Anatoly A. Kilbas. tn 1. t 1 a. dt 2. a t. log x

Similar documents
Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

REAL ANALYSIS I HOMEWORK 3. Chapter 1

e t dt e t dt = lim e t dt T (1 e T ) = 1

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Refinements to Hadamard s Inequality for Log-Convex Functions

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

Mathematics 805 Final Examination Answers

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

4.8 Improper Integrals

Contraction Mapping Principle Approach to Differential Equations

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

LAPLACE TRANSFORMS. 1. Basic transforms

3. Renewal Limit Theorems

New Oscillation Criteria For Second Order Nonlinear Differential Equations

Chapter 4. Lebesgue Integration

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Existence of positive solutions for fractional q-difference. equations involving integral boundary conditions with p- Laplacian operator

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions

How to prove the Riemann Hypothesis

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

0 for t < 0 1 for t > 0

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

SOLUTIONS TO ASSIGNMENT 2 - MATH 355. with c > 3. m(n c ) < δ. f(t) t. g(x)dx =

Linear Quadratic Regulator (LQR) - State Feedback Design

Second-Order Boundary Value Problems of Singular Type

5.1-The Initial-Value Problems For Ordinary Differential Equations

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

A Closed Model of the Universe

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

New Inequalities in Fractional Integrals

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

September 20 Homework Solutions

Physics 2A HW #3 Solutions

( ) ( ) ( ) ( ) ( ) ( y )

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Using hypothesis one, energy of gravitational waves is directly proportional to its frequency,

Some Inequalities variations on a common theme Lecture I, UL 2007

Problem Set 9 Due December, 7

Solutions of half-linear differential equations in the classes Gamma and Pi

The Riemann-Stieltjes Integral

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

MTH 146 Class 11 Notes

Bisimulation, Games & Hennessy Milner logic p.1/32

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

Weighted Hardy-Type Inequalities on Time Scales with Applications

Solutions to Assignment 1

WEIBULL DETERIORATING ITEMS OF PRICE DEPENDENT DEMAND OF QUADRATIC HOLDING FOR INVENTORY MODEL

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

1. Introduction. 1 b b

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

A Structural Approach to the Enforcement of Language and Disjunctive Constraints

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

Solutions to Problems from Chapter 2

AN APPROXIMATE FUNCTIONAL EQUATION FOR THE LERCH ZETA-FUNCTION. R. Garunkštis, A.Laurinčikas, J. Steuding

Inequalities for Some Classes of Hardy Type Operators and Compactness in Weighted Lebesgue Spaces

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Chapter Direct Method of Interpolation

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

Three Dimensional Coordinate Geometry

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

C 0 Approximation on the Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules*

(1) (discrete choice) (inter-city mode choice) (1) (1) c m m. t m m β m β t. ε m (1) Ortúzar(1996) (shadow price)

INTEGRAL OPERATORS INDUCED BY THE FOCK KERNEL

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus)

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions

Fractional Calculus. Connor Wiegand. 6 th June 2017

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

Mahgoub Transform Method for Solving Linear Fractional Differential Equations

f(t) dt, x > 0, is the best value and it is the norm of the

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

The study of dual integral equations with generalized Legendre functions

Fractional Laplace Transform and Fractional Calculus

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Lecture 1 - Introduction and Basic Facts about PDEs

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

Fractional operators with exponential kernels and a Lyapunov type inequality

arxiv: v1 [math.ca] 21 Aug 2018

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Solutions to Assignment 1

On New Inequalities of Hermite-Hadamard-Fejér Type for Harmonically s-convex Functions via Fractional Integrals

A LOG IS AN EXPONENT.

Fundamental Theorem of Calculus

Transcription:

J. Koren Mh. So. 38 200) No. 6. 9 204 HADAMARD-TYPE FRACTIONAL CALCULUS Anoly A. Kilbs Absr. The er is devoed o he sudy of frionl inegrion nd differeniion on finie inervl [ b] of he rel xis in he frme of Hdmrd seing. The onsruions under onsiderion generlize he modified inegrion /x)µ f)d/ nd he modified differeniion δ + µ δ xd D d/dx) wih rel µ being ken n imes. Condiions re given for suh Hdmrd-ye frionl inegrion oeror o be bounded in he se X b) of Lebesgue mesurble funions f on R + 0 ) suh h b f) d < < ) ess su b [u f) ] < ) for R ) in riulr in he se L 0 ) ). The exisene lmos everywhere is esblished for he orresonding Hdmrd-ye frionl derivive for funion gx) suh h x µ gx) hve δ derivives u o order n on [ b] nd δ n [x µ gx)] is bsoluely oninuous on [ b]. Semigrou nd reirol roeries for he bove oerors re roved.. Inroduion The urose of his er is o develo frionl inegrion nd differeniion in he Hdmrd seing. For nurl n N { 2 } nd rel µ nd 0 suh n roh is bsed on he nh inegrl of he form.) Jµ+f)x) n x µ d n )! x d 2 2 ) µ log x n µ nf n ) d n ) n f) d n x > ) Reeived June 7 200. 2000 Mhemis Subje Clssifiion: 26A33 47B38. Key words nd hrses: Hdmrd-ye frionl inegrion nd differeniion weighed ses of summble nd bsoluely oninuous funions.

92 Anoly A. Kilbs nd he orresonding derivive.2) Dµ+g)x) δ + µ)f) x) xf x) + µfx) δ x d dx Dµ+g n Dµ+D µ+ n g) n 2 3 ) x > ). The frionl versions of he inegrl.) nd he derivive.2) re given by.3) J+µf)x) α ) µ log x ) α d f) α > 0; x > ) Γα) x nd.4) ) D+µg)x) α x µ δ n x µ J0+µ n α g x) δ x d dx α > 0; n [α] + µ R) reseively [α] being inegrl r of α. When µ 0.3) nd.4) ke he forms.5) J+f)x) α log x ) α du fu) α > 0; x > ) Γα) u u nd.6) D+y)x) α δ n J+µ n α g) x) δ x d α > 0; n [α] + ). dx The inegrl.5) ws inrodued by Hdmrd [5] in he se 0 nd herefore J+f α nd D+f α re ofen referred o s Hdmrd frionl inegrl nd derivive of order α [6 Seion 8.3 nd Seion 23. noes o Seion 8.3]. Therefore we my ll he more generl onsruions in.3) nd.4) Hdmrd-ye frionl inegrl nd derivive of order α. I is well develoed n roh o frionl lulus by Riemnn nd Liouville bsed on he generlizion of usul inegrion f)d nd differeniion D d/dx see for exmle [6 Chers 2 nd 3]. Hdmrd frionl lulus roh is sudied less. Some fs for he Hdmrd lulus oerors.5) nd.6) were resened in [6 Seion 8.3]. The Mellin roh ws suggesed in [] o sudy he roeries of he oerors J0+µ α nd Dα 0+µ defined on he he hlf-xis R + 0 ). Some roeries of he oeror J0+µ α nd hree of is modifiions were invesiged in []-[3]. The im of his er is o sudy he roeries of he Hdmrd-ye frionl oerors.3) nd.4) on finie inervl [ b] of he rel line R ) for > 0. The er is orgnized s follows. Firs

Hdmrd-ye frionl lulus 93 in Seion 2 we give ondiions for he oeror J+µf α o be bounded in he se X b) R ) of hose omlex-vlued Lebesgue mesurble funions f on [ b] for whih f X < where b.7) f X f) d ) / < R) nd.8) f X ess su b [ f) ] R). In riulr when / ) he se X b) oinides wih he lssil L b)-se: L b) X / b) wih.9) b / f f) d) < ) f ess su b f). Nex in Seion 3 we rove h he Hdmrd-ye frionl derivive D+µg α exiss lmos everywhere for funion gx) ACδ;µ n [ b] suh h x µ gx) hve δ xd D d/dx) derivives u o order n on [ b] nd δ n [x µ gx)] is bsoluely oninuous on [ b]:.0) AC n δ;µ [ b] {h : [ b] C : δn [x µ hx)] AC[ b] µ R; δ x x dx }. Here AC[ b] is he se of bsoluely oninuous funions on [ b] whih oinide wih he se of rimiives of Lebesgue mesurble funions:.) hx) AC[ b] hx) + see for exmle [6.4)]. ψ)d ψ) L b) In onlusion in Seion 4 we esblish semigrou nd reirol roeries for he oerors J α +µ nd D α +µ. We noe h he orresonding resuls for he Hdmrd frionl lulus oerors.5) nd.6) re lso resened in Seions 2-4. 2. Hdmrd-ye frionl inegrion in he se X b) In his seion we show h he Hdmrd-ye frionl inegrion oeror J α +µ is defined on X b) for µ. To formule he resul

94 Anoly A. Kilbs we need he inomlee gmm-funion γν x) defined for ν > 0 nd x > 0 by [4 6.92)]: 2.) γν x) 0 ν e d. Theorem 2.. Le α > 0 0 < < b < nd le µ R nd R be suh h µ. Then he oeror J α +µ is bounded in X b) nd 2.2) J α +µf X K f X where 2.3) K for µ while 2.4) K Γα) µ ) α γ for µ >. log b ) α Γα + ) [ α µ ) log )] b Proof. Firs onsider he se <. Sine f) X b) hen / f) L b) nd we n ly he generlized Minkowsky inequliy see for exmle [6.33)]. In ordne wih.3) nd.7) we hve b ) / J+µf α X x Γα) b Γα) / x ) µ log x ) α f) d dx x x ) du x / u µ log u) α f dx u u ) / nd hene where b/ b/ b u µ log u) α x f x ) ) / dx d u x ) / b/u u µ log u) α f) d du M J α +µf X M f X b/ u µ log u) α du.

Hdmrd-ye frionl lulus 95 Dire lulion show h M oinides wih K given in 2.3) nd 2.4) when µ nd µ > reseively. Thus 2.2) is roved for <. Le now. By.3) nd.8) we hve x J+µf)x) α ) µ log x ) α f) d Γα) x nd hus 2.5) x J α +µf)x) Kx) f X where Kx) / When µ hen for ny x b 2.6) Kx) log x Γα + ) u µ ) log u) α du u. ) α Γα + ) log b ) α. If µ > hen mking he hnge of vrible µ )u y nd king 2.) ino oun we find Kx) [ x )] Γα) µ ) α γ α µ ) log. γν x) is inresing funion nd hus 2.7) Kx) Γα) µ ) α γ [ α µ ) log )] b for ny x b. I follows from 2.5)-2.7) h for ny x b 2.8) x J α +µf)x) K f X where K is given by 2.3) nd 2.4) when µ nd µ > reseively. Hene in ordne wih.8) from 2.8) we obin he resul in 2.2) for. This omlees he roof of heorem. Puing / in Theorem 2. nd king.9) ino oun we dedue he boundedness of he oeror J α +µ in he se L b). Corollry 2.2. Le α > 0 0 < < b < nd le µ R be suh h µ /. Then he oeror J α +µ is bounded in L b) nd 2.9) J α +µf K f

96 Anoly A. Kilbs where K is given by 2.3) for µ / while µ ) α [ γ α 2.0) K Γα) for µ > /. µ ) log )] b Seing µ 0 in Theorem 2. we obin he orresonding semen for he Hdmrd frionl oeror J α + in.5). Theorem 2.3. Le α > 0 0 < < b < nd le 0. Then he oeror J α + is bounded in X b) nd 2.) J α +f X K 2 f X where 2.2) K 2 for 0 while 2.3) K 2 Γα) ) α γ for < 0. log b ) α Γα + ) [ α log )] b Remrk 2.4. I follows from [ Theorem 4)] h if µ > hen he Hdmrd-ye frionl oeror J α 0+µ is bounded in X R + ) nd J α 0+µf X K 3 f X. Suh resul formlly follow from 2.2) nd 2.4) if we u 0 b nd ke ino oun he relion 2.4) γν ) Γν). Remrk 2.5. I follows from Corollry 2.2 h he oeror J α +µ is bounded in L b) for µ /. Similr resul n no be obined from Theorem 2.3 for he Hdmrd frionl oeror J α +. This f leds o onjeure h he oeror J α + is robbly bounded from L b) ino noher se. Remrk 2.6. The resuls in Theorem 2. nd Theorem 2.3 for Hdmrd-ye nd Hdmrd frionl inegrion oerors re nlogues of hose for he lsssil Riemnn-Liouville frionl inegrls see [6 Theorem 2.6]). We only noe h he weighed se X b) is suible for he former while he se L b) for he ler.

Hdmrd-ye frionl lulus 97 3. Hdmrd-ye frionl differeniion in he se ACδ;µ n [ b] In his seion we give suffiien ondiions for he exisene of he Hdmrd-ye frionl derivive D+µg α in.4). Sine he resul will be se in erms of he se ACδ;µ n [ b] defined in.0) we firs hrerize his se. Theorem 3.. The se ACδ;µ n [ b] onsiss of hose nd only hose funions gx) whih re reresened in he form [ ] 3.) gx) x µ x log x ) n n ϕ)d + k log x ) k n )! where ϕ) L b) nd k k 0 n ) re rbirry onsns. Proof. Firs rove neessiy. Le gx) ACδ;µ n [ b] where δ xd D d/dx). Then by.0) δ n [x µ gx)] AC[ b] nd hene by.) 3.2) δ n [x µ gx)] ϕ)d + n where ϕ) L b) nd n is n rbirry onsn. Rewrie 3.2) in he form d dx δn 2 [x µ gx)] ϕ)d + n x x. Chnging x o nd o u nd inegrion boh sides of his relion we hve δ n 2 [x µ gx)] k0 log x ϕ)d + n 2 + n log x where n 2 nd n re rbirry onsns. Reeing his roedure m m n ) imes we obin δ n m [x µ gx)] log x ) m ϕ) m )! d 3.3) m + k0 n +k m k! log x ) k where n m n re rbirry onsns. Now 3.3) wih m n yields 3.) nd neessiy is roved.

98 Anoly A. Kilbs Le now gx) is reresened by 3.) or x µ gx) log x ) n ϕ) km n n )! d + k0 k log x ) k. Tking δ-derivive m m n ) imes we hve δ m [x µ gx)] log x ) n m ϕ) n m )! d n k! k + log x ) k m. k m)! From here for m n we obin 3.2) wih n )! n ) nd hene in ordne wih.0) nd.) gx) ACδ;µ n [ b]. This omlees he roof of heorem. Noe h i follows from our roof h ϕ) nd k re given by 3.4) ϕ) g n ) k g k) k 0 n ) k! where 3.5) g k x) δ k [x µ gx)] k 0 n ) g 0 x) x µ gx). Hene 3.) n be rewrien in he form 3.6) gx) x µ [ log x ) n g n ) n n )! d + k0 g k ) k! ] log x ) k Now we redy o rove he resul giving suffiien ondiions for he exisene of he Hdmrd-ye frionl derivive.4). Theorem 3.2. Le α > 0 n [α] + µ R nd gx) ACδ;µ n [ b]. Then he Hdmrd-ye frionl derivive D+µg α exiss lmos everywhere on [ b] nd my be reresened in he form 3.7) D α +µg)x) x µ[ Γn α) n + k0 log x ) n α g n )d g k ) Γk α + ) where g k ) k 0 n ) re given by 3.5). log x ) k α ]

Hdmrd-ye frionl lulus 99 Proof. Sine gx) ACδ;µ n [ b] we hve reresenion 3.6). Subsiuing his relion ino.4) we hve D+µg)x) α x µ δ n x log x ) n α Γn α) [ 3.8) log ) n g n u) u n )! du n g k ) + log ) k α ]d k!. k0 Inerhnging he order of inegrion nd lying he Dirihle formul see for exmle [6.33)]) we hve log x ) n α d log ) n g u n u)du g n u)du u log x ) n α log u ) n d. The inner inegrl is evlued by he hnge of vrible y log/u)/ logx/u) nd using he formuls [4.5) nd.55)] for he be funion: u nd hene log x ) n α log u ) n d log x ) n α d Γn α)γn) Γ2n α) Γn α)γn) Γ2n α) log x ) n α u log ) n g u n u)du log x u) 2n α g n u)du. Subsiuing his relion ino 3.8) nd king δ n -differeniion we obin 3.7). Thus heorem is roved. Corollry 3.3. If 0 < α < µ R nd gx) ACδ;µ [ b] hen D+µg α exiss lmos everywhere on [ b] nd 3.9) D α +µg)x) x µ Γ α) [ log x ) α [ µ g)] d + lim + [µ g)] log x ) α ].

200 Anoly A. Kilbs When µ 0 from Theorem 3.2 we dedue suffiien ondiions for he exisene of he Hdmrd frionl derivive.6). Theorem 3.4. Le α > 0 n [α] + nd gx) ACδ;0 n [ b]. Then he Hdmrd frionl derivive D+g α exiss lmos everywhere on [ b] nd my be reresened in he form 3.0) D α +g)x) Γn α) n + k0 δ k g)) Γk α + ) log x ) n α δ n g))d log x ) k α. Corollry 3.5. If 0 < α < nd gx) ACδ;0 [ b] hen Dα +g exiss lmos everywhere on [ b] nd D+g)x) α x log x ) α g ) d Γ α) 3.) + g) Γ α) log x ) α. Remrk 3.6. The resuls in Theorem 3.2 nd Theorem 3.4 for Hdmrd-ye nd Hdmrd frionl differeniion oerors re nlogues of hose for he lsssil Riemnn-Liouville frionl derivives see [6 Theorem 2.2]). We only noe h he weighed se ACδ;µ n [ b] is suible for he former while he se ACn [ b] for he ler. 4. Semigrou nd reirol roeries of Hdmrd-ye frionl lulus oerors Firs we rove he semigrou roery for he Hdmrd-ye frionl inegrion oeror J α +µ in.3). Theorem 4.. Le α > 0 β > 0 0 < < b < nd le µ R nd R be suh h µ. Then for f X b) he semigrou roery holds 4.) J α +µj β +µ f J α+β +µ f.

Hdmrd-ye frionl lulus 20 Proof. Firs we rove 4.) for suffiienly good funions f. Alying Fubini s heorem we find 4.2) J+µJ α β +µ f)x) u µ log Γα) x) x ) α du u u u ) µ log u ) β d f) Γβ) u x µ µ f)d log x ) α log u ) β du Γα)Γβ) u u. The inner inegrl is evlued by he hnge of vrible τ log u/)/ logx/): log x ) α log u ) β du u u log x ) α+β Γα)Γβ) Γα + β). Subsiuing his relion ino 4.2) nd king.3) ino oun we hve J+µJ α β +µ f)x) x u µ log Γα + β) x) x ) α+β du u u J α+β +µ f)x) nd hus 4.) is roved for suffiienly good funions f. If µ hen by Theorem 2. he oerors J+µ α J β α+β +µ nd J+µ re bounded in X b) hene he relion 4.) is rue for f X b). This omlees he roof of heorem. Corollry 4.2. Le α > 0 β > 0 0 < < b < nd le µ R be suh h µ /. Then for f L b) he semigrou roery 4.) holds. When m 0 from Theorem 4. nd Theorem 2.3 we obin he semigrou roery for he Hdmrd frionl inegrion oerors.5). Theorem 4.3. Le α > 0 β > 0 0 < < b < nd 0. Then for f X b) he semigrou roery holds 4.3) J α +J β + f J α+β + f.

202 Anoly A. Kilbs Nex we onsider he omosiion beween he oerors of Hdmrdye frionl differeniion.4) nd frionl inegrion.3). Theorem 4.4. Le α > β > 0 0 < < b < nd le µ R nd R be suh h µ. Then for f X b) here holds 4.4) D β +µ J α +µf J α β +µ f. In riulr if β m N hen 4.5) D m +µj α +µf J α m +µ f. Proof. Le m < β m m N). If β m hen by.4) 4.6) D+µy)x) m x µ x d ) m x µ yx) dx nd hene D+µJ m +µf)x) α x µ x d ) m x d dx dx Γα) u µ log x u ) α fu) du u. Alying he formul of differeniion under he inegrl sign nd using he relion for he gmm-funion [4.2)] nd.3) we obin D+µJ m +µf)x) α x µ x d ) m x x u µ dx Γα) x x µ x d ) m x dx Γα ) x µ x d ) m x µ J+µ α dx f)x). log x ) α du fu) u u u µ x log x u ) α 2 fu) du u Reeing his roedure k k m) imes we hve D+µJ m +µf)x) α x µ x d ) m k x µ J+µ α k dx f)x) nd 4.5) follows for k m. If m < β < m hen 4.4) follows from 4.) nd 4.5): D β +µ J +µf α D+µJ m m β +µ J +µf α D+µJ m m+α β +µ f J α β +µ f. Thus heorem is roved.

Hdmrd-ye frionl lulus 203 Corollry 4.5. Le α > β > 0 0 < < b < nd le µ R be suh h µ /. Then for f L b) he relion 4.4) holds. In riulr 4.5) is vlid for β m N. Theorem 4.6. Le α > β > 0 0 < < b < nd 0. Then for f X b) he relion holds 4.7) D β + J α +f J α β + f. In riulr if β m N hen 4.8) D m +J α +f J α m + f. Theorem 4.4 is lso rue for α β whih mens h he Hdmrdye frionl differeniion.6) nd inegrion.5) re reirol oerions if he former is lied firs. The resul below is roved similrly o he roof of Theorem 4.4. Theorem 4.7. Le α > 0 0 < < b < nd le µ R nd R be suh h µ. Then for f X b) here holds 4.9) D α +µj α +µf f. In riulr if µ / hen 4.0) is vlid for f L b). Theorem 4.8. Le α > 0 0 < < b < nd le 0. Then for f X b) here holds 4.0) D α +J α +f f. Remrk 4.9. I follows from [2 Theorem )] h if α > 0 β > 0 nd µ > hen for f X R + ) he semigrou roery 4.) J α 0+µJ β 0+µ f J α+β 0+µ f holds. Suh resul follows from 4.) if we u 0 nd b nd ke ino oun h he oerors J0+µ α J β α+β 0+µ nd J0+µ re bounded in X R + ) when µ >. Remrk 4.0. The resuls resened in Theorems 4.7 nd 4.8 show h he Hdmrd-ye nd Hdmrd frionl differeniion.4) nd.6) nd inegrion.3) nd.5) re reirol oerions if he formers re lied firs. I is he roblem when he lers n

204 Anoly A. Kilbs be lied firs. Suh roblem is solved for he Riemnn-Liouville frionl lulus oerors see [6 Theorem 2.4]). Aknowledgemen. The resen invesigion ws rly suored by he Belrusin Fundmenl Reserh Fund. Referenes [] P. L. Buzer A. A. Kilbs nd J. Trujillo Frionl lulus in he Mellin seing nd Hdmrd-ye frionl inegrls J. Mh. Anl. Al. o er) [2] Comosiions of Hdmrd-ye frionl inegrion oerors nd he semigrou roery J. Mh. Anl. Al. o er) [3] Mellin rnsform nd inegrion by rs for Hdmrd-ye frionl inegrls J. Mh. Anl. Al. o er) [4] A. Erdelyi W. Mgnus F. Oberheinger nd F.G. Triomi Higher Trnsendenl Funions Vol. MGrw-Hill Boo. Coo. New York 953; Rerined Krieger Melbourne Florid 98. [5] J. Hdmrd Essi sur l eude des fonions donnees r leur develomen de Tylor J. Mh. Pures e Al. Ser. 4 8 892) 0 86. [6] S. G. Smko A. A. Kilbs nd O. I. Mrihev Frionl Inegrls nd Derivives. Theory nd Aliions Gordon nd Breh Yverdon e libi 993. Dermen of Mhemis nd Mehnis Belrusin Se Universiy 220050 Minsk Belrus E-mil: kilbs@mmf.bsu.unibel.by