Introductions to Sinh

Similar documents
Introductions to Sech

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively:

in problems involving angle measurement and their wide applications in the quantitative sciences.

in problems involving angle measurement and their wide applications in the quantitative sciences.

Introductions to ExpIntegralEi

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS

1 Functions and Inverses

Differential and Integral Calculus

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17)

2 Recollection of elementary functions. II

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2.

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

Some functions and their derivatives

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Lecture Notes for Math 1000

Pre AP Algebra. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra

In this chapter we study several functions that are useful in calculus and other areas of mathematics.

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.2 Solving Quadratic Equations

B 2k. E 2k x 2k-p : collateral. 2k ( 2k-n -1)!

4.1 Exponential and Logarithmic Functions

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Part D. Complex Analysis

CK- 12 Algebra II with Trigonometry Concepts 1

Chapter 3 Differentiation Rules (continued)

Functions and their Graphs

Math 005A Prerequisite Material Answer Key

JacobiDS Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition

College Algebra with Trigonometry

Spherical trigonometry

Things you should have learned in Calculus II

Chapter 9: Complex Numbers

9-12 Mathematics Vertical Alignment ( )

Topic Outline for Algebra 2 & and Trigonometry One Year Program

Math F15 Rahman

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

INTEGRATING RADICALS

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

Pre-Calculus (#9400)

Trigonometry and Analysis Mathematics

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

List of PreCalculus Algebra Mathematical Concept Practice Sheets (Updated Spring 2015)

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

1 Solutions in cylindrical coordinates: Bessel functions

Milford Public Schools Curriculum. Department: Mathematics Course Name: Precalculus Level 1

Grade 11 or 12 Pre-Calculus

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

PreCalculus Honors Curriculum Pacing Guide First Half of Semester

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Math Curriculum Map: Integrated Algebra II Unit: 1 Quarter: Time Frame: Review of Algebra 13 days Essential Questions: Key Concepts: Key Vocabulary:

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

Copyright 2018 UC Regents and ALEKS Corporation. ALEKS is a registered trademark of ALEKS Corporation. 2/10

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

TABLE OF CONTENTS POLYNOMIAL EQUATIONS AND INEQUALITIES

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Analytic Solutions for A New Kind. of Auto-Coupled KdV Equation. with Variable Coefficients

June 9 Math 1113 sec 002 Summer 2014

Algebra 2 with Trigonometry Correlation of the ALEKS course Algebra 2 with Trigonometry to the Tennessee Algebra II Standards

Math Review for AP Calculus

Math Prep for Statics

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

PreCalculus. Curriculum (447 topics additional topics)

PreCalculus. Curriculum (637 topics additional topics)

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

MATHia Unit MATHia Workspace Overview TEKS

Prentice Hall Geometry (c) 2007 correlated to American Diploma Project, High School Math Benchmarks

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ALGEBRA II

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

2.1 Limits, Rates of Change and Slopes of Tangent Lines

Monday, 6 th October 2008

Grade Math (HL) Curriculum

MILLIS PUBLIC SCHOOLS

Algebra 2 and Trigonometry

CALC 2 CONCEPT PACKET Complete

PURE MATHEMATICS AM 27

ALGEBRA & TRIGONOMETRY FOR CALCULUS MATH 1340

Polynomials and Rational Functions. Quadratic Equations and Inequalities. Remainder and Factor Theorems. Rational Root Theorem

ADDITIONAL MATHEMATICS

Utah Core State Standards for Mathematics - Precalculus

EllipticK. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout.

Course Outline and Objectives. MA 1453 Precalculus with Graphing Calculators

function independent dependent domain range graph of the function The Vertical Line Test

Class Syllabus. Accessible Topic - Topics accessible to visually impaired students using a screen reader.

Single Variable Calculus, Early Transcendentals

MTH 121 Fall 2007 Essex County College Division of Mathematics and Physics Worksheet #1 1

Introductions to JacobiND

4. Functions of one variable

ECM Calculus and Geometry. Revision Notes

PURE MATHEMATICS AM 27

Transcription:

Introductions to Sinh Introduction to the hyperbolic functions General The six well-known hyperbolic functions are the hyperbolic sine sinh, hyperbolic cosine cosh, hyperbolic tangent tanh, hyperbolic cotangent coth, hyperbolic cosecant csch, and hyperbolic secant sech. They are among the most used elementary functions. The hyperbolic functions share many common properties and they have many properties and formulas that are similar to those of the trigonometric functions. Definitions of the hyperbolic functions All hyperbolic functions can be defined as simple rational functions of the exponential function of : sinh cosh tanh coth csch sech. The functions tanh, coth, csch, and sech can also be defined through the functions sinh and cosh using the following formulas: tanh sinh cosh coth cosh sinh csch sinh sech cosh. A quick look at the hyperbolic functions Here is a quick look at the graphics of the six hyperbolic functions along the real axis.

f http://functions.wolfram.com 3 0 3 4 0 4 x sinhx coshx tanhx cothx sechx cschx Connections within the group of hyperbolic functions and with other function groups Representations through more general functions The hyperbolic functions are particular cases of more general functions. Among these more general functions, four classes of special functions are of special relevance: Bessel, Jacobi, Mathieu, and hypergeometric functions. For example, sinh and cosh have the following representations through Bessel, Mathieu, and hypergeometric functions: sinh Π J sinh Π I sinh Π Y sinh Π K cosh Π J cosh Π I cosh Π Y cosh Π K sinh Se, 0, cosh Ce, 0, sinh 0 F ; 3 ; 4 cosh 0F ; ; 4. All hyperbolic functions can be represented as degenerate cases of the corresponding doubly periodic Jacobi elliptic functions when their second parameter is equal to 0 or : sinh sd 0 sn 0 sinh sc sd cosh cd 0 cn 0 cosh nc nd tanh sc 0 tanh sn coth cs 0 coth ns csch ds 0 ns 0 csch cs ds sech dc 0 nc 0 sech cn dn. Representations through related equivalent functions Each of the six hyperbolic functions can be represented through the corresponding trigonometric function: sinh sin sinh sin cosh cos cosh cos tanh tan tanh tan coth cot coth cot csch csc csch csc sech sec sech sec. Relations to inverse functions

http://functions.wolfram.com 3 Each of the six hyperbolic functions is connected with a corresponding inverse hyperbolic function by two formulas. One direction can be expressed through a simple formula, but the other direction is much more complicated because of the multivalued nature of the inverse function: sinhsinh sinh sinh ; Π Im Π Im Π Re 0 Im Π Re 0 coshcosh cosh cosh ; Re 0 Π Im Π Re 0 Im 0 tanhtanh cothcoth cschcsch tanh tanh ; Π Im Π Im Π Re 0 Im Π Re 0 coth coth ; Π Im Π Im Π Re 0 Im Π Re 0 csch csch ; Π Im Π Im Π Re 0 Im Π Re 0 sechsech sech sech ; Π Im Π Re 0 Re 0 Im 0. Representations through other hyperbolic functions Each of the six hyperbolic functions can be represented through any other function as a rational function of that function with a linear argument. For example, the hyperbolic sine can be representative as a group-defining function because the other five functions can be expressed as: cosh sinh Π cosh sinh tanh sinh cosh coth cosh sinh csch sinh sech cosh sinh sinh Π Π sinh sinh tanh sinh sinh coth sinh sinh csch sinh sinh Π sech sinh. All six hyperbolic functions can be transformed into any other function of the group of hyperbolic functions if the argument is replaced by p Π q with q p : sinh Π sinh sinh 3 Π sinh Π sinh sinh Π sinh Π sinh 3 Π cosh sinh cosh sinh Π sinh Π cosh sinh cosh sinh Π cosh Π sinh cosh sinh Π sinh sinhπ sinh sinh 3 Π 3 Π cosh sinh cosh sinh Π sinh sinh Π sinh

http://functions.wolfram.com 4 cosh Π cosh cosh 3 Π cosh Π cosh cosh Π cosh Π cosh 3 Π sinh cosh sinh cosh Π cosh Π sinh cosh sinh cosh Π sinh Π cosh sinh cosh Π cosh coshπ cosh cosh 3 Π 3 Π sinh cosh sinh cosh Π cosh cosh Π cosh tanh Π tanh tanh Π tanh Π tanh Π coth tanh coth tanh Π coth Π tanh coth tanh Π tanh tanhπ tanh coth Π coth coth Π coth Π coth Π tanh coth tanh coth Π tanh Π coth tanh coth Π coth cothπ coth csch Π csch csch 3 Π csch Π csch csch Π csch Π csch 3 Π sech csch sech csch Π csch Π sech csch sech csch Π sech Π csch sech csch Π csch cschπ csch csch 3 Π 3 Π sech csch sech csch Π csch csch Π csch sech Π sech sech 3 Π sech Π sech sech Π sech Π sech 3 Π csch sech csch sech Π sech Π csch sech csch sech Π csch Π sech csch sech Π sech sechπ sech sech 3 Π 3 Π csch sech csch sech Π sech sech Π sech. The best-known properties and formulas for hyperbolic functions Real values for real arguments For real values of argument, the values of all the hyperbolic functions are real (or infinity).

http://functions.wolfram.com 5 In the points Π n m ; n m, the values of the hyperbolic functions are algebraic. In several cases, they can even be rational numbers,, or (e.g. sinhπ, sech0, or coshπ 3 ). They can be expressed using only square roots if n and m is a product of a power of and distinct Fermat primes {3, 5, 7, 57, }. Simple values at ero All hyperbolic functions has rather simple values for arguments 0 and Π : sinh0 0 cosh0 tanh0 0 coth0 csch0 sech0 sinh Π cosh Π 0 tanh Π coth Π 0 csch Π sech Π. Analyticity All hyperbolic functions are defined for all complex values of, and they are analytical functions of over the whole complex -plane and do not have branch cuts or branch points. The two functions sinh and cosh are entire functions with an essential singular point at. All other hyperbolic functions are meromorphic functions with simple poles at points Π k ; k (for csch and coth) and at points Π Π k ; k (for sech and tanh). Periodicity All hyperbolic functions are periodic functions with a real period (Π or Π ): sinh sinh Π cosh cosh Π tanh tanh Π coth coth Π csch csch Π sech sech Π sinh Π k sinh ; k cosh Π k cosh ; k tanh Π k tanh ; k coth Π k coth ; k csch Π k csch ; k sech Π k sech ; k. Parity and symmetry All hyperbolic functions have parity (either odd or even) and mirror symmetry: sinh sinh cosh cosh tanh tanh coth coth csch csch sech sech sinh sinh cosh cosh tanh tanh coth coth csch csch sech sech. Simple representations of derivatives

http://functions.wolfram.com 6 The derivatives of all hyperbolic functions have simple representations that can be expressed through other hyperbolic functions: sinh coth cosh csch cosh csch sinh coth csch tanh sech sech sech tanh. Simple differential equations The solutions of the simplest second-order linear ordinary differential equation with constant coefficients can be represented through sinh and cosh. The other hyperbolic functions satisfy first-order nonlinear differential equations: w w 0 ; w cosh w0 w 0 0 w w 0 ; w sinh w0 0 w 0 w w 0 ; w c cosh c sinh. All six hyperbolic functions satisfy first-order nonlinear differential equations: w w 0 ; w sinh w0 0 Im Π w w 0 ; w cosh w0 Im Π w w 0 ; w tanh w0 0 w w 0 ; w coth w Π 0 w w 4 w 0 ; w csch w w 4 w 0 ; w sech. Applications of hyperbolic functions Trigonometric functions are intimately related to triangle geometry. Functions like sine and cosine are often introduced as edge lengths of right-angled triangles. Hyperbolic functions occur in the theory of triangles in hyperbolic spaces. Lobachevsky (89) and J. Bolyai (83) independently recognied that Euclid's fifth postulate saying that for a given line and a point not on the line, there is exactly one line parallel to the first might be changed and still be a consistent geometry. In the hyperbolic geometry it is allowable for more than one line to be parallel to the first (meaning that the parallel lines will never meet the first, however far they are extended). Translated into triangles, this means that the sum of the three angles is always less than Π. A particularly nice representation of the hyperbolic geometry can be realied in the unit disk of complex numbers (the Poincaré disk model). In this model, points are complex numbers in the unit disk, and the lines are either arcs of circles that meet the boundary of the unit circle orthogonal or diameters of the unit circle. The distance d between two points (meaning complex numbers) A and B in the Poincaré disk is: da, B tanh A B BA.

http://functions.wolfram.com 7 The attractive feature of the Poincaré disk model is that the hyperbolic angles agree with the Euclidean angles. Formally, the angle Α at a point A of two hyperbolic lines A B and A C is described by the formula: cosα AB AC A B A C. AB AC A B A C In the following, the values of the three angles of an hyperbolic triangle at the vertices A, B, and C are denoted through Α, Β, and Γ. The hyperbolic length of the three edges opposite to the angles are denoted a, b, and c. The cosine rule and the second cosine rule for hyperbolic triangles are: sinhbsinhccosα coshbcoshc cosha sinhasinhccosβ coshacoshc coshb sinhasinhbcosγ coshacoshb coshc sinβsinγcosha cosβcosγ cosα sinαsinγcoshb cosαcosα cosβ sinαsinβcoshc cosαcosβ cosγ. The sine rule for hyperbolic triangles is: sinα sinha sinβ sinγ sinhb sinhc. For a right-angle triangle, the hyperbolic version of the Pythagorean theorem follows from the preceding formulas (the right angle is taken at vertex A): cosha coshbcoshc. Using the series expansion coshx x at small scales the hyperbolic geometry is approximated by the familar Euclidean geometry. The cosine formulas and the sine formulas for hyperbolic triangles with a right angle at vertex A become: cosβ tanhc sinhb, sinβ tanha sinha cosγ tanhb sinhhc, sinγ tanha tanha. The inscribed circle has the radius: Ρ tanh cos Α cos Β cos Γ cosαcosβcosγ cosα cosβ cosγ. The circumscribed circle has the radius: Ρ tanh 4 sinh a sinh b sinh c sinγsinhasinhb.

f http://functions.wolfram.com 8 Other applications As rational functions of the exponential function, the hyperbolic functions appear virtually everywhere in quantitative sciences. It is impossible to list their numerous applications in teaching, science, engineering, and art. Introduction to the Hyperbolic Sine Function Defining the hyperbolic sine function The hyperbolic sine function is an old mathematical function. It was first used in the works of V. Riccati (757), D. Foncenex (759), and J. H. Lambert (768). The hyperbolic sine function is easily defined as the half difference of two exponential functions in the points and : sinh. After comparison with the famous Euler formula for sine (sin ), it is easy to derive the following representation of the hyperbolic sine through the circular sine: sinh sin. This formula allows the derivation of all the properties and formulas for the hyperbolic sine from the corresponding properties and formulas for the circular sine. The following formula can sometimes be used as an equivalent definition of the hyperbolic sine function: sinh 3 6 5 0 k 0 k k. This series converges for all finite numbers. A quick look at the hyperbolic sine function Here is a graphic of the hyperbolic sine function f x sinhx for real values of its argument x. 4 0 4 0 x

http://functions.wolfram.com 9 Representation through more general functions The function sinh is a particular case of more complicated mathematical functions. For example, it is a special case of the generalied hypergeometric function 0 F ; a; w with the parameter a 3 at w, multiplied by : 4 sinh 0 F ; 3 ; 4. It is also a particular case of the modified Bessel function I Ν with the parameter Ν Π, multiplied by : sinh Π I. Other Bessel functions can also be expressed through the hyperbolic sine function for similar values of the parameter: sinh Π J sinh Π Y sinh Π K K. Struve functions can also degenerate into the hyperbolic sine function for a similar parameter value: sinh Π H sinh Π L. But the function sinh is also a degenerate case of the doubly periodic Jacobi elliptic functions when their second parameter is equal to 0 or : sinh sd 0 sn 0 sinh sc sd. Finally, the function sinh is the particular case of another class of functions the Mathieu functions: sinh Se, 0,. Definition of the hyperbolic sine function for a complex argument In the complex -plane, the function sinh is defined by the same formula used for real values: sinh. Here are two graphics showing the real and imaginary parts of the hyperbolic sine function over the complex plane.

http://functions.wolfram.com 0 0 5 Re 0 5 0 0 y 0 5 Im 0 5 0 5 0 y 0 x 0 x 5 The best-known properties and formulas for the hyperbolic sine function Values in points The values of the hyperbolic sine function for special values of its argument can be easily derived from the corresponding values of the circular sine in special points of the circle: sinh0 0 sinh Π 6 sinh Π 4 sinh Π 3 3 sinh Π Π 3 sinh 3 sinh 3 Π 4 sinh 5 Π 6 sinhπ 0 sinh 7 Π 6 sinh 5 Π 4 sinh 4 Π 3 3 sinh 3 Π 5 Π 3 sinh 3 sinh 7 Π 4 sinh Π 6 sinh Π 0 sinhπ m 0 ; m sinhπ m m ; m. The values at infinity can be expressed by the following formulas: sinh sinh. General characteristics For real values of argument, the values of sinh are real. In the points Π n m ; n m, the values of sinh are algebraic. In several cases, they can even be rational numbers, 0, or, multiplied by. Here are some examples: sinh0 0 sinh Π 6 sinh Π. The values of sinh n Π can be expressed using only square roots if n and m is a product of a power of and m distinct Fermat primes {3, 5, 7, 57, }.

http://functions.wolfram.com The function sinh is an entire analytical function of that is defined over the whole complex -plane and does not have branch cuts and branch points. It has an essential singular point at. It is a periodic function with the period Π : sinh Π sinh sinh sinh Π k ; k sinh k sinh Π k ; k. The function sinh is an odd function with mirror symmetry: sinh sinh sinh sinh. Differentiation The derivatives of sinh have simple representations using either the sinh function or the cosh function: sinh cosh n sinh n n sinh Π n ; n. Ordinary differential equation The function sinh satisfies the simplest possible linear differential equation with constant coefficients: w w 0 ; w sinh w0 0 w 0. The complete solution of this equation can be represented as a linear combination of sinh and cosh with arbitrary constant coefficients c and c : w w 0 ; w c cosh c sinh. The function sinh also satisfies the first-order nonlinear differential equation: w w 0 ; w sinh w0 0 Im Π. Series representation The function sinh has a simple series expansion at the origin that converges in the whole complex -plane: sinh 3 k 3 k 0 k. Product representation The following infinite product representation for sinh clearly illustrates that sinh 0 at Π k k : sinh k. Π k Indefinite integration

http://functions.wolfram.com Indefinite integrals of expressions involving the hyperbolic sine function can sometimes be expressed using elementary functions. However, special functions are frequently needed to express the results even when the integrands have a simple form (if they can be evaluated in closed form). Here are some examples: sinh cosh sinh sinh sinh E Π Α sinh v a v v v mod Α Α v v v v v Α k v k k 0 a n k Α Π v Α, a n k a k n Α Π v a n k Α Α, a k n ; Α 0 v. The last integral cannot be evaluated in closed form using the known classical special functions for arbitrary values of parameters Α and v. Definite integration Definite integrals that contain the hyperbolic sine are sometimes simple as shown in the following example: log3 t 0 sinht. Some special functions can be used to evaluate more complicated definite integrals. For example, gamma and polygamma functions, are needed to express the following integrals: 0 sinh a tt a a Π ; Rea 0 0 t sinh a tt 3 Rea 0. Integral transforms 8 Π a a Ψ a Ψ a Ψ a Ψ a Ψ a Ψ a ; Numerous formulas for integral transforms from circular sine functions cannot be easily converted into corresponding formulas with the hyperbolic sine function because the hyperbolic sine grows exponentially at infinity. This holds for the Fourier cosine and sine transforms, and for Mellin, Hilbert, Hankel, and other transforms. The exceptional case is the Laplace transform that itself includes the exponential function in the kernel: t sinht. Finite summation The following finite sum of the hyperbolic sine can be expressed using the hyperbolic sine function:

http://functions.wolfram.com 3 n sinhx k csch x x n sinh k 0 sinh x n. Infinite summation The following infinite sum can be expressed using elementary functions: sinhk x k coshx sinhsinhx. k Finite products The following finite products of the hyperbolic sine can be expressed using elementary functions and formulas: n sinh Π k n k n n sinhn sinh ; n n sinh Π k n n n k Infinite products cos n Π n Π n cos csch ; n. The following infinite product can be expressed using the hyperbolic sine function: k 4 3 sinh sinh 3 k. Addition formulas The hyperbolic sine of a sum can be represented by the rule: "the hyperbolic sine of a sum is equal to the product of the hyperbolic sine by the hyperbolic cosine plus the hyperbolic cosine by the hyperbolic sine." A similar rule is valid for the hyperbolic sine of the difference: sinha b coshb sinha cosha sinhb sinha b coshb sinha cosha sinhb. Multiple arguments In the case of multiple arguments, 3,, the function sinhn can be represented as the finite sum of terms that include powers of the hyperbolic sine and cosine: sinh sinh cosh sinh3 4 sinh 3 3 sinh sinhn n n k 0 k sinh k cosh nk ; n. The function sinhn can also be represented as the finite product including the hyperbolic sine of the linear argument of :

http://functions.wolfram.com 4 n sinhn n n sinh Π k n k 0 ; n. Half-angle formulas The hyperbolic sine of the half-angle can be represented by the following simple formula that is valid in half of the horiontal strip: sinh cosh ; Re 0 Π Im Π Re 0 Π Im 3 Π Re 0 0 Im Π Im Π. To make this formula correct for all complex, a complicated prefactor is needed: sinh c cosh ; c Im Im Π Im Π Π Π ΘRe ;, Π where c contains the unit step, real part, imaginary part, and the floor functions. Sums of two direct functions The sum of two hyperbolic sine functions can be described by the rule: "the sum of hyperbolic sines is equal to the doubled hyperbolic cosine of the half-difference multiplied by the hyperbolic sine of the half-sum". A similar rule is valid for the difference of two hyperbolic sines: sinha sinhb cosh a b sinha sinhb cosh a b sinh a b sinh a b. Products involving the direct function The product of two hyperbolic sine functions or the product of the hyperbolic sine and hyperbolic cosine have the following representations: sinha sinhb cosha b cosha b sinha coshb sinha b sinha b. Powers of the direct function The integer powers of the hyperbolic sine functions can be expanded as finite sums of hyperbolic cosine (or sine) functions with multiple arguments. These sums include binomial coefficients: sinh n n n n n n n k k 0 n k cosh n k ; n sinh n n n k 0 k n k sinh n k ; n.

http://functions.wolfram.com 5 These formulas can be combined into the following formula: sinh n n n n n n n mod n n k n k k 0 Π n cosh n k ; n. Inequalities The most famous inequality for the hyperbolic sine function can be described by the following formula: sinh sin. Relations with its inverse function There is a simple relation between the function sinh and its inverse function sinh : sinhsinh sinh sinh ; Π Im Π Im Π Re 0 Im Π Re 0. The second formula is valid at least in the horiontal strip Π Re Π. Outside this strip, a much more complicated relation (that contains the unit step, real part, imaginary part, and the floor functions) holds: sinh Im sinh Π Im Π Im Π ΘRe Π Im Π Π Im Π Im Π ΘRe. Representations through other hyperbolic functions Hyperbolic sine and cosine functions are connected by a very simple formula that contains the linear function in the argument: sinh cosh Π. Another famous formula, connecting sinh and cosh, is expressed in the analog of the well-known Pythagorean theorem: sinh cosh sinh cosh ; Re 0 3 Π Im mod Π Π Re 0 0 Im mod Π Π Re 0 Π 3 Π Im mod Π Re 0 0 Im mod Π Π Im mod Π Π. The last restriction on can be removed, but the formula will get a complicated coefficient c that contains the unit step, real part, imaginary part, and the floor function and c() : sinh c cosh ; c Im Π Im Im Π Π Π ΘRe ;. Π The hyperbolic sine function can also be represented using other hyperbolic functions by the following formulas:

http://functions.wolfram.com 6 sinh tanh tanh sinh coth coth sinh csch sinh. sech Π Representations through hyperbolic functions The hyperbolic sine function has representations using the other hyperbolic functions: sinh sin sinh sin sinh cos Π sinh tan tan sinh cot csc cot sinh sinh. sec Π Applications The hyperbolic sine function is used throughout mathematics, the exact sciences, and engineering. Introduction to the Hyperbolic Functions in Mathematica Overview The following shows how the six hyperbolic functions are realied in Mathematica. Examples of evaluating Mathematica functions applied to various numeric and exact expressions that involve the hyperbolic functions or return them are shown. These involve numeric and symbolic calculations and plots. Notations Mathematica forms of notations All six hyperbolic functions are represented as built-in functions in Mathematica. Following Mathematica's general naming convention, the StandardForm function names are simply capitalied versions of the traditional mathematics names. Here is a list hypfunctions of the six hyperbolic functions in StandardForm. hypfunctions Sinh, Cosh, Tanh, Coth, Sech, Cosh Sinh, Cosh, Tanh, Coth, Sech, Cosh Here is a list hypfunctions of the six trigonometric functions in TraditionalForm. hypfunctions TraditionalForm sinh, cosh, tanh, coth, sech, cosh Additional forms of notations Mathematica also knows the most popular forms of notations for the hyperbolic functions that are used in other programming languages. Here are three examples: CForm, TeXForm, and FortranForm. hypfunctions. Π CForm

http://functions.wolfram.com 7 List(Sinh(*Pi*),Cosh(*Pi*),Tanh(*Pi*),Coth(*Pi*),Sech(*Pi*),Cosh(*Pi*)) hypfunctions. Π TeXForm \{ \sinh (\,\pi \,),\cosh (\,\pi \,),\tanh (\,\pi \,),\coth (\,\pi \,), \Mfunction{Sech}(\,\pi \,),\cosh (\,\pi \,)\} hypfunctions. Π FortranForm List(Sinh(*Pi*),Cosh(*Pi*),Tanh(*Pi*),Coth(*Pi*),Sech(*Pi*),Cosh(*Pi*)) Automatic evaluations and transformations Evaluation for exact, machine-number, and high-precision arguments For a simple exact argument, Mathematica returns an exact result. For instance, for the argument Π 6, the Sinh function evaluates to. Sinh Π 6 Sinh, Cosh, Tanh, Coth, Csch, Sech. Π 6, 3, 3, 3,, 3 For a generic machine-number argument (a numerical argument with a decimal point and not too many digits), a machine number is returned. Cosh3. 0.0677 Sinh, Cosh, Tanh, Coth, Csch, Sech.. 3.6686, 3.76, 0.96408,.0373, 0.757, 0.6580 The next inputs calculate 00-digit approximations of the six hyperbolic functions at. NTanh, 40 0.76594559557648889458860479359048 Coth N, 50 &.3303585499333036366469308478390394405 NSinh, Cosh, Tanh, Coth, Csch, Sech., 00

http://functions.wolfram.com 8.75093643804568838850595600855577983340958709565430330756730433895 6077450896339,.54308063485437784779056075706686059365863704737404707690630493698 9646476435543036, 0.765945595576488894588604793590476859757936555968050095344576638483 4589475673676744,.330358549933303636646930847839039440456555435967567084704687438 6746794480856303, 0.850988393545338476387758487466090339669904579003364346503 899730773889384, 0.648054736638853995749773536503308489307940303786533738775956467830 8085478530789894 Within a second, it is possible to calculate thousands of digits for the hyperbolic functions. The next input calculates 0000 digits for sinh, cosh, tanh, coth, sech, and csch and analyes the frequency of the occurrence of the digit k in the resulting decimal number. MapFunctionw, First, Length & SplitSortFirstRealDigitsw, NSinh, Cosh, Tanh, Coth, Csch, Sech., 0 000 0, 980,, 994,, 996, 3, 04, 4, 986, 5, 00, 6, 07, 7, 00, 8, 98, 9, 0, 0, 05,, 960,, 997, 3, 037, 4, 070, 5, 08, 6, 973, 7, 997, 8, 963, 9, 970, 0, 97,, 03,, 06, 3, 970, 4, 949, 5, 05, 6, 98, 7, 056, 8, 00, 9, 97, 0, 975,, 986,, 03, 3, 004, 4, 008, 5, 977, 6, 977, 7, 036, 8, 035, 9, 979, 0, 979,, 030,, 987, 3, 99, 4, 06, 5, 030, 6, 0, 7, 969, 8, 974, 9, 00, 0, 009,, 97,, 08, 3, 994, 4, 0, 5, 08, 6, 958, 7, 09, 8, 06, 9, 986 Here are 50-digit approximations to the six hyperbolic functions at the complex argument 3 5. NCsch3 5, 00 0.080585643080075996359846074369705540388785936373673096445338087309 4846954640853396 0.0953363467478408595930706564564544668787754798038797779333583676 3893978444505670747 NSinh, Cosh, Tanh, Coth, Csch, Sech. 3 5, 50

http://functions.wolfram.com 9.846995606359438687539530636435988463360 9.65454768548393655543634030659999693853,.855850047387936390863094609837464360953673 9.6063834484358985660434638778590394033,.00464706948590566593384385454735738 0.00708358364073640353684330359796059575, 0.9958453857585497604005876484706557040 0.0068579840575855644653770847493789774393608, 0.08058564308007599635984607436970554038879 0.095336346747840859593070656456454466878775, 0.084335309099766735883368495864639947655866464 0.095644640955863446843659593309945590735308833 Mathematica always evaluates mathematical functions with machine precision, if the arguments are machine numbers. In this case, only six digits after the decimal point are shown in the results. The remaining digits are suppressed, but can be displayed using the function InputForm. Sinh., NSinh, NSinh, 6, NSinh, 5, NSinh, 0 3.6686, 3.6686, 3.6686, 3.6686, 3.66860407847087677 InputForm {3.66860407847086, 3.66860407847086, 3.66860407847086, 3.66860407847086, 3.66860407847087676683988060644`0} Precision 6 Simplification of the argument Mathematica uses symmetries and periodicities of all the hyperbolic functions to simplify expressions. Here are some examples. Sinh Sinh Sinh Π Sinh Sinh Π Sinh Sinh 34Π Sinh Sinh, Cosh, Tanh, Coth, Csch, Sech Sinh, Cosh, Tanh, Coth, Csch, Sech

http://functions.wolfram.com 0 Sinh Π, Cosh Π, Tanh Π, Coth Π, Csch Π, Sech Π Sinh, Cosh, Tanh, Coth, Csch, Sech Sinh Π, Cosh Π, Tanh Π, Coth Π, Csch Π, Sech Π Sinh, Cosh, Tanh, Coth, Csch, Sech Sinh 34Π, Cosh 34Π, Tanh 34Π, Coth 34Π, Csch 34Π, Sech 34Π Sinh, Cosh, Tanh, Coth, Csch, Sech Mathematica automatically simplifies the composition of the direct and the inverse hyperbolic functions into the argument. SinhArcSinh, CoshArcCosh, TanhArcTanh, CothArcCoth, CschArcCsch, SechArcSech,,,,, Mathematica also automatically simplifies the composition of the direct and any of the inverse hyperbolic functions into algebraic functions of the argument. SinhArcSinh, SinhArcCosh, SinhArcTanh, SinhArcCoth, SinhArcCsch, SinhArcSech,,,,, CoshArcSinh, CoshArcCosh, CoshArcTanh, CoshArcCoth, CoshArcCsch, CoshArcSech,,,,, TanhArcSinh, TanhArcCosh, TanhArcTanh, TanhArcCoth, TanhArcCsch, TanhArcSech,,,,, CothArcSinh, CothArcCosh, CothArcTanh, CothArcCoth, CothArcCsch, CothArcSech

http://functions.wolfram.com,,,,, CschArcSinh, CschArcCosh, CschArcTanh, CschArcCoth, CschArcCsch, CschArcSech,,,,, SechArcSinh, SechArcCosh, SechArcTanh, SechArcCoth, SechArcCsch, SechArcSech,,,,, In cases where the argument has the structure Π k or Π k, e Π k or Π k with integer k, trigonometric functions can be automatically transformed into other trigonometric or hyperbolic functions. Here are some examples. Tanh Π Coth Csch Csc Sinh Π Π Π Π Π Π, Cosh, Tanh, Coth, Csch, Sech Cosh, Sinh, Coth, Tanh, Sech, Csch Sinh, Cosh, Tanh, Coth, Csch, Sech Sin, Cos, Tan, Cot, Csc, Sec Simplification of simple expressions containing hyperbolic functions Sometimes simple arithmetic operations containing hyperbolic functions can automatically produce other hyperbolic functions. Sech Cosh Sinh, Cosh, Tanh, Coth, Csch, Sech, Sinh Cosh, Cosh Sinh, Sinh SinhΠ, Cosh Sinh^

http://functions.wolfram.com Csch, Sech, Coth, Tanh, Sinh, Cosh, Tanh, Coth, Tanh, Coth Csch Hyperbolic functions as special cases of more general functions All hyperbolic functions can be treated as particular cases of some more advanced special functions. For example, sinh and cosh are sometimes the results of auto-simplifications from Bessel, Mathieu, Jacobi, hypergeometric, and Meijer functions (for appropriate values of their parameters). BesselI, Π Sinh MathieuC, 0, Cosh JacobiSN, Tanh BesselI,, MathieuS, 0,, JacobiSD, 0, HypergeometricPFQ, 3, 4, MeijerG,, 0,, 4 Π Sinh, Sinh, Sinh, Sinh, Sinh Π BesselI,, MathieuC, 0,, JacobiCD, 0, Hypergeometric0F, 4, MeijerG,, 0,, 4 Π Cosh, Cosh, Cosh, Cosh, Cosh Π JacobiSC, 0, JacobiNS,, JacobiNS, 0, JacobiDC, 0 Tanh, Coth, Csch, Sech Equivalence transformations carried out by specialied Mathematica functions General remarks

http://functions.wolfram.com 3 Automatic evaluation and transformations can sometimes be inconvenient: They act in only one chosen direction and the result can be overly complicated. For example, the expression cosh is generally preferable to the more complicated sinhπ coshπ 3. Mathematica provides automatic transformation of the second expression into the first one. But compact expressions like sinhcoshπ 6 should not be automatically expanded into the more complicated expression sinhcosh. Mathematica has special functions that produce these types of expansions. Some of them are demonstrated in the next section. TrigExpand The function TrigExpand expands out trigonometric and hyperbolic functions. In more detail, it splits up sums and integer multiples that appear in the arguments of trigonometric and hyperbolic functions, and then expands out the products of the trigonometric and hyperbolic functions into sums of powers, using the trigonometric and hyperbolic identities where possible. Here are some examples. TrigExpandSinhx y Coshy Sinhx Coshx Sinhy Cosh4 TrigExpand Cosh 4 6 Cosh Sinh Sinh 4 TrigExpandSinhx y, Sinh3, Coshx y, Cosh3, Tanhx y, Tanh3, Cothx y, Coth3, Cschx y, Csch3, Sechx y, Sech3 Coshy Sinhx Coshx Sinhy, 3 Cosh Sinh Sinh 3, Coshx Coshy Sinhx Sinhy, Cosh 3 3 Cosh Sinh, Coshy Sinhx Coshx Coshy Sinhx Sinhy Coshx Sinhy Coshx Coshy Sinhx Sinhy, 3 Cosh Sinh Cosh 3 3 Cosh Sinh Sinh 3 Cosh 3 3 Cosh Sinh, Coshx Coshy Coshy Sinhx Coshx Sinhy Sinhx Sinhy Coshy Sinhx Coshx Sinhy, Cosh 3 3 Cosh Sinh, 3 Cosh Sinh Sinh 3 3 Cosh Sinh Sinh 3 Coshy Sinhx Coshx Sinhy,, 3 Cosh Sinh Sinh 3 Coshx Coshy Sinhx Sinhy, Cosh 3 3 Cosh Sinh TableForm TrigExpand & FlattenSinhx y, Sinh3, Coshx y, Cosh3, Tanhx y, Tanh3, Cothx y, Coth3, Cschx y, Csch3, Sechx y, Sech3

http://functions.wolfram.com 4 Sinhx y Coshy Sinhx Coshx Sinhy Sinh3 3 Cosh Sinh Sinh 3 Coshx y Coshx Coshy Sinhx Sinhy Cosh3 Cosh 3 3 Cosh Sinh Tanhx y Tanh3 Cothx y Coth3 Cschx y Csch3 Sechx y Sech3 TrigFactor Coshy Sinhx Coshx CoshySinhx Sinhy Coshx Sinhy Coshx CoshySinhx Sinhy 3 Cosh Sinh 3 Sinh Cosh 3 3 Cosh Sinh Cosh 3 3 Cosh Sinh Coshx Coshy Coshy SinhxCoshx Sinhy Sinhx Sinhy Coshy SinhxCoshx Sinhy Cosh 3 3 Cosh Sinh 3 Cosh SinhSinh 3 3 Cosh SinhSinh 3 Coshy SinhxCoshx Sinhy 3 Cosh SinhSinh 3 Coshx CoshySinhx Sinhy Cosh 3 3 Cosh Sinh The command TrigFactor factors trigonometric and hyperbolic functions. In more detail, it splits up sums and integer multiples that appear in the arguments of trigonometric and hyperbolic functions, and then factors the resulting polynomials in the trigonometric and hyperbolic functions, using the corresponding identities where possible. Here are some examples. TrigFactorSinhx Coshy Cosh x y Sinh x y Cosh x y Sinh x y Tanhx Cothy TrigFactor Coshx y Cschy Sechx TrigFactorSinhx Sinhy, Coshx Coshy, Tanhx Tanhy, Cothx Cothy, Cschx Cschy, Sechx Sechy Cosh x y Sinh x y, Cosh x y Cosh x y, Sechx Sechy Sinhx y, Cschx Cschy Sinhx y, Cosh x y Csch x Csch y Sech x Sech y Sinh x y, Cosh x y Cosh x y Cosh x Sinh x Cosh x Sinh x Cosh y Sinh y Cosh y Sinh y TrigReduce

http://functions.wolfram.com 5 The command TrigReduce rewrites products and powers of trigonometric and hyperbolic functions in terms of those functions with combined arguments. In more detail, it typically yields a linear expression involving trigonometric and hyperbolic functions with more complicated arguments. TrigReduce is approximately opposite to TrigExpand and TrigFactor. Here are some examples. TrigReduceSinh^3 3 Sinh Sinh3 4 SinhxCoshy TrigReduce Sinhx y Sinhx y TrigReduceSinh^, Cosh^, Tanh^, Coth^, Csch^, Sech^ Cosh, Cosh, Cosh Cosh, Cosh Cosh, Cosh, Cosh TrigReduceTrigExpandSinhx y, Sinh3, SinhxSinhy, Coshx y, Cosh3, CoshxCoshy, Tanhx y, Tanh3, TanhxTanhy, Cothx y, Coth3, CothxCothy, Cschx y, Csch3, CschxCschy, Sechx y, Sech3, SechxSechy Sinhx y, Sinh3, Coshx y Coshx y, Coshx y, Cosh3, Coshx y Coshx y, Coshx y Coshx y Tanhx y, Tanh3, Coshx y Coshx y, Cothx y, Coth3, Coshx y Coshx y Coshx y Coshx y, Cschx y, Csch3, Coshx y Coshx y, Sechx y, Sech3, Coshx y Coshx y TrigReduceTrigFactorSinhx Sinhy, Coshx Coshy, Tanhx Tanhy, Cothx Cothy, Cschx Cschy, Sechx Sechy Sinhx Sinhy, Coshx Coshy, Sinhx y Coshx y Coshx y, Sinhx y Coshx y Coshx y, Sinhx Sinhy Coshx y Coshx y, TrigToExp Coshx Coshy Coshx y Coshx y

http://functions.wolfram.com 6 The command TrigToExp converts direct and inverse trigonometric and hyperbolic functions to exponentials or logarithmic functions. It tries, where possible, to give results that do not involve explicit complex numbers. Here are some examples. TrigToExpSinh SinhTanh TrigToExp TrigToExpSinh, Cosh, Tanh, Coth, Csch, Sech,,,,, ExpToTrig The command ExpToTrig converts exponentials to trigonometric or hyperbolic functions. It tries, where possible, to give results that do not involve explicit complex numbers. It is approximately opposite to TrigToExp. Here are some examples. ExpToTrig x Β Coshx Β Sinhx Β x Α x Β ExpToTrig x Γ x Coshx Α Coshx Β Sinhx Α Sinhx Β Coshx Γ Coshx Sinhx Γ Sinhx ExpToTrigTrigToExpSinh, Cosh, Tanh, Coth, Csch, Sech Sinh, Cosh, Tanh, Coth, Csch, Sech ExpToTrigΑ x Β Α x Β, Α x Β Γ x Β Α Coshx Β, Γ Cosx Β Α Coshx Β Γ Sinx Β Α Sinhx Β ComplexExpand The function ComplexExpand expands expressions assuming that all the occurring variables are real. The value option TargetFunctions is a list of functions from the set {Re, Im, Abs, Arg, Conjugate, Sign}. ComplexExpand tries to give results in terms of the specified functions. Here are some examples. ComplexExpandSinhx ycoshx y Cosy Coshx Sinhx Coshx Siny Sinhx Cosy Coshx Siny Cosy Siny Sinhx

http://functions.wolfram.com 7 Cschx ysechx y ComplexExpand 4 Cosy Coshx Sinhx Cos y Cosh x Cos y Cosh x 4 Coshx Siny Sinhx Cos y Cosh x Cos y Cosh x 4 Cosy Coshx Siny Cos y Cosh x Cos y Cosh x 4 Cosy Siny Sinhx Cos y Cosh x Cos y Cosh x li Sinhx y, Coshx y, Tanhx y, Cothx y, Cschx y, Sechx y Sinhx y, Coshx y, Tanhx y, Cothx y, Cschx y, Sechx y ComplexExpandli Coshx Siny Cosy Sinhx, Cosy Coshx Siny Sinhx, Sin y Cos y Cosh x Coshx Siny Cos y Cosh x Sinh x Cos y Cosh x, Cosy Sinhx Cos y Cosh x, Sin y Cos y Cosh x Cosy Coshx Cos y Cosh x ComplexExpandRe & li, TargetFunctions Re, Im Cosy Sinhx, Cosy Coshx, Sinh x Cos y Cosh x, Sinh x Cos y Cosh x, Cosy Sinhx Cos y Cosh x, Cosy Coshx Cos y Cosh x ComplexExpandIm & li, TargetFunctions Re, Im Coshx Siny, Siny Sinhx, Sin y Cos y Cosh x, Sin y Cos y Cosh x, Coshx Siny Cos y Cosh x, Siny Sinhx Cos y Cosh x ComplexExpandAbs & li, TargetFunctions Re, Im Sinh x Cos y Cosh x, Siny Sinhx Cos y Cosh x

http://functions.wolfram.com 8 Coshx Siny Cosy Sinhx, Cosy Coshx Siny Sinhx, Sin y Sinh x Cos y Cosh x Cos y Cosh x, Sin y Sinh x Cos y Cosh x Cos y Cosh x, 4 Coshx Siny 4 Cosy Sinhx Cos y Cosh x Cos y Cosh x, 4 Cosy Coshx 4 Siny Sinhx Cos y Cosh x Cos y Cosh x Simplify, x, y Reals & Cos y Cosh x, Cos y Cosh x, Sin y Sinh x Cos y Cosh x, Cos y Cosh x Cos y Cosh x, Cos y Cosh x, Cos y Cosh x ComplexExpandArg & li, TargetFunctions Re, Im ArcTanCosy Sinhx, Coshx Siny, ArcTanCosy Coshx, Siny Sinhx, Sinh x ArcTan Cos y Cosh x, Sinh x ArcTan Cos y Cosh x, Cosy Sinhx ArcTan Cos y Cosh x, Sin y Cos y Cosh x, Sin y Cos y Cosh x, Coshx Siny Cos y Cosh x, Cosy Coshx ArcTan Cos y Cosh x, Siny Sinhx Cos y Cosh x Simplify, x, y Reals & ArcTanCosy Sinhx, Coshx Siny, ArcTanCosy Coshx, Siny Sinhx, ArcTanSinh x, Sin y, ArcTanCoshx Sinhx, Cosy Siny, ArcTanCosy Sinhx, Coshx Siny, ArcTanCosy Coshx, Siny Sinhx ComplexExpandConjugate & li, TargetFunctions Re, Im Simplify

http://functions.wolfram.com 9 Coshx Siny Cosy Sinhx, Cosy Coshx Siny Sinhx, Sin y Sinh x Sin y Sinh x, Cos y Cosh x Cos y Cosh x, Coshx Siny Cosy Sinhx, Cosy Coshx Siny Sinhx Simplify The command Simplify performs a sequence of algebraic transformations on an expression, and returns the simplest form it finds. Here are two examples. SimplifySinh Sinh Cosh Sinh Cosh Simplify Sinh Here is a large collection of hyperbolic identities. All are written as one large logical conjunction.

http://functions.wolfram.com 30 Simplify & Cosh Sinh Sinh Cosh Cosh Cosh Cosh Tanh Cosh Cosh Coth Cosh Sinh SinhCosh Cosh Cosh Sinh Cosh Sinha b SinhaCoshb CoshaSinhb Sinha b SinhaCoshb CoshaSinhb Cosha b CoshaCoshb SinhaSinhb Cosha b CoshaCoshb SinhaSinhb Sinha Sinhb Sinh a b a b Cosh Sinha Sinhb Cosh a b a b Sinh Cosha Coshb Cosh a b a b Cosh Cosha Coshb Sinh a b b a Sinh Sinha b Sinha Tanha Tanhb Tanha Tanhb CoshaCoshb b CoshaCoshb A Sinh B Cosh A B A Sinh ArcTanh B A Cosha b Cosha b SinhaSinhb CoshaCoshb Cosha b Cosha b Sinha b Sinha b SinhaCoshb Sinh Cosh Cosh Cosh Tanh Cosh Sinh Sinh Cosh Coth Sinh Cosh Cosh Sinh True The command Simplify has the Assumption option. For example, Mathematica knows that sinhx 0 for all real positive x, and uses the periodicity of hyperbolic functions for the symbolic integer coefficient k of k Π. SimplifyAbsSinhx 0, x 0 True AbsSinhx 0 Simplify, x 0 &

http://functions.wolfram.com 3 True SimplifySinh k Π, Cosh k Π, Tanh k Π, Coth k Π, Csch k Π, Sech k Π, k Integers Sinh, Cosh, Tanh, Coth, Csch, Sech SimplifySinh k Π Sinh, Cosh k Π Cosh, Tanh k Π Tanh, Coth k Π Coth, Csch k Π Csch, Sech k Π Sech, k Integers k, k,,, k, k Mathematica also knows that the composition of inverse and direct hyperbolic functions produces the value of the inner argument under the appropriate restriction. Here are some examples. SimplifyArcSinhSinh, ArcTanhTanh, ArcCothCoth, ArcCschCsch, Π Im Π,,, SimplifyArcCoshCosh, ArcSechSech, Π Im Π Re 0, FunctionExpand (and Together) While the hyperbolic functions auto-evaluate for simple fractions of Π, for more complicated cases they stay as hyperbolic functions to avoid the build up of large expressions. Using the function FunctionExpand, such expressions can be transformed into explicit radicals. Cosh Π 3 Cos Π 3 FunctionExpand Cosh Π 3 Coth Π FunctionExpand 4 4 4 3 4 3 4

http://functions.wolfram.com 3 Sinh Π Π Π Π Π Π, Cosh, Tanh, Coth, Csch, Sech 6 6 6 6 6 6 Sin Π 6, Cos Π 6, Tan Π 6, Cot Π 6, Csc Π 6, Sec Π 6 FunctionExpand[%],,,,, Sinh Π Π Π Π Π Π, Cosh, Tanh, Coth, Csch, Sech 60 60 60 60 60 60 Sin Π 60, Cos Π 60, Tan Π 60, Cot Π 60, Csc Π 60, Sec Π 60 TogetherFunctionExpand 6 0 30 5 5 3 5 5, 6 6 6 0 30 5 5 3 5 5, 3 5 5 5 5 6 5 5, 3 5 5 5 5 6 5 5 3 5 5 5 5 6 5 5, 3 5 5 5 5 6 5 5 6 6 0 30 5 5 3 5 5, 6 6 0 30 5 5 3 5 5

http://functions.wolfram.com 33 If the denominator contains squares of integers other than, the results always contain complex numbers (meaning that the imaginary number appears unavoidably). Sinh Π Π Π Π Π Π, Cosh, Tanh, Coth, Csch, Sech 9 9 9 9 9 9 Sin Π 9, Cos Π 9, Tan Π 9, Cot Π 9, Csc Π 9, Sec Π 9 FunctionExpand[%] // Together 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3, 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3, 3 3 3 3 3 3 3 3 3 3, 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3, 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3, 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Here the function RootReduce is used to express the previous algebraic numbers as numbered roots of polynomial equations. RootReduceSimplify Root3 36 96 4 64 6 &, 4, Root 6 8 3 &, 3, Root3 7 33 4 6 &, 4, Root 33 7 4 3 6 &, 3, Root64 96 36 4 3 6 &, 5, Root8 6 3 &, 3 The function FunctionExpand also reduces hyperbolic expressions with compound arguments or compositions, including hyperbolic functions, to simpler forms. Here are some examples. FunctionExpandCoth

http://functions.wolfram.com 34 Cot Tanh FunctionExpand 34 34 34 Tanh 4 Sinh, Cosh, Tanh, Coth, Csch, Sech FunctionExpand Sinh Tanh, Cosh,, Coth Csch,, Sech Applying Simplify to the last expression gives a more compact result. Simplify Sinh, Cosh, Tanh, Coth, Csch, Sech Here are some similar examples. SinhArcTanh FunctionExpand Cosh ArcCoth FunctionExpand SinhArcSinh, CoshArcCosh, TanhArcTanh, CothArcCoth, CschArcCsch, SechArcSech FunctionExpand,,,, 3,

http://functions.wolfram.com 35 Sinh ArcSinh, Cosh ArcCosh, Tanh ArcTanh, Coth ArcCoth, Csch ArcCsch, Sech ArcSech FunctionExpand,,,,, Simplify,,,,, FullSimplify The function FullSimplify tries a wider range of transformations than the function Simplify and returns the simplest form it finds. Here are some examples that contrast the results of applying these functions to the same expressions. Cosh Log Log Simplify Cosh Log Log FullSimplify SinhLog, CoshLog, TanhLog, CothLog, CschLog, SechLog Simplify

http://functions.wolfram.com 36,,,,, SinhLog, CoshLog, TanhLog, CothLog, CschLog, SechLog FullSimplify,,,,, Operations performed by specialied Mathematica functions Series expansions Calculating the series expansion of hyperbolic functions to hundreds of terms can be done in seconds. Here are some examples. SeriesSinh,, 0, 5 3 6 5 O6 0 Normal 3 6 5 0 SeriesSinh, Cosh, Tanh, Coth, Csch, Sech,, 0, 3 3 3 6 O4, O4, 3 3 O4, 3 45 O4, 7 3 6 360 O4, O4 SeriesCoth,, 0, 00 Timing 8 43 5 6 80 783 5 38 979 95 480 5 53 39 465 90 65

http://functions.wolfram.com 37 30 73 3 447 856 940 643 5 47 78 8 3 0 99 57 963 756 5 875 63 74 5 094 48 976 030 578 5 3 57 0 588 7 564 653 660 70 076 73 67 875 3 785 346 04 608 9 5 660 878 804 669 08 674 070 05 65 7 709 3 04 7 3 3 45 0 85 5 70 603 633 03 5 303 57 395 0 33 30 454 58 433 748 587 9 890 65 5 630 543 06 06 954 746 35 0 777 977 56 866 588 586 487 68 66 044 9 875 66 840 83 966 644 37 403 467 68 49 375 776 343 76 883 984 375 5 65 436 99 898 44 0 39 0 080 43 7 89 638 86 798 40 8 390 556 640 65 6 080 390 575 67 83 0 764 4 307 789 89 88 960 7 7 594 47 864 667 47 734 375 0 88 937 97 645 76 37 43 37 93 679 547 05 773 56 706 908 457 776 679 69 9 875 07 46 56 06 578 43 748 856 45 7 670 0 4 448 30 053 033 358 480 60 59 46 890 65 8 806 737 995 635 37 498 55 094 47 4 093 648 603 384 74 996 59 698 9 478 879 580 6 86 669 9 875 79 09 5 838 57 743 73 996 404 49 85 58 77 457 546 764 463 363 635 5 374 44 83 54 365 34 375 46 5 58 657 073 833 030 30 766 74 5 8 76 98 49 474 49 367 550 87 4 66 909 56 94 78 968 505 859 375 33 99 709 079 078 899 37 344 990 50 58 53 8 807 5 79 900 063 867 074 959 07 45 603 85 98 83 07 35 806 640 65 46 795 959 607 558 44 963 094 708 378 988 55 4 905 35 087 939 496 30 86 487 07 538 30 84 55 34 959 3 6 84 796 875 3 305 84 37 04 839 34 357 73 308 699 59 57 796 39 368 980 577 745 974 76 570 063 53 38 30 54 073 99 837 646 484 375 9 7 865 3 870 044 576 3 439 95 638 56 968 33 98 59 3 78 777 586 73 69 598 65 50 65 380 455 583 3 003 564 645 636 5 000 48 94 794 9 875 6 348 689 56 30 894 73 330 60 6 74 38 336 6 3 7 50 899 63 95 59 439 369 536 68 44 678 570 33 93 46 89 949 46 890 65 06 783 830 47 866 59 886 385 444 979 4 647 94 07 63 3 508 06 73 66 890 409 707 54 58 539 98 00 638 766 05 683 79 497 378 070 587 58 03 5 67 745 458 568 44 664 373 0 74 8 69 56 77 54 38 65 86 8 790 93 46 3 360 65 966 604 6 937 05 495 4 563 588 806 888 04 73 50 373 9 05 65 50 47 004 30 50 37 955 96 0 90 48 000 776 938 67 80 58 96 48 4 695 00 67 455 843 804 06 8 357 897 83 858 5 0 407 684 36 7 875 7 043 58 55 384 800 434 637 3 986 040 83 89 878 646 884 69 5 433 748 964 547 053 58 49 96 85 708 338 8 048 39 40 830 337 634 4 958 370 880 74 56 98 4 875 655 909 93 339 888 0 876 554 489 8 34 730 564 976 603 688 50 858 7 3 633 348 05 69 879 30 856 840 004 304 8 536 968 049 780 803 650 87 77 43 558 560 793

http://functions.wolfram.com 38 3 633 348 05 69 879 30 856 840 004 304 8 536 968 049 780 803 650 87 77 43 558 560 793 458 45 606 0 7 875 3 69 53 0 456 34 488 035 683 646 645 690 90 45 790 030 604 73 359 005 796 37 98 049 30 06 760 94 30 83 889 39 89 49 445 33 95 6 58 060 536 346 435 546 875 5 90 545 05 986 394 54 49 936 008 544 5 6 445 39 54 99 6 75 57 606 97 45 43 9 934 066 0 799 083 44 80 465 30 753 94 80 33 578 64 576 089 94 806 793 890 65 55 90 07 3 33 586 643 87 098 799 78 99 07 69 536 86 835 99 77 76 505 736 8 46 953 73 738 38 35 83 0 80 688 39 8 44 485 8 77 7 930 09 049 38 57 655 704 498 9 05 65 9 07 568 598 958 95 93 87 49 938 038 093 699 588 55 745 50 577 839 33 734 79 7 33 58 984 369 795 89 070 8 40 00 578 355 986 03 57 390 07 73 5 59 349 7 067 988 068 85 863 96 604 56 494 40 65 63 6 36 505 867 886 59 33 47 96 453 678 803 54 884 90 77 83 57 8 4 776 089 7 877 348 057 45 05 94 0 750 653 8 40 745 83 85 543 3 7 7 6 857 704 04 700 607 798 75 8 767 578 5 8 098 304 783 74 6 440 94 54 640 446 94 039 959 669 564 79 363 509 4 335 79 908 83 333 07 846 470 46 678 843 707 7 66 7 4 909 6 634 745 895 349 35 948 586 53 533 393 530 75 43 500 44 033 38 34 437 744 40 65 93 650 4 9 84 385 83 57 660 699 83 60 99 755 656 444 45 40 836 648 85 349 538 086 043 843 77 584 559 87 055 386 6 548 470 304 93 596 77 37 737 435 54 697 3 069 047 73 98 709 496 784 0 05 078 5 476 88 359 57 84 548 36 004 54 88 840 670 307 545 554 753 464 96 56 56 33 845 08 87 3 383 50 964 74 348 0 497 060 68 653 950 89 663 88 548 37 870 5 944 03 988 358 98 4 58 96 4 087 06 453 5 690 40 64 03 67 875 886 49 646 433 73 479 84 597 36 998 744 34 040 407 99 47 435 385 970 47 345 64 676 056 89 5 53 65 330 97 490 6 753 590 47 39 744 050 384 90 675 644 35 735 656 667 608 60 47 400 39 047 34 539 84 350 830 98 33 60 076 904 96 875 450 638 590 680 88 68 43 05 33 665 59 9 94 988 34 63 8 788 877 675 44 4 763 9 9 3 93 88 039 9 948 37 467 370 3 6 65 684 460 57 086 659 079 080 437 659 78 065 743 69 73 99 83 66 978 537 3 46 395 083 984 375 45 596 89 473 955 564 634 64 68 33 84 3 534 779 643 47 90 76 58 333 73 93 6 93 3 00 675 690 943 3 87 03 785 99 540 0 7 600 687 465 377 745 33 53 847 964 679 54 69 60 38 03 498 44 56 090 675 557 63 37 80 734 375 43 00 899 94 533 06 95 95 456 9 648 467 346 087 908 778 0 468 30 77 466 840 0 336 699 974 58 95 694 96 530 960 48 0 367 75 47 874 063 473 378 698 369 880 587 800 838 74 34 349 37 59 647 453 43 78 0 538 3 594 64 677 406 44 70 434 539 794 9 875 5 543 53 483 50 489 438 698 050 4 95 34 743 456 505 773 755 468 368 087 670 306 873 9 44 97 4 569 479 835 935 377 894 65 9 004 50 040 56 66 509 6 34 077 85 76 47 476 968 7 5 80 98 346 966 00 49 70 69 846 40 49 483 84 84 453 5 378 39 5 76 488 50 80 909 73 77 974 887 490 8 366 3 67 744 533 54 784 87 45 58 660 788 990 844 99 9 85 05 40 757 54 70 08 78 059 369 553 458 37 39 60 750 404 049 930 407 987 933 58 359 080 767 5 644 76 670 683 5 53 5 547 80 66 033 089 60 99 89 453 5 O 0

http://functions.wolfram.com 39 Mathematica comes with the add-on package DiscreteMath`RSolve` that allows finding the general terms of series for many functions. After loading this package, and using the package function SeriesTerm, the following n th term for odd hyperbolic functions can be evaluated. DiscreteMath`RSolve` SeriesTermSinh, Cosh, Tanh, Coth, Csch, Sech,, 0, n^n n IfOddn, n IfOddn, n, 0, n IfEvenn, n, 0, n n BernoulliB n, 0, n n n BernoulliB n, n n n BernoulliB n, n, n EulerEn n Here is a quick check of the last result. This series should be evaluated to sinh, cosh, tanh, coth, csch, sech, which can be concluded from the following relation. Sum, n, 0, 00 & SeriesSinh, Cosh, Tanh, Coth, Csch, Sech,, 0, 00 O 0, O 0, O 0, O0, O0, O 0 Differentiation Mathematica can evaluate derivatives of hyperbolic functions of an arbitrary positive integer order. DSinh, Cosh Sinh D, & Cosh Sinh, Cosh, Tanh, Coth, Csch, Sech Cosh, Sinh, Sech, Csch, Coth Csch, Sech Tanh, Sinh, Cosh, Tanh, Coth, Csch, Sech Sinh, Cosh, Sech Tanh, Coth Csch, Coth Csch Csch 3, Sech 3 Sech Tanh TableDSinh, Cosh, Tanh, Coth, Csch, Sech,, n, n, 4

http://functions.wolfram.com 40 Cosh, Sinh, Sech, Csch, Coth Csch, Sech Tanh, Sinh, Cosh, Sech Tanh, Coth Csch, Coth Csch Csch 3, Sech 3 Sech Tanh, Cosh, Sinh, Sech 4 4 Sech Tanh, 4 Coth Csch Csch 4, Coth 3 Csch 5 Coth Csch 3, 5 Sech 3 Tanh Sech Tanh 3, Sinh, Cosh, 6 Sech 4 Tanh 8 Sech Tanh 3, 8 Coth 3 Csch 6 Coth Csch 4, Coth 4 Csch 8 Coth Csch 3 5 Csch 5, 5 Sech 5 8 Sech 3 Tanh Sech Tanh 4 Finite summation Mathematica can calculate finite sums that contain hyperbolic functions. Here are two examples. SumSinha k, k, 0, n aa n a a n aa n a n k Sinha k k 0 a a n a a a n a Infinite summation Mathematica can calculate infinite sums that contain hyperbolic functions. Here are some examples. k Sinhk x k x x x Sinhk x k k x x Coshk x k k Log x Log x Finite products Mathematica can calculate some finite symbolic products that contain the hyperbolic functions. Here are two examples.

http://functions.wolfram.com 4 n Sinh Π k n k n n n Cosh Π k n k n n Sech Sin n Π Infinite products Mathematica can calculate infinite products that contain hyperbolic functions. Here are some examples. Exp k Sinhk x k x x x Coshk x Exp k k x x Indefinite integration Mathematica can calculate a huge set of doable indefinite integrals that contain hyperbolic functions. Here are some examples. Sinh7 Cosh7 7 Sinh, Sinh a, Cosh, Cosh a, Tanh, Tanh a, Coth, Coth a, Csch, Csch a, Sech, Sech a

http://functions.wolfram.com 4 Cosh, Cosh HypergeometricF, a, 3, Cosh Sinh a Sinh Cosh a HypergeometricF a,, 3a, Cosh Sinh Sinh,, a Sinh a, LogCosh, LogSinh, HypergeometricF a a,,, Tanh Tanh a a Coth a HypergeometricF a a,,, Coth, a, LogCosh LogSinh, Cosh Csch a HypergeometricF, a, 3, Cosh Sinh a, ArcTanTanh, HypergeometricF a,, 3a, Cosh Sech a Sinh a Sinh Definite integration Mathematica can calculate wide classes of definite integrals that contain hyperbolic functions. Here are some examples. Π 0 3 Sinh 3 Π Gamma 3 Π 3 Cosh Gamma 7 HypergeometricF, 3, 3, Cosh Π 6 Π Sinh, Cosh, Tanh, Coth, Csch, Sech

http://functions.wolfram.com 43 4 EllipticE 4 4 Π, 4 EllipticE Π,, 4 EllipticE Π, EllipticE 4,, Log Log Log Π Π Log Π Π Log Tanh Log Tanh Log Tanh Π Log Tanh Π, Log Log Log Π Π Log Π Log Coth Log Coth Π Log Coth Π Log Coth Π, 34 EllipticF 4 4 Π, 34 EllipticF Π,, 4 EllipticF Π, EllipticF 4, Π 4 Sinh, Sinh a, Cosh, Cosh a, Tanh, Tanh a, Coth, Coth a, Csch, Csch a, Sech, Sech a