Optimizacija Niza Čerenkovljevih teleskopa (CTA) pomoću Monte Carlo simulacija

Similar documents
Optimizacija Niza Čerenkovljevih teleskopa (CTA) pomoću Monte Carlo simulacija

Very High-Energy Gamma- Ray Astrophysics

(Future) Experiments for gamma-ray detection

The Cherenkov Telescope Array. Kevin Meagher Georgia Institute of Technology

TeV Astrophysics in the extp era

Uvod. Rezonantno raspršenje atomskim jezgrama Veoma precizna mjerenja na energetskoj skali Komplikacije Primjena

Search Results and Prospects from Atmospheric Cherenkov Telescopes. Andrew W Smith University of Marland, College Park / NASA GSFC

Indirect dark matter searches with the Cherenkov Telescope Array

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Comparing 2-Level and Time Next Neighbor Cleaning Protocols for Optimizing CTA Image Cleaning

VERITAS Performance Gernot Maier

IACT Array Calibration using Cosmic ray Electrons R.D. Parsons, H. Schoorlemmer & J. Hinton

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

arxiv: v1 [astro-ph.he] 9 Sep 2015

Second large-scale Monte Carlo study for the Cherenkov Telescope Array

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Proces Drella i Yana i potraga za te²kim esticama na hadronskim sudariva ima

The Cherenkov Telescope Array Project - current status and science goals

ATOMSKA APSORP SORPCIJSKA TROSKOP

Very High Energy gamma-ray radiogalaxies and blazars

Search for Pulsed Emission in Archival VERITAS Data

High Energy Emission. Brenda Dingus, LANL HAWC

Monte Carlo Studies for CTA

arxiv: v1 [astro-ph.he] 29 Jul 2015

Status of the Small-Sized Telescopes of the Cherenkov Telescope Array

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

The Future of Very High-Energy Astrophysics. Rene A. Ong (UCLA and ICRR )

Monte Carlo studies of CTA: an overview. Victor Stamatescu (University of Adelaide)

ElisaBete de Gouveia Dal Pino (IAG-USP) On behalf of the CTA Collaboration

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

Gamma-ray Observations of Galaxy Clusters!

Cherenkov Telescope Array Status And Outlook. Stefan Schlenstedt Oct 30, 2015

CTA / ALMA synergies. C. Boisson. Zech

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC

The Fermi Gamma-ray Space Telescope

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Gamma-Ray Astronomy from the Ground

Feasibility of VHE gamma ray detection by an array of imaging atmospheric Cherenkov telescopes using the fluorescence technique

Study of indirect detection of Axion-Like- Particles with the Fermi-LAT instrument and Imaging Atmospheric Cherenkov Telescopes

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

Gamma rays from star- forming regions. Jürgen Knödlseder (IRAP, Toulouse) 1

VERITAS detection of VHE emission from the optically bright quasar OJ 287

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400

Observations of Active Galactic Nuclei at very high energies with H.E.S.S.

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

arxiv: v1 [astro-ph.im] 16 May 2014

Long term multi-wavelength variability studies of the blazar PKS

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

AGIS (Advanced Gamma-ray Imaging System)

Measurement of the CR e+/e- ratio with ground-based instruments

Particle acceleration and pulsars

Very High Energy Gamma-ray: the MAGIC telescopes and the CTA project

arxiv: v1 [astro-ph.im] 13 Sep 2017 Julian Sitarek University of Łódź, PL Lodz, Poland

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

GRB observations at very high energies with the MAGIC telescopes

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

Telescopi γ-rays. Imaging Air Cherenkov Telescopes (IACTs) or Water Cherenkov Detectors Extensive Air Shower (EAS) detectors.

Recent highlights from VERITAS

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

TeV Future: APS White Paper

Multiwaveband Observations of the TeV Blazar PKS with HESS, Fermi, RXTE and Swift

PROSPECTS FOR CTA OBSERVATIONS OF GAMMA-RAY EMISSION FROM GRAVITATIONAL WAVES AND GAMMA- RAY BURSTS

The Cherenkov Telescope Array project: Present situation at the Paris Observatory

Very High Energy monitoring of the radio galaxy M87 with MAGIC during a low emission state between 2012 and 2015

The connection between millimeter and gamma-ray emission in AGNs

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS

Analysis of Five Fermi-LAT LBL/IBL BL Lac Objects: Examining the June 2011 Gamma-ray Flare of BL Lacertae

Fermi Source Analyses and Identifying VERITAS Candidates

Cosmic Rays, Photons and Neutrinos

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere.

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration

The Cherenkov Telescope Array (CTA)

Detectors for astroparticle physics

Fermi Summer School Jordan Goodman - University of Maryland AIR SHOWERS. Fermi Summer School - J. Goodman 2017

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

the CTA Consortium represented by Aldo Morselli

The H.E.S.S. Standard Analysis Technique

TeV gamma-ray variability and duty cycle of Mrk 421 as determined by 3 Years of Milagro monitoring

Recent Results from VERITAS

Blazars in gamma-ray views

High Energy Astrophysics: A View on Chemical Enrichment, Outflows & Particle Acceleration. (Feedback at work)

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

MWL. A Brief Advertisement Before Your Regularly Scheduled Program

The VERITAS Survey of the Cygnus Region of the Galaxy

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array

CTA and the ISM. Gavin Rowell. High Energy Astrophysics Group, School of Chemistry & Physics

TeV Galactic Source Physics with CTA

arxiv: v1 [astro-ph.im] 3 Sep 2015

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years

Gamma-ray Astrophysics

Summary on parallel sessions: "EAS and Gamma Detection" and "Gamma Detection

Search for TeV Radiation from Pulsar Tails

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Synergies between CTA and THESEUS

Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

PoS(ICRC2017)740. Observing the Galactic Plane with the Cherenkov Telescope Array. CTA consortium represented by Roberta Zanin and Jamie Holder

arxiv: v1 [astro-ph.he] 4 Sep 2015

Transcription:

1 / 21 Optimizacija Niza Čerenkovljevih teleskopa (CTA) pomoću Monte Carlo simulacija Mario Petričević Fizički odsjek, PMF Sveučilište u Zagrebu 30. siječnja 2016.

2 / 21 Izvori Spektar Detekcija Gama-astronomija E 0,5 MeV najviša detektirana E 100 TeV VHE 30 GeV

3 / 21 Izvori Spektar Detekcija Leptonski procesi sinkrotronsko zračenje inverzno Comptonovo raspršenje Neleptonski procesi u gustim područjima me duzvjezdanog medija nastanak neutralnih mezona π 0 γ + γ m 0 c 2 /2 68MeV

4 / 21 Izvori Spektar Detekcija Izvori γ-zračenja poznato 155 Slika 1: Preuzeto iz [1], [2]

5 / 21 Izvori Spektar Detekcija Izvori γ-zračenja Slika 2: Uključeni i podaci s GLAST/Fermi satelita. Preuzeto iz [1], [2].

6 / 21 Izvori Spektar Detekcija Spektar γ-zračenja Diferencijalni udarni presjek d 3 N γ dedtds brzo opada s energijom Spektralna energetska distribucija (SED): E 2 d 3 N γ dedtds = E d 3 N γ dlnedtds (1)

Izvori Spektar Detekcija Spektar γ-zračenja Slika 3: SED E 2 d 3 N γ /(dedtds) dvaju različitih netermalnih izvora od radio do VHE γ-područja - Rakove maglice (lijevo) i aktivne galaktičke jezgre PKS2155-304 (desno). Preuzeto iz [4]. E α α - spektralni indeks 7 / 21

Izvori Spektar Detekcija Pljuskovi čestica Slika 4: Vizualizacija pljuskova. Redom: foton energije 100 GeV, foton energije 100 TeV, proton energije 100 GeV i proton energije 100 TeV [8]. 8 / 21

9 / 21 Izvori Spektar Detekcija Slika 5: Radijalna ovisnost intenziteta Čerenkovljevih fotona [1].

10 / 21 CTA - Imaging Air/Atmospheric Cherenkov Telescope H.E.S.S, MAGIC, VERITAS CTA Slika 6: Stereoskopski način odre divanja smjera i energije upadne zrake. Preuzeto iz [3].

11 / 21 CTA CTA - Cherenkov Telescope Array LST 4 100 GeV MST ccc 0,1-10 TeV SST ccc 10 TeV

12 / 21 CTA

13 / 21 CTA Slika 8: Lijevo: Diferencijalna osjetljivost u jedinicama toka Rakove maglice za jedan od predloženih rasporeda čitavog niza. Tanke linije s malim simbolima prikazuju mali utjecaj smanjenog dinamičkog raspona (omjera signala najmanjeg i najvećeg korisnog intenziteta). Tanka crna linija prikazuje osjetljivost bez utjecaja pozadinskih elektrona. Desno: Integrirana osjetljivost za CTA i slične instrumente u sličnim uvjetima (50 sati za -ove, 1 godina za Fermi-LAT i HAWC). [4].

14 / 21 CTA Slika 9: Očekivani broj novih izvora. [3].

15 / 21 Parametri Lokacije Uvjeti COsmic Ray SImulations for KAscade ulazni parametri: spektralni indeks: 2,0 umjesto 2,6 impact parameter: 1000 m za fotone 1500 m za elektrone i protone primarna čestica broj simulacija (10 6 ) raspon energije foton 5 3 GeV - 33 TeV elektron 4 3 GeV - 33 TeV proton 14 4 GeV - 60 TeV

16 / 21 Parametri Lokacije Uvjeti Slika 10: Predložene lokacije LST-ova na jučnoj hemisferi (Čile).

17 / 21 Parametri Lokacije Uvjeti Svakim korakom prolaska kroz atmosferu ispituje se uvjet Aproksimacija: nv/c = nβ > 1. (2) n = 1 + 0.000283ρ(h)/ρ(0). (3) Ovisnost n o valnoj duljini je zanemarena. Broj fotona N C emitiranih po jedinici duljine putanje s pod kutom θ C : dn C ds sin 2 = 2πα θ C λ 2 dλ. (4) θ C = arccos 1 βn. (5)

18 / 21 Integrirana osjetljivost - integrirani tok izvora iznad energije za koju broj (nepozadinskih) doga daja N excess podijeljen sa korijenom broja pozadinskih doga daja N bkg iznosi 5 nakon 50 sati efektivnog promatranja. Donja granica energije odgovara vrhu Monte Carlo distribucije sa spektrom sličnim spektru Rakove maglice (nagiba -2.6) Diferencijalna osjetljivost - podaci podijeljeni u pet koraka po dekadi energije [6]

Slika 11: Diferencijalne osjetljivost konfiguracija triju četiriju teleskopa - konfiguracije 123 i 4567 sa slike 11. 19 / 21

Krivulja diferencijalne osjetljivosti pada niže dodatkom jednog teleskopa Najbolje osjetljivosti leže u području 2-3.16 TeV 1 C.U. = 2,4 10 8 erg cm 2 s 1 3LST: 4 10 13 erg cm 2 s 1 16,67 10 6 C.U. 4LST: 3 10 13 erg cm 2 s 1 12,5 10 6 C.U. na 2,5 TeV, za 50 sati 20 / 21

21 / 21 Literatura [1] arxiv:1510.05675v1 [2] http://tevcat.uchicago.edu/ [3] arxiv:1511.00463v1 [4] B. Degrange, G. Fontaine, Introduction to high-energy gamma-ray astronomy, Comptes Rendus Physique [5] B.S. Acharya, et al., Introducing the CTA concept [6] https://magic.mpp.mpg.de/newcomers/technicalimplementation0/ [7] http://isdc.unige.ch/cta/ [8] http://www.ast.leeds.ac.uk/ fs/showerimages.html