple potassium permanganate solution turning a cloudy brown color. The permanganate ion attacks the double bond in a concerted step forming a cis-diol (Fig.7)

Balmer 9 + KMn 4 (purple) Mn K + Mn 2 + Mn 2 (brown solid) FIGURE 7 Concerted addition of permanganate to 4-cyclohexene-cis-,2-dicarboxylic acid. The hydroxyl groups are cis to the ring. Method of Purification: The products were purified according to Figure 8. The dicarboxylic anhydride was soluble in hot xylene. Petroleum ether was added to precipitate the anhydride. The dicarboxylic acid was dried for a week to remove any water. dicarboxylic anhydride, xylene petroleum ether xylene, pet. ether vacuum filter dicarboxylic anhydride 2 dicarboxylic acid, water vacuum filter dry dicarboxylic acid FIGURE 8 Purification of dicarboxylic anhydride and dicarboxylic acid.

Balmer 0 Conclusions: The results support both the synthesis of 4-cyclohexene-cis-,2-dicarboxylic anhydride and 4-cyclohexene-cis-,2-dicarboxylic acid. The melting point range of the anhydride was 92.0 o -95.0 o C, while the literature value was 97.0 o -03.0 o C. The range is a few degrees too low, but the small 3 o C range indicates a relatively pure sample. Both the bromine and the Baeyer unsaturation tests were positive for unsaturation. The melting point range of the dicarboxylic acid was 69.9 o -7.0 o C, while the literature value was 67 o -68 o C. The blue litmus paper test turned pink in the acid, indicating the anhydride was hydrolyzed. Further tests would need to be done to test whether the products were cis or trans to support a concerted mechanism or a stepwise mechanism.

Balmer Answers to Assigned Questions: Page 354-355 (2,5,6) 2) Write structures for the products expected in the following possible Diels-Alder reactions. If no reaction is anticipated, write N.R. a) + b) + c) + C 2 C 2 N.R. The diene is not in the s-cis conformation. The dienophile does not have an electron withdrawling group. C d) + C C C C C

Balmer 2 5) Why should 3-sulfolene and maleic anhydride be completely dissolved in xylene before heating the mixture to effect reaction? Both reactants should be completely dissolved before heating because the 3-sulfolene must decompose to form butadiene. If the butadiene forms and evaporates before the maleic anhydride dissolves, a reaction will not take place. Likewise, if the maleic anhydride is dissolved, but the 3-sulfolene is decomposing while not in solution, the,4 addition will not take place. 6) Write the structure, including stereochemistry, of the addition product of bromine to the Diels-Alder adduct obtained by this procedure. The two bromines will be trans to the ring. (orange) + (clear)