Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Similar documents
Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Fluids with dipolar coupling

Dipolar chromium BECs, and magnetism

Magnetic phenomena in a spin-1 quantum gas. Dan Stamper-Kurn UC Berkeley, Physics Lawrence Berkeley National Laboratory, Materials Sciences

Vortices and other topological defects in ultracold atomic gases

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation

Magnetism of spinor BEC in an optical lattice

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Non-equilibrium phenomena in spinor Bose gases. Dan Stamper-Kurn University of California, Berkeley

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Dipolar Bose-Einstein condensates at finite temperature

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Spinor Bose gases lecture outline

Ultracold molecules - a new frontier for quantum & chemical physics

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Confining ultracold atoms on a ring in reduced dimensions

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

Ytterbium quantum gases in Florence

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Loop current order in optical lattices

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Roton Mode in Dipolar Bose-Einstein Condensates

The Superfluid Phase s of Helium 3

Spontaneous magnetization and structure formation in a spin-1 ferromagnetic Bose-Einstein condensate

Magnetism, Rotons, and Beyond: Engineering atomic systems with lattice shaking.

Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential

Design and realization of exotic quantum phases in atomic gases

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

A Chromium BEC in strong RF fields

Large Spin (quantum) Magnetism

From laser cooling to BEC First experiments of superfluid hydrodynamics

A Mixture of Bose and Fermi Superfluids. C. Salomon

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluid vortex with Mott insulating core

Spinor Bose-Einstein condensates

A Mixture of Bose and Fermi Superfluids. C. Salomon

Experiments with an Ultracold Three-Component Fermi Gas

A study of the BEC-BCS crossover region with Lithium 6

INO-CNR BEC Center

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Cold fermions, Feshbach resonance, and molecular condensates (II)

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

5. Gross-Pitaevskii theory

SU(N) Magnetism with Cold Atoms and Chiral Spin Liquids

Stability and excitations of a dipolar Bose-Einstein condensate with a vortex

Quantum Quenches in Chern Insulators

Three-body Interactions in Cold Polar Molecules

Physics of Semiconductors

(Noise) correlations in optical lattices

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Cold Quantum Gas Group Hamburg

Non-Equilibrium Physics with Quantum Gases

NanoKelvin Quantum Engineering

Superstripes and the excitation spectrum of a spin-orbit-coupled BEC

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly correlated systems: from electronic materials to cold atoms

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Exploring Topological Phases With Quantum Walks

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Superfluidity in interacting Fermi gases

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

Lecture I: (magnetic) dipolar gases. Lecture II: Rydberg Rydberg interaction. Lecture III : Rydberg ground state interaction

Bose-Einstein Condensate: A New state of matter

Low dimensional quantum gases, rotation and vortices

Vortex States in a Non-Abelian Magnetic Field

Interaction between atoms

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nonequilibrium dynamics of interacting systems of cold atoms

A Superfluid Universe

First Program & Quantum Cybernetics

Adiabatic trap deformation for preparing Quantum Hall states

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Supersolidity of excitons

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy)

Low-dimensional Bose gases Part 1: BEC and interactions

Emergence of chaotic scattering in ultracold lanthanides.

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Vortices in Bose-Einstein condensates. Ionut Danaila

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

(1) BEC (2) BEC (1) (BEC) BEC BEC (5) BEC (LT) (QFS) BEC (3) BEC. 3 He. 4 He. 4 He 3 He

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Magnetism in ultracold gases

Evidence for Efimov Quantum states

LECTURES ON QUANTUM MECHANICS

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Transcription:

1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of Technology

Dipolar BECs with Spin Degrees of Freedom YUKI KAWAGUCHI Tokyo Institute of Technology, Japan Collaborators: Hiroki Saito (Univ. of Elec.-Comm., Japan) Masahito Ueda (Tokyo Tech., ERATO-JST, Japan)

Outline Introduction : dipole-dipole interaction What's new in a spinor dipolar BEC - Einstein-de Haas effect YK, H. Saito, and M. Ueda, PRL 96, 080405 (2006) - Ground-state circulation YK, H. Saito, and M. Ueda, PRL 97, 130404 (2006) - Possible experimental scheme YK, H. Saito, and M. Ueda, PRL 98, 110406 (2007)

Dipole-Dipole Interaction anisotropic long-range tensor force geometry dependence attractive repulsive + spin degrees of freedom spin relaxation spin texture formation?

Dipole-Dipole Interaction Magnetic dipole-dipole interaction weak solid-state ferromagnets Electric dipole-dipole interaction

Dipole-Dipole Interaction + spin degrees of freedom dipole moment µ dipolar energy V dd energy ratio dd / E con Alkali atom (spin-1) µ B / 2 0.1 nk 0.1 % 52 Cr atom 6 µ B 10 nk 10 % 100 % heteronuclear molecule external electric field E 10 µk > 100 % Th. Lahaye et. al., Nature 448, 672 (2007).

Polarized Dipolar BEC Stability of the ground state Santos, Shlyapnikov, Zoller and Lewenstein, PRL 85, 1791 (2000) O'Dell, Giovanazzi, and Eberlein, PRL 92, 250401 (2004) Collective mode Yi and You, PRA 66, 013607 (2002) Goral and Santos, PRA 66, 023613 (2002) Optical lattice Supersolid Goral, Santos, and Lewenstein, PRL 88, 170406 (2002) Roton-maxon excitation O'Dell, Siovanazzi, and Kurizki, PRL 90, 110402 (2003) Santos, Shlyapnikov, and Lewenstein, PRL 90, 250403 (2003) Rotating Dipolar BEC Cooper, Rezayi, and Simon, PRL 95, 200402 (2005) Zhang and Zhai, PRL 95, 200403 (2005) Yi and Pu, PRA 73, 061602(R) (2006) 1D and 2D dipolar gases Pedri and Santos, PRL 95, 200404 (2005) H. P. Büchler, et. al., PRL 96, 060404 (2007) R. Citro, et. al., PRA 75, 051602 (2007)

Spinor Dipolar BECs Dipole Ordering in 1D and 2D Mott-Insulator Pu, Zhang, and Meystre, PRL 87, 140405 (2001) Gross et. al., PRA 66, 033603 (2002) SUPERFLOW Ground State Phase with Single-Mode Approximation Yi, You, and Pu, PRL 93, 040403 (2004) Santos and Pfau, PRL 96, 190404 (2006) Diener and Ho, PRL 96, 190405 (2006) SPIN TEXTURE Spin dinamics in Optical Lattice Sun, Zhang, Chapman, and You, PRL 97, 123201 (2006) Molecular BEC in Optical Lattice Barnett, Petrov, Lukin, and Demler, PRL 96, 190401 (2006) Micheli, Brennen, and Zoller, Nature Physics 2, 341 (2006)

Einstein-de Haas Effect YK, Saito, and Ueda, PRL 96, 080405 (2006) See also, Santos & Pfau, PRL 96, 190404 (2006) Dipolar interaction B spin SPIN ORBTAL BEC starts rotating mass flow

Einstein-de Haas Effect Non-local Gross Pitaevskii equation local density: spin matrix local magnetization: kernel of the dipolar interaction:

Einstein-de Haas Effect Non-local Gross Pitaevskii equation Numerical results for a 52 Cr BEC spin-3 : 7-component GP eq. local density: spin matrix local magnetization: kernel of the dipolar interaction: 2 ms

Einstein-de Haas Effect Spin relaxation Larmor precession around the dipole field spin mass flow dipole field spin texture

What is the ground state of a spinor dipolar BEC???

Ground-State Circulation flux-closure constraint solid-state ferromagnets ferromagnetic BEC domain (spin) structure spin texture spin-gauge symmetry mass current then... spontaneous mass current in the ground state??? YES!!!

Flux-Closure Constraint Dipolar interaction energy Domain structure in 2D ferromagnets Landau & Lifshitz, 1935. Energy of the static magnetic field induced by the magnet source Flux-closure constraint: ferromagnets BEC (no rigid boundary) structure formation flux-closure structure

Spin-Gauge Symmetry - ferromagnetic or locally spin-polarized BECs - order parameter (spin 1) superfluid velocity Texture mass current Circulation not quantized Circulation + topological phase quantized

Energy Scales high T 1 mk Zeeman energy @ 100 mg ln T 100 nk 10 nk 1 nk 0.1 nk spin-independent mean-field interaction + harmonic trap density distribution: spin-exchange interaction magnetism (form of the order parameter) dipolar interaction spin texture low T

Characteristic Length Scales spin-indep. mf + trap Thomas-Fermi radius 1~100 µm spin-exchange spin healing length dipole dipole healing length 87 Rb 2 µm 6 µm 52 Cr 0.5 µm 0.6 µm ω : trap frequency n 0 : TF peak density @ n~5x10 14 cm -3 Spin texture can develop when.

Phase Diagram - ferromagnetic BEC - YK, Saito, and Ueda, PRL 97, 130404 (2006) See also, Yi & Pu, PRL 97, 020401 (2006) in a spherical trap

Flower Phase almost spin polarized spin texture mass flow

Chiral Spin-Vortex Phase chiral symmetry breaking state spin texture mass flow chirality

Polar-Core Vortex Phase flux-closure structure spin defect (polar core) polar core spin texture mass flow

Phase Diagram 1st order phase transition flux-closure structure 2nd order phase transition chiral symmetry breaking spin-polarized

Phase Diagram total angular momentum 0 1st order phase transition flux-closure structure 2nd order phase transition total angular momentum 1 spontaneously rotating state chiral symmetry breaking spin-polarized

Ground-State Circulation flux-closure constraint spin texture spin-gauge symmetry ground-state circulation for 10 6 87 Rb atoms

Dipolar Interaction vs. Zeeman Energy Zeeman : Dipole : Critical field 87 Rb : 52 Cr :

Then... is the spinor dipolar effect observable only when the external magnetic field is extremely weak? NO!!! There is an observable effects even though the Zeeman energy dominates the system.

Possible Experimental Scheme inhomogeneous dipole field rf-pulse inhomogeneous Larmor precession spin texture YK, H. Saito, and M. Ueda, PRL 98, 110406 (2007)

Numerical results for 87 Rb BEC

Numerical results for 87 Rb BEC TIME SCALE 52 Cr BEC : - 144 times faster than 87 Rb BEC - spin texture develops in a few ms

Berkeley Experiment J. M. Higbie, et. al., PRL 95, 050401 (2005). Observation of the Larmor precession. Phase contrast imaging Time development of homogeneous Larmor precession time rf pulse beat sampling rate : 20 khz Larmor precession : 28 khz

Berkeley Experiment J. M. Higbie, et. al., PRL 95, 050401 (2005). Observation of the Larmor precession. Phase contrast imaging helical structure Time development of under field gradient time homogeneous Larmor precession rf pulse beat time When helical structure will appear without field gradient sampling rate : 20 khz Larmor precession : 28 khz

Summary - Einstein-de Haas effect YK, H. Saito, and M. Ueda, PRL 96, 080405 (2006) - Ground-state circulation YK, H. Saito, and M. Ueda, PRL 97, 130404 (2006) - Possible experimental scheme YK, H. Saito, and M. Ueda, PRL 98, 110406 (2007) Unique feature of a spinor dipolar BEC DIPOLAR : flux-closure constraint SPINOR : spin-gauge symmetry Dipolar BEC becomes more exciting when it has internal degrees of freedom!