arxiv: v1 [math.qa] 27 Apr 2017

Similar documents
Pre-Lie algebras, rooted trees and related algebraic structures

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Electromagnetism Notes, NYU Spring 2018

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

6.5 Improper integrals

Figure 1. The left-handed and right-handed trefoils

Lecture Notes No. 10

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Linear Algebra Introduction

Introduction to Olympiad Inequalities

CS 573 Automata Theory and Formal Languages

Lecture 1 - Introduction and Basic Facts about PDEs

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Part 4. Integration (with Proofs)

NON-DETERMINISTIC FSA

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS

System Validation (IN4387) November 2, 2012, 14:00-17:00

p-adic Egyptian Fractions

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

TOPIC: LINEAR ALGEBRA MATRICES

Logic Synthesis and Verification

A Study on the Properties of Rational Triangles

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

Bisimulation, Games & Hennessy Milner logic

Discrete Structures Lecture 11

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Lecture 2: Cayley Graphs

Arrow s Impossibility Theorem

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Probability. b a b. a b 32.

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Bases for Vector Spaces

QUADRATIC EQUATION. Contents

Section 4.4. Green s Theorem

Topologie en Meetkunde 2011 Lecturers: Marius Crainic and Ivan Struchiner

Lecture 3: Equivalence Relations

arxiv: v1 [math.ca] 21 Aug 2018

CS 491G Combinatorial Optimization Lecture Notes

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

12.4 Similarity in Right Triangles

Symmetrical Components 1

Things to Memorize: A Partial List. January 27, 2017

Coalgebra, Lecture 15: Equations for Deterministic Automata

Factorising FACTORISING.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Nondeterministic Automata vs Deterministic Automata

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Hyers-Ulam stability of Pielou logistic difference equation

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

Maintaining Mathematical Proficiency

Finite State Automata and Determinisation

REPRESENTATION THEORY OF PSL 2 (q)

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Arrow s Impossibility Theorem

ANALYSIS AND MODELLING OF RAINFALL EVENTS

Unit 4. Combinational Circuits

Algorithm Design and Analysis

8 THREE PHASE A.C. CIRCUITS

1.3 SCALARS AND VECTORS

Exercise sheet 6: Solutions

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Line Integrals and Entire Functions

Comparing the Pre-image and Image of a Dilation

Linear Systems with Constant Coefficients

Chapter Gauss Quadrature Rule of Integration

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Can one hear the shape of a drum?

m A 1 1 A ! and AC 6

5. Every rational number have either terminating or repeating (recurring) decimal representation.

arxiv:math-ph/ v1 6 Jun 2003

Hybrid Systems Modeling, Analysis and Control

Polynomials. Polynomials. Curriculum Ready ACMNA:

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

Spacetime and the Quantum World Questions Fall 2010

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

Lecture Summaries for Multivariable Integral Calculus M52B

TIME AND STATE IN DISTRIBUTED SYSTEMS

MAT 403 NOTES 4. f + f =

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh

CHENG Chun Chor Litwin The Hong Kong Institute of Education

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Logic Synthesis and Verification

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Transcription:

SIMPLY-LACED QUANTUM CONNECTIONS GENERALISING KZ rxiv:1704.08616v1 [mth.qa 27 Apr 2017 Astrt. We onstrut new fmily of flt onnetions generlising the KZ onnetion, the Csimir onnetion nd the dynmil onnetion. These new onnetions re tthed to simply-led grphs, nd re otined vi quntistion of time-dependent Hmiltonin systems ontrolling the isomonodromi deformtions of meromorphi onnetions on the sphere. 1. Introdution Let m,l e positive integers. Set g : gll,c), equipped with the piring, ) given y the tre, nd let B : C m \{digs}, the onfigurtion spe of m-tuples of point in C. Consider the trivil undle E : Ug) m B B. The Knizhnik Zmolodhikov KZ) equtions re the following system of liner differentil equtions d B ψ ψ, : dt i dt j Ω ij t i t j 1 i j m for lol setion ψ of E. Here Ω ij End Ug) m) is defined s the tion of Ω ting in the i-th nd j-th slots, where Ω g g orresponds to, ), nd t i re the stndrd oordintes on B. Mthemtilly, they onstitute flt liner onnetion. This system originted s equtions for orreltion funtions in WZW onforml field theory [KZ84, nd their monodromy provides interesting liner representtions of the m-string rid group. Moreover, the KZ onnetion is genus zero nlogue of the Hithin onnetion see e.g.[egs15). It hs een known for some yers [Res92 tht this liner onnetion n e otined s deformtion quntistion of system of nonliner differentil equtions: the Shlesinger system dr i j i [R i,r j dt i dt j t i t j. They ontrol the isomonodromi deformtions IMD) of Fuhsin systems d R i z t i dz on CP 1, nd re determined y the time-dependent Hmiltonins H i, where H i : j i Tr R i R j )dt i dt j t i t j on the trivil Poisson firtion π : F : g m B B. The key ide is tht TrR i R j ) eomes Ω ij under the PBW quntistion mp Symg m ) Ug m ). Almost two dedes lter, vrious generlistions of KZ hve ppered. For instne, the FMTV system or dynmil onnetion) [FMTV00, nd the DMT system or Csimir onnetion) [MTL05, whih is essentilly n importnt speil se of [FMTV00. In rief, the spe of times B is inresed y dding on the regulr prt of Crtn sulger. 1

In the se of gll,c), B thus eomes produt C m \{digs} C l \{digs}. These systems lso my e derived from isomonodromy vi simple deformtion quntistion, ut this time from n irregulr isomonodromy prolem [Bo02. The extr times orrespond to the irregulr isomonodromy times onsidered in Jimo Miw Môri Sto [JMMS80. Hrnd [Hr94 hs shown tht the two olletions of times in the JMMS system my e swpped, nd this lssil dulity underlies the quntum/howe dulity of [Bu99 used in [TL02 to relte the KZ to the DMT onnetion for gll,c). More reently, the Hmiltonin theory of isomonodromy equtions ws extended [Bo12. These new simply-led isomonodromy systems SLIMS), involve k olletions of times, generlising the two olletions of times in the JMMS system. In this rtile we show how to quntise those systems, onstruting new flt onnetions nd ompleting the following tle: Quntum Connetion KZ DMT FMTV This work Isomonodromy system Shlesinger Dul Shlesinger JMMS SLIMS Spe of times C m \{digs} C l \{digs} C m \{digs} C l \{digs} k 1 Cd i \{digs} Finlly, rell tht the simply-led isomonodromy systems extend prtiulr se of [JMU81, orresponding to omplete k-prtite grphs hving t most one splyed node, nd with ll other nodes eing one-dimensionl nmely, one term of the mster eqution 8.4 on pge 33 of [Bo12 vnishes in the setup of [JMU81). The pper [NS11 proposed quntistion of the isomonodromi deformtion systems tht our in the intersetion of the SLIMS nd [JMU81. In turn, this ws one of our motivtions to onsider the SLIMS: they re more symmetri thn [JMU81, euse one n now permute ll the prts. Thus, in future work we will exmine the quntistion of the symmetries of [Bo12, whih should simultneously generlise [NY14 nd the forementioned [Bu99, TL02. 2. Lyout of the rtile In 3 we rell the simply-led isomonodromy systems SLIMS). This involves fire undle F M B B, nd olletion of time-dependent Hmiltonin funtions H i : F C. These systems re tthed to omplete k prtite grphs. In 4 we relise the Hmiltonins s tres of yles on the grph lssil potentils), nd we study the Poisson rket of suh tres. In 5 we disuss the deformtion quntistion of M, following e.g. [Eti07. This results in n ssoitive filtered nonommuttive lger A. In 6 we define quntum potentils, whih re relted to the quntum lger A similrly to how lssil potentils re relted to the funtions on M. In 7 we explin how to quntise the Hmiltonins H i to elements Ĥi, therey defining the simply-led quntum onnetion SLQC). In 8 nd 9 we prove the min theorem Theorem 8) tht the simply-led quntum onnetion is strongly flt. 2

In 10 we show tht redution of the simply-led quntum onnetion yields the KZ onnetion in the speil se of str-shped grph, i.e. omplete iprtite grph where one prt hs only one node. This mens tht this SLQC quntises the Shlesinger system, euse so does KZ. In 11 we onsider the Hrnd-dul dt of the previous setion, nd we show tht nturl strongly flt) orretion of the SLQC redues to the DMT onnetion. This orretion mounts to reordering within the quntum Hmiltonins, nd it does not tmper with the lssil dynmis, s it vnishes in the semilssil limit. This mens tht this SLQC quntises the dul Shlesinger system, euse so does DMT. In 12 we put together the results of the previous two setions to show tht n nlogous nturl orretion of the SLQC redues to the FMTV onnetion. Together with the ft tht FMTV quntises the JMMS system, this proves tht this SLQC quntises the JMMS system. Finlly, in 13 we ompre the SLQC with the quntistion [NS11 of prtiulr se of the JMU system. We rgue tht our yle-theoreti formultion reovers prt of the expliit Hmiltonin formultion for the systems tht lie in the intersetion of the isomonodromy equtions of [Bo12 nd [JMU81, s well s its quntistion. This is lso the osion for writing down the simply-led quntum onnetion expliitly in rnk 3, vi differentil opertors ting on polynomil funtions on C 3. 3. Simply-led isomonodromy systems Fix finite set J of rdinlity k. Let π : I J e surjetion, nd write I j J Ij for the indued prtition of the finite set I, with prts I j π 1 j). Next, let G e the omplete k-prtite grph on nodes I. This mens tht two nodes re djent if nd only if they lie in different prts. Both G nd G re y definition simply-led, i.e. without edge loops or repeted edges. Next, pik finite-dimensionl omplex vetor spes {V i } i I, s well s n emedding : J C { }, j j, lled the reding of G. The reding is sid to e generi if J), nd degenerte otherwise. One lso tthes omplex vetor spes W j : i I j V i to the nodes of G, simply writing W for the possily nonexistent) spe ssoited to the node j J suh tht j. Finlly, let us usively denote y G the doule quiver ssoited to the grph G: it is the quiver on nodes I hving pir of ntiprllel rrows for eh edge of G. The sme use of nottion will e tken for G. These dt determine se spe of times nd sympleti vetor spe with sympleti form B : j JC Ij \{digs} C I, M : ω : 1 2 i j J i j J Hom W i,w j), Tr dx ij db ji). 3

Notie tht M is the spe of representtions of the quiver G with respet to the vetor spes {W j } j J, nd one thus denotes B ji : W i W j the liner mps defined y one representtion; lso, one defines X ij : W j W i to e the slr multiplition of B ij y the weight φ ij C, where { i j ) 1, i, j φ ij φ ji : 1, i. Consider now the trivil sympleti firtion F : M,ω ) B B. The spe F prmetrises ertin meromorphi onnetions on the trivil vetor undle U CP 1 CP 1 with fire U : j: j Wj. Nmely, write ) T Q γ P B +T for generi element of EndW U ), where ) 0 P Γ : Q B M, nd T : T 0 0 T re the off-digonl prt of γ nd the digonl of γ, respetively. One ssumes tht the restrition T j of γ to W j is semisimple for ll j J. Now, to point Γ, T) F one ssoites the onnetion where ), d A : d Az +B +T)+Qz T ) 1 P ) dz, A : j: j j Id j EndU ), nd Id j is the idempotent for W j. Rell the following result, from [Bo12. Theorem 1. The isomonodromy deformtion IMD) equtions for the meromorphi onnetions ove dmit n Hmiltonin formultion. Moreover, the Hmiltonin system H i : F C is strongly flt: {H i,h j } 0 H i t j H j t i, for i j. Rell tht the IMD equtions re nonliner first order PDEs for Γ, s funtion of T. The ft tht this prolem dmits n Hmiltonin formultion mens tht one n find funtions {H i } i I s ove, suh tht the differentil equtions n e written Γ j t i {H i,γ j } for ll omponents Γ i of lol setion Γ of the firtion. The definition of the Hmiltonins is impliitly given y defining the horizontl 1-form i I H idt i s : 1 ) ) ΞΓδΞΓ) Tr ΞγΞd T +Tr X 2 TdT ) +Tr PAQT dt ). 1) 2 4

Here one sets Ξ : φγ) nd X : φb), pplying the lternting weights φ ij C omponentwise. Also, δξγ) denotes the digonl prt of ΞΓ in the diret sum deomposition W U j J Wj, nd one defines ΞΓ : d [ T,ΞΓ 1 T. Notie tht the funtions H i n lso e thought of s glol setions of the vetor undle A 0 B B where A 0 : OM) SymM ) is the lger of regulr funtion on the ffine omplex spe M. The Hmiltonins H i re y definition the simply-led isomonodromy system SLIMS). This is the lssil system we wish to quntise. 4. Potentils Consider gin the omplete k-prtite quiver G on nodes I j J Ij. Definition 4.1. A potentil W on G is C-liner omintion of oriented yles in G, defined up to yli permuttions of their rrows. The spe of potentils is denoted CG yl. Every potentil W CG yl defines regulr funtion on M, y tking the tres of its yles. Thus multi) time-dependent potentil W : B CG yl will define glol setion TrW) : B A 0. Introduing the nturl nottion I i : π 1 πi)) I for the prt of I ontining the node i I, onsider the following potentils: W i 2) : t i t j )α ij α ji j I\I i W i 3) : j l )α il α lj α ji 2) j,l I\I i :I j I l W i 4) : i j ) i l ) α ijα jmα mlα li t i t m m I i \{i},j,l I\I i where α ij is the rrow from j I to i I in G. We gree to write yle in G s the sequene of its rrows, reding from right to left. Proposition 2. The Hmiltonin H i of the simply-led isomonodromy system is the sum of the tres of these potentils, for generi reding of G: H i TrW i 4))+TrW i 3))+TrW i 2)). Moreover, in degenerte reding one only needs to hnge the weights of the sme types of yles. Proof. It follows from n expliit expnsion of the formul for. This in prtiulr implies tht the fltness does not depend in ruil wy on whether the reding is generi or not. Let us now introdue some terminology, for further use. Definition 4.2. The potentils W i n) ove re lled the lssil) IMD potentils, for i I,2 n 4. Their ddends will e referred to s the IMD yles. The IMD 4-yles n e further divided in two fmilies: 1) nondegenerte, if they touh 4 distint nodes of G. 5

2) degenerte, if they touh 3 distint nodes of G. This provides the following types of yles: In order from left to right, one hs 2-yles, 3-yles, nondegenerte 4-yles nd degenerte 4-yles. Notie tht the degenerte 4-yle re the glueing of two 2-yles t node, tht will e lled their entre. The other two nodes must lie in one nd the sme prt of I. There is lso n intrinsi wy to think of tres. Nmely, if C α n...α 1 is n oriented yle in G strting t node i I, nd for ll representtion ρ M of G, one gets n endomorphism ρ C ρ αn ρ α 1 of V i. However, this ojet n lso e thought s living in A 0 EndV i ), sine ll its omponents define regulr funtions on M. Now tking tres mounts to ontrt V i nd Vi, leving funtion TrC) TrρC ) A 0. As lst remrk, there is nturl positively) grded Lie struture {,} on CG yl, where the grdtion is given y yle length, lled the nekle Lie lger struture see e.g. [BLB02, Eti07). We shll ll C CG yl n m-yle if it hs m rrows, nd lso set lc) : m in tht se. Also, if α is n rrow in G, we write α for its unique) ntiprllel one. Definition 4.3. Pik two oriented yles C 1 α n...α 1 nd C 2 β m...β 1 in G. The Lie rket {C 1,C 2 } is weighted sum of n+m 2)-yles otined s follows. For ll pirs of ntiprllel rrows α i,β j αi, one deletes tht pir nd glues together the two remining yles. The weights re determined y the defining reltion of the Poisson rket of A 0. To see this grphilly, fix pir i,j suh tht α i β j, nd introdue the nottion tα),hα) I for the til nd the hed of n rrow α in G, respetively; these re the strting node of α nd the end node of α, respetively. Set then tβ j 1 ), hβ j 1 ) hα i ), hβ j ) hα i 1 ),d hβ j+1 ),e tα i 1 ),f hα i+1 ) I. Then the lol piture efore deleting rrows looks like this: f α i 1 α i β j β j 1 β j+1 α i 1 e d Afterwrds, one will hve: 6

α i 1 α i 1 f e β j 1 β j+1 Now, the nie ft is tht this rket omes from the Poisson struture of A 0. Proposition 3. One hs for ll yles C 1,C 2 CG yl. Tr { C 1,C 2 } {TrC 1 ),TrC 2 )} A 0 The proof onsists of diret expnsion of the Poisson rket {TrC 1 ),TrC 2 )} {TrX αn...x α 1 ),TrX βm...x β 1 )}, whih will e provided in the ppendix 14. Coneptully, however, wht hppens is the following. The invrint regulr funtions on M for the tion of G : j J GL CW j ) onsist of the C-lger A G 0 A 0 generted y tres of yles. Hene we hve n injetive mp Tr : CG yl A G 0, nd the ove disussion shows tht this is Lie lgers morphism: the nekle Lie rket is the pull-k of the Poisson rket on A 0. Lst, notie tht it is not possile to upgrde CG yl to Poisson lger using the nturl ontention produt, sine TrAB) TrA) TrB) for generl endomorphisms A, B of vetor spe. Rther, one should define forml produt of yles tht stisfies the sme rules s the produt of their tres, i.e. e ommuttive. This is well expressed y the following elementry lgeri ft. Proposition 4. Pik omplex vetor speatogether with liner emeddingι : V B into C-lger. Then there is nturl tensor mp Tensι) : TensV) B, defined on pure tensors s Tensι)v 1 v n ) : ι 1 v)...ι n v) B. This mp is surjetive on the sulger B.ιV) B generted y the imge of ι in B, nd it indues n isomorphism of lgers TensV)/KerTensι)) B.ιV). This is n pplition of the universl properties of tensor produts nd quotients. In the se t hnd, one just finds so tht it mkes sense to define A G 0 TensCG yl )/KerTensTr)) SymCG yl ), d A G 0 : SymCG yl). The identifition A G 0 A G 0 is just sying tht ll G-invrint regulr funtions on M re monomils of tres of) yles, with ommuttive vriles. Notie tht the Lie rket of CG yl is now tutologilly upgrded to Poisson rket, nd A G 0 is isomorphi to A G 0 s grded ommuttive Poisson lger. We shll present quntum ounterprt of this, in 6. 7

As n pplition of this yle-theoreti viewpoint, one n provide diret proof of hlf of the strong fltness of the SLIMS. More preisely, remrk tht one hs Tr ti W j ) ti TrW j ) for ll i,j I, where W j is n IMD potentil. This is euse the derivtive does not modify the yles tht mke up the potentils, ut only their weights. Hene showing tht ti H j tj H i 0 is equivlent to showing tht ti W j tj W i 0, euse of the injetivity of Tr : CG yl A 0. Proposition 5. One hs ti W j tj W i for ll i,j I. Proof. One n lerly ssume i j I. Then one hs { α ij α ji, I i I j tj W i 2) nd ti W j 2) 0, else Also tj W i 3) 0 ti W j ), { α ji α ij, I i I j. 0, else sine ll 3-yles re tully time-independent in our setting. Finlly, { m,l I\I tj W i 4) i i m ) i l ) α imα mj α jl α li t i t j, I i I j ) 2 0, else nd ti W j 4) { m,l I\I j j m ) j l ) α jlα li α im α mj t j t i, I i I j ) 2. 0, else This is seen expliitly on the formuls 2), nd proves the lim, euse α ij α ji α ji α ij CG yl nd α jl α li α im α mj α im α mj α jl α li CG yl. For the se of 4-yles, one must lso rell tht i j if I i I j, euse the reding only depends on the prts of I. 5. Quntistion: lgers Consider gin the ommuttive Poisson lger A 0 OM) SymM ) of regulr funtions M. Definition 5.1. A one-prmeter deformtion quntistion of A 0 is topologilly free C[[ -lgerâ, together with n identifitionâ/  A 0, suh tht the Poisson rket {, } of A 0 is nturlly indued y the ommuttor [, of Â: {x,y} 1 [ x,ŷ +O ), where x,y A 0, x,ŷ  re ritrry lifts, nd the nlytil Lndu nottion O ) stnds for n ritrry element of the idel   generted y. In the se we onsider one n void using C[[ -modules, y performing filtered quntistion see [Eti07). 8

5.1. The Weyl lger. There exists n ssoitive nonommuttive) filtered lger A whose ssoited grded is nonilly isomorphi to A 0. Moreover, if one denotes σ : A gra) A 0 the grding mp, then one hs σ [ x,ŷ {x,y}, 3) for x,y A 0 nd for ny lift x,ŷ A. The lger A is defined s follows. Definition 5.2. Set A WM,ω ) : TensM)/I ω, where TensM) is the tensor lger of the vetor spe M, nd I ω TensM) is the two-sided idel generted y elements of the form x y y x ω x,y), for x,y M. This is the Weyl lger of the sympleti vetor spe M,ω ). The filtrtion of A is the quotient filtrtion indued y the nturl filtrtion of TensM). Notie tht there is nonil liner isomorphism ϕ : M M, indued y the nondegenerte piring M M C provided y the sympleti form ω. Moreover, there is unique sympleti struture on M suh tht ϕ is sympletomorphism, whih we usively denote ω s well. The Weyl lger WM,ω ) of the dul sympleti spe is then nonilly isomorphi to A, nd it is not relly neessry to distinguish the two, s fr s genertor nd reltions re onerned. 1 The intrinsi wy of thinking out this is the following. The sympleti vetor spe M,ω ) is equipped with Poisson rket {, } : OM) OM) OM) suh tht the degree of the polynomil funtion {f,g} equls degf)+degg) 2, for f, g OM). In prtiulr, its restrition to liner funtions yields n lternting iliner mp {, } : M M C. Thus one my sy tht the Weyl lger is otined from the tensor lger y modding out the Poisson struture, just s for the universl enveloping lgers Ug) of Lie lger g. Finlly, onsider the omposition σ π : TensM ) gra) of the nonil projetion π : TensM ) A with the grding mp σ : A gra). One my show tht this vnishes preisely on the homogeneous two-sided idel I 0 TensM ) generted y ommuttors, thus induing n isomorphism gra) TensM )/I 0 SymM ) A 0. The quntistion identity 3) n e shown y diret inspetion on elements of order one, whih generte A 0. There is now universl wy of reonstruting -deformtion quntistion of A 0 from A. 5.2. Rees onstrution. Consider n ssoitive positively filtered lger B k 0 B k. Rell tht one lls the order of the element B. ord) : min{k 0 B k } 1 The nonil isomorphism is given y the universl property of the quotient pplied to the omposition π Tensϕ) : TensM) WM,ω ), where Tensϕ) : TensM) TensM ) is the imge of ϕ under the funtor Tens, nd π : M WM,ω ) is the nonil projetion. 9

Definition 5.3. The Rees lger ReesB) of B is the C[ -lger defined y ReesB) : k 0 B k k B[. Proposition 6. There exists topologilly-free C[[ -lger  tht defines deformtion quntistion of A 0. It is otined vi ompletion of) the Rees lger of A. Proof. It suffies to set: { }  : d k k d k A k for ll k 0, lim k ordd k)) + A[[. k + k 0 One n indeed show tht the mp ϕ : k 0 d k k k 0σ k d k ) indues nonil) isomorphism Â/  A 0. Here σ k : A k A k /A k 1 A0 ) k is the order k prt of the grding mp, tht is the nonil projetion. Moreover, the identity of the relevnt Poisson rkets follows from 3). Thnks to this universl onstrution, it mkes sense to spek of the Weyl lgeras quntistion ofa 0. This is the first step to tully quntise oservles f A 0, tht is to provide mpf f tht is setion of the semilssil limitσ mong other properties whih re not ruil to list t present). Nonetheless, there is nturl wy to quntise elements of order 1, i.e. liner funtions on M. Nmely, one onsiders the omposition π ι : M TensM ) A of the nonil emedding ι : M TensM ) with the nonil projetion π : TensM ) A, nd sets f : πιf)) for ll liner funtions f : M C. This is well defined euse the idel I ω defining the Weyl lger does not interset the spe TensM ) 1 C M. 6. Quntistion: potentils Just s we oded invrint) funtions on M vi yles, we n ode quntum opertors vi deorted yles. Consider gin omplete k-prtite quiver G. Definition 6.1. An nhored yle Ĉ is n oriented yle in G with strting rrow fixed, to e lled the nhor of Ĉ. We will denote this y underlining the nhor: where α n,...,α 1 re rrows in G. Ĉ α n...α 1, The ide is the following. Using the ove liner quntistion X X : A 0 A one n now ssoite n! different quntum opertors to ll monomil f X 1...X n of degree n; nmely, one hs X σ1)... X σn) A n, for ll permuttion σ Σ n on n ojets. There is in generl no nonil wy to pik one of them. This is the min issue of quntistion: extending the quntistion X X of liner funtions to full quntistion f f : A 0 A. 10

Nevertheless, suppose tht f A 0 is monomil oming from the tre of yle C α n...α 1 CG yl. This mens tht f is one monomil of the sum TrC) K X αn k n,k n 1...X α 1 k 1,k n A 0, where K k n,...,k 1 ) is n pproprite multi-index. Now, if one piks n nhor for C, sy tht Ĉ : α n...α 1, then the quntum opertor f : Xαn k n,k n 1... X α 1 k 1,k n A n K D C is uniquely defined, nd one n in turn define TrĈ) A to e tht opertor. In hindsight, nd more intrinselly, one ould just onsider the opertor-vlued mtrix ρĉ : X αn... X α 1 A EndV i ), where i : tα 1 ) I is the strting node of Ĉ. Tking tre then mounts gin to ontrting V i ginst Vi. As finl remrk, notie tht two different nhored yles Ĉ1,Ĉ2 my define the sme quntum opertor. This hppens when their two underlying yles oinide under n dmissile permuttion of their rrows: no rrow α my pss over its ntiprllel α. This is euse the entries of mtries X α, X β ommute if nd only if α β, ording to the defining reltions of the Weyl lger. This motivtes the next definitions. Definition 6.2. Consider n nhored yle Ĉ α n...α 1 on G. An dmissile permuttion of its rrows onsists in dividing the word α n...α 1 in two suwords A α n...α n i, B α n i 1...α 1 suh tht no rrow in A hs its ntiprllel in B, nd to swp A nd B. This yields new nhored yle Ĉ α n i 1...α 1 α n...α i. Definition 6.3. Let ĈG yl e the omplex vetor spe spnned y nhored yles in G, defined up to dmissile permuttions of their rrows. Its elements will e lled quntum potentils, its genertors quntum yles. One denotes y σ : ĈG yl CG the mp tht forgets the nhor, whih we ll gin the semilssil limit. A quntum potentil Ŵ is quntistion of the potentil W if σŵ) W. There exists now well defined C-liner injetive mp Tr : ĈG yl A, together with ommuttive squre where the quntum nd lssil tres intertwine the semilssil limit: σ TrĈ)) TrC) A 0 for ll quntum yles Ĉ ĈG yl tht quntises the lssil yle C CG yl. Moreover, one n use Prop. 4 to produe yle-theoreti nlogue of the Weyl lger. Nmely, one onsiders the tensor mp TensTr) : TensĈG yl ) A, whih is surjetive on the sulger A G A of A, whih is y definition the sulger generted y tres of quntum yles. One thus hs n isomorphism of ssoitive lgers TensĈG yl )/KerTensTr)) A G. 11

Now, setting A G to e the quotient on the left-hnd side, one hs onstruted n ssoitive quntum) lger tht hs n nlogous reltion with A G s A G 0 hs with AG 0. Notie tht this is strt, s we do not hve nie desription of the kernel of the quntum tre mp. However, one still hs n identifition C ĈG yl A G 1, with respet to the quotient filtrtion on A G. Indeed, this hppens euse TensTr) is y definition the identity on C tre of empty yles, if one will), nd it is injetive on the vetor spe generted y quntum yles. Finlly, notie tht A G now hs well defined produt, defined on quntum yles y Tr Ĉ 1 Ĉ 2 ) Tr Ĉ 1 )TrĈ2) A. This is silly -produt, deforming the ommuttive one of A G 0. This mkes A G into filtered ssoitive lger, still provided with semilssil limit σ : A G A G 0, whih is defined on monomils y forgetting nhors σ : Ĉ1...Ĉn σĉ1)...σĉn). In this nonommuttive ontext it is even more importnt to llow for forml produts of yles, in order to keep trk of the nhoring, s exemplified y the next proposition. Proposition 7. Pik two quntum yles Ĉ,Ĉ suh tht their underlying lssil yles σĉ),σĉ ) oinide. Then their differene is sum of produts of pirs of quntum yles whose lengths sum to lĉ) 2 lĉ ) 2. A proof of this is given in 14. 7. Simply-led quntum onnetion The following few definitions now ome nturlly. Consider gin the lssil IMD yles of 4. The 3-yles nd the nondegenerte 4-yles do not ontin pirs of ntiprllel rrows, so tht one n quntise suh yle C y hoosing ny nhor: ll of them re equivlent. As for 2-yles nd degenerte 4-yles, one mkes the following hoies. Definition 7.1. The quntistion of degenerte 4-yles is the quntum yle hving the sme underlying lssil yle, nhored t ny rrow oming out of its entre. The quntistion of two yle C Ĉ 1 2 is y definition the quntum potentil ) In this piture nd in ll tht follow, the lk nodes re the til of the nhor. As for the degenerte 4-yles, priori speifying strting rrow is more thn speifying strting node, ut in this se there is no miguity: hnging the order of the rrows oming out of the entrl node mounts to n dmissile permuttion of the rrows of the degenerte 4-yles. This is euse suh yle n e written s word C β βα α, whereα,β re the two distint rrows ofg oming out of the entre. Now, the two possile nhors t the entre orrespond to the quntistions Ĉ1 β βα α nd Ĉ2 α αβ β. These two re seen to e equl, y mens of the ylil permuttion tht swps the two 2-yles: one n move β β to the right of α α without hnging the reltive order of the ntiprllel pirs α,α ),β,β ). 12 +.

This is totlly nonil, nd does not rely on full quntistion Q : A 0 A. One n however show tht it mounts to orreting the stndrd Weyl quntistion. Consider now the IMD potentils W i W i 4)+W i 3)+W i 2) CG yl of 2). Definition 7.2. The quntum IMD potentil Ŵi ĈG yl t the node i is the sum of the quntistions of its IMD yles. The quntum IMD Hmiltonin Ĥi : B A is the tre of the quntum IMD potentil t the node i: Ĥ i : TrŴi). This is quntistion of the lssil IMD Hmiltonin H i : B A 0, in the sense tht the identity σĥi) H i is true everywhere on B. Consider now the trivil undle E : A B B. Definition 7.3. The universl) simply-led quntum onnetion SLQC) is the onnetion on E defined y : d B, where : i I Ĥ i dt i. Note tht Ω 1 B,A) Ω 1 B,EndE ) ), where one lets Ĥi t linerly on the fire A of E y left multiplition. The min result is the following. Theorem 8. is strongly flt, i.e. Let us show tht for ll i,j I. This follows from lemm. [Ĥi,Ĥj 0 Ĥi t j Ĥj t i, for i,j I. 8. Proof of strong fltness: I ti Ĥ j tj Ĥ i 0 Lemm 9. Pik lssil IMD potentil W i : B CG. Then for ll j I. tj Ŵ i tj W i, tj TrŴi) Tr tj Ŵ i ), Proof. The first set of identities re due to the ft tht the quntistion does not depend on B. Moreover, s lredy mentioned t the end of 4, tking derivtive does not hnge the type of yles tht mke up the potentil, ut only modifies their weights. This mens tht the quntistion tj W i is well defined, nd tht tking tres oth of lssil nd quntum potentils) ommutes with piking derivtives. Using the seond set of identities of the lemm, it is thus enough to verify tht one hs ti Ŵ j tj Ŵ i 0 for ll i,j I, euse the tre of the left-hnd side is preisely the differene ti Ĥ j tj Ĥ i. Finlly, to prove this, one exploits Thm. 1, orrowing the sttement ti W j tj W i. This is preisely Prop. 5, whih implies tht ti W j tj W i. 13

Then the first set of identity of the ove lemm permits to onlude. Notie tht ruil ft tht the quntistion is symmetri on G, in the sense tht the quntistion Ĥi of the Hmiltonin H i does not depend on the se node i I. 9. Proof of strong fltness: II One is left to show tht the quntum IMD Hmiltonins ommute. By ilinerity, this redues to the prolem of omputing ommuttors of the form [ Tr Ĉ 1 ),TrĈ2) A where Ĉ1,Ĉ2 re quntum IMD yles. Commuttors of quntum yles. The first thing to do is to see whether one n still write this element in terms of tres of quntum yles. Let us get k to our quntum lger A G whose ommuttor is defined y Tr [Ĉ1,Ĉ2 ) [ TrĈ1),TrĈ2). We would like to e le to give hrteriztion of [Ĉ1,Ĉ2 long the lines of Prop. 3, ut unfortuntely tht used the ommuttivity of the produt on A 0. This mens tht we nnot priori hope tht the ommuttor of quntum yles e quntum potentil: one must priori llow for higher-order elements. However, one n show tht the desired property holds for the yles we re deling with. Set ÎMD ĈG yl to e the vetor spe spnned y the quntum IMD yles. Proposition 10. The restrition [, : IMD IMD A G tkes vlues into ĈG yl. Moreover, the ommuttor [ Ĉ 1,Ĉ2 is quntistion of {C1,C 2 }, for Ĉ1,Ĉ2 IMD nd C i : σĉi). We will disuss how to ontrol the hoie of nhoring for [ Ĉ 1,Ĉ2 in the following two setions. For now, let us e ontent tht the ommuttor etween IMD quntum yles is liner omintion of quntum yles, insted of generi polynomil of suh. Moreover, the omputtions for those ommuttors re silly the sme s for the Poisson rket of lssil IMD yles. The proof of Prop. 10 relies on lemm, plus two seprte verifitions, whose proofs hve een postponed to 14. Lemm 11. Pik two quntum yles Ĉ1,Ĉ2, with semilssil limit C 1,C 2. Assume tht one of Ĉ1,Ĉ2 is 2-yle, or tht one of them does not ontin pirs of ntiprllel rrows. Then Prop. 10 holds for [ Ĉ 1,Ĉ2 ĈGyl. The only IMD yles tht do not stisfy the hypothesis re the degenerte 4-yles. Hene one must still show tht the ommuttor of two suh yles follows the sme rule. This leds us to hek the possile intersetions of yles in G. Definition 9.1. Two lssil or quntum) yles re sid to interset if there exists n rrow of the first with its ntiprllel in the seond. The intersetion is sid to e nontrivil if the two yles re different. Notie tht two lssil yles resp. quntum yles) my hve nonvnishing Poisson rket resp. vnishing ommuttor) only if they interset nontrivilly. Now, two 14

degenerte 4-yles hve only two possile nontrivil intersetions: either they hve the entre in ommon, or they do not. Proposition 12. Pik nodes,,, d I suh tht the sequenes of nodes,,, ) nd,,d,) define two degenerte 4-yles. Then the following ommuttor vnishes: d, Here we skethed quntum yle y drwing lk node where their nhor strts. The next intersetion sks insted to show tht the following piture is true: 2 3, 3 1 2 1 The numer t the peripherl nodes indites the order in whih one must touh them, strting from the entre the til of the nhor). Anhors. Let us deompose the lssil IMD potentils W i,w j into sum of lssil IMD yles: W i k kc k,w j l d ld l. After expnding their vnishing Poisson rket y ilinerity, one will find itself with sum of potentils: 0 {W i,w j } k,l k l l {C k,d l }. Putting together ll the yles tht oinide s elements of CG yl, one will get to finer deomposition 0 {W i,w j } m e m E m CG yl. Now, sine we re ssuming tht E m E m for m m in this sum, one hs neessrily e m 0 for ll m: ny finite fmily of distint yles ing is free inside CG yl, y definition. Now, thnks to Prop. 10, one will find similr development: [Ŵi,Ŵj kl [Ĉk, D l, k,l 15

with Ĉk, D eing the quntistion of C k,d l. Moreover, [ Ĉ k, D l is quntistion of {C k,d l }. One would now hope to hve [Ŵi,Ŵj e m Ê m ĈG yl, m with the sme onstnts e m C, for some lift Êm of E m. This hppens if nd only if every time tht one hs {C k,d l } {C k,d l } in CG yl, then one lso hs [ Ĉ k, D l [Ĉk, D l in ĈG yl. Sine those two ommuttors hve the sme underlying lssil yle, this hppens if nd only if their nhors re equivlent. The ostrution for this to hppen is tht ove given intersetion of lssil IMD yles there re severl nonequivlent intersetions of quntum IMD yles: the nhor reks some symmetry, priori. The finl prt of the proof of Thm. 8 onsists in showing tht this does not hppen. First, diret verifition sed on elementry omintori rguments shows the following. Proposition 13. There exist extly 15 distint nontrivil intersetions of lssil IMD yles. Among them, 13 give nonvnishing Poisson rket, nd 5 of those re sums of yles without pirs of ntiprllel rrows. To prove this proposition, the position of the nhor of ll 2-yles is immteril. Indeed, thnks to Prop. 7, moving the nhor mounts to dd onstnt, whih lies in the entre of A. Now, ll the ses where one hs no pirs of ntiprllel rrows give no issues: ny two quntistions of yle without suh pirs re equivlent. One must thus onsider the remining 8 troulesome intersetions, nd see tht no symmetry n e roken y dding n nhor to the yles involved. Those intersetions n e desried s follows, in plin words: 1) two opposite 3-yles 2) 3-yle nd degenerte 4-yle with one pir of ntiprllel rrows in ommon 3) 3-yle nd nondegenerte 4-yle with two pirs of ntiprllel rrows in ommon 4) two nondegenerte 4-yles with the entre in ommon 5) nondegenerte 4-yle nd degenerte one, with one pir of ntiprllel rrows in ommon 6) sme s the one just ove, with two pirs in ommon 7) two nondegenerte 4-yles with two pirs of ntiprllel rrows in ommon 8) two opposite nondegenerte 4-yles One n finlly disuss those seprtely. All these intersetions give yles whih re lssilly distinguishle, prt from the pirs 2,3 ) nd 5,7 ). Also, n 4 hs lredy een delt with ove. 9.1. Lst verifitions. Here we rgue tht the forementioned nontrivil intersetions 1 8 yield equivlent quntum potentils, s needed in order to onlude the proof of Thm. 8. We will thus sketh few ommuttors of quntum yles. The logi ehind the pitures is lwys to summrise longer omputtions in nonommuttive) vriles, exploiting Prop. 10. Notie however tht the expliit omputtions pper in the ppendix 14, where 16

hrmless hoie of Droux oordintes is mde in order to simplify the onstnts tht ome out of the ommuttors. First, n 1 nd n 8 re settled y uniqueness rgument: in oth ses, two suh pirs ppers extly twie in the ommuttor [ Ŵ i,ŵj, nd with reversed orders. This just gives sign, nd the vnishing of the ssoited weights follows from Thm. 1: if this did not hppen, then the lssil IMD system would not e flt. Next, let us move to n 2 nd n 3. One n verify tht those nontrivil intersetions produe 5-yles uilt from glueing 2-yle to 3-yle, the two hving no ntiprllel rrows in ommon. It would then e enough to hoose nhors so tht one lwys follows the 3-yle first, nd this n indeed e done. Proposition 14. Pik nodes,,, d I so tht, d, ) defines 3-yle. Assume lso tht nd re djent. Then one my hoose Droux oordintes so tht: d d, Proposition 15. Pik nodes,,,d I defining 4-yle. Assume tht nd re djent. Then one my hoose Droux oordintes so tht: d d d, Now, every time tht suh nontrivil intersetion rises, one n se the 3-yle s in the ove figure without loss of generlity, nd the resulting 5-yle will strt t its 3-suyle. In prtiulr, two suh ommuttors will equl if nd only if their ssoited lssil rkets re, whih is the result one is fter. Next, one should onsider n 6. Proposition 16. Pik nodes,,,d I defining 4-yle. One my hoose Droux oordintes so tht: 17

d d 2 1 d, 2 1 On the right-hnd side one hs split the nodes 1 2 nd 1 2, so to indite the order in whih they re touhed. The point of this proposition is the sme s efore: up to hnging the nhor of the nondegenerte 4-yle, ll 6-yles tht pper s result of this type of nontrivil intersetion will hve equivlent nhors one follows the 2-yle first). Finlly, one should hek n 5 nd n 7. Those two nontrivil intersetions produe 6-yles uilt from glueing nondegenerte 4-yle nd 2-yle, the two hving no ntiprllel rrows in ommon. It would then e enough to hoose nhors so tht one lwys follows the 4-yle first, nd this n indeed e done. Proposition 17. Pik nodes,,,d,e I suh tht,,,d) defines 4-yle. Assume tht nd e re djent. Then one n hoose Droux oordintes so tht: d e d e, Proposition 18. Pik nodes,,,d,e I so tht,,,d) nd,,,e) define 4- yles. One n hoose Droux oordintes so tht: d d d, e e e This onludes the proof of Thm. 8. 10. KZ vs the str Here we show tht the KZ onnetion is redution of the simply-led quntum onnetion for the degenerte reding of str with no irregulr times. Rell tht str 18

is omplete iprtite grph hving one prt with single node. The sttements we will prove re the following. Theorem 19. The Shlesinger onnetion quntises to the KZ onnetion vi the stndrd PBW isomorphism. This is proven in 10.3. Theorem 20. The SLIMS redue to the Shlesinger system, in the speil se of the degenerte reding of str with no irregulr times. This is proven in 10.4 nd 10.5. Theorem 21. The SLQC, redues to the KZ system, in the sme se s ove. This is proven in 10.6 nd 10.7. 10.1. Simply-led quntum onnetion of str. The generl onstrution of 3 must e redued to the following dt: the set J hs rdinlity k 2 the reding is J) {+,0}, nd T 0 0. One onsiders the omplete grph on nodes J. The splyed grph G will e str on nodes I I 0 I {0} I. It will e entred t 0, nd hve m : I legs. The se spe of times is then B C m \{digs}, the vetor phse-spe is M HomW,W 0 ) HomW 0,W ), equipped with the sympleti form ω TrdQ dp), where one onsiders liner mps Q : W W 0,P : W 0 W. If W i I V i, then one will write Q i for the omponent of Q in Vi W 0, nd P i for the omponent of P in W 0 ) V i. Notie tht we ve silly hosen n orienttion of G, whih wsn t neessry. However, this provides Droux oordintes: {Q i ) kl,p j ) mn } δ ij δ kn δ lm, {Q i ) kl,q j ) mn } 0 {P i ) kl,p j ) mn }. Those dt ode spe of meromorphi onnetions of the form d Q i P i dz, z t i I i on the trivil vetor undle W 0 CP 1 CP 1. Here {t i } i I B, nd Q,P) M. The isomonodromi deformtions of those onnetions re oded y the Hmiltonin system 1 2 Tr PQPQ ) H i dt i Ω 0 F,π T B), i I where π : F M B B is the trivil sympleti firtion of 3. This system spells out s H i Q,P,T ) TrP i Q j P j Q i ) SymM ). 4) t i j I i t j Indeed, H i is the sum of the tres of ll neessrily degenerte) 4-yles t the node i, wheres 3-yles nnot pper in iprtite ontext, nd ll 2-yles re not there euse of A T 0 dt 0 0. 19

The SLQC t hnd is then d B d B ) Tr Qj P j Qi Pi ) dt i. 5) t i I i j I i t j This is onnetion on the trivil quntum) vetor undle E A B B, where A : WM,ω ). Here gin one denotes y ω the sympleti form indued on M y the liner isomorphism indued y the sympleti piring M M C. As explined in 5.1, this iliner lternting mp M M C is the restrition of the Poisson rket of OM) to liner funtion. The min theorem 8 ssures tht is strongly flt. Let us set Ĥ i : i j Tr Q j Pj Qi Pi ) t i t j, for the quntum Hmiltonins defining the simply-led quntum onnetion. Let us prove expliitly tht the onnetion is strongly flt. To this end, the only nontrivil verifition is tht for the ommuttors. Proposition 22. One hs [Ĥi,Ĥj 0 for ll i,j I. Proof. Pik i j I. The trik is to deompose the ommuttor in the following sum: 1 [ [Ĥi,Ĥj Tr Q k Pk Qi Pi ),Tr Q k Pk Qj Pj ) + t i t k )t j t k ) k I \{i,j} 1 [ + Tr Q j Pj Qi Pi ),Tr Q j Pj Qk Pk ) + t i t j )t j t k ) 1 [ + Tr Q i Pi Qk Pk ),Tr Q i Pi Qj Pj ) t i t k )t j t i ) This deomposition is suggested y looking t the degenerte 4-yles t the nodes i, j with 2-yles in ommon, whih leves the following nontrivil intersetions: i, j k k nd 20

i j, j k nd i i, j k All those yles re sed t the entre 0 I of the str. Those intersetions give preisely the terms ove. Now, using Prop. 14 for the ommuttors, one finds: 1 [Ĥi,Ĥj t i t k )t j t k ) Tr [ Q i Pi, Q k Pk Q j Pj )+ k i,j 1 t i t k )t j t i ) Tr 1 + t i t j )t j t k ) Tr [ Q i Pi, Q j Pj Q k Pk )+ [ 1 t i t k )t j t k ) 1 t i t j )t j t k ) 1 t i t k )t j t i ) k i,j Finlly, this vnishes thnks to the identity [ Q k Pk, Q ) i Pi Q j Pj Tr [ Q j Pj, Q ) i Pi Q k Pk. 1 t i t k )t j t k ) 1 t i t j )t j t k ) 1 t i t k )t j t i ) 0. It is preisely this type of omputtion tht motivted the introdution of tres of) quntum potentils. Moreover, yli identities of the type ove for the funtions t i t k ) 1 t j t k ) 1 re lso used in the proof of fltness of the KZ onnetion. Indeed, we view the ommuttion reltions mong degenerte 4-yles s lift of the so-lled Kohno reltions for the opertors Ω ij of the following setion. 10.2. The KZ onnetion. Here we riefly rell the lgeri definition of the KZ onnetion [KZ84. Pik n integer m > 0, nd onsider the spe B Conf m C) of onfigurtion of m-tuples of points on C, whih is preisely the sme se spe s ove. Set lso g : gl C W 0 ), 21

where W 0 is finite-dimensionl omplex vetor spe. The universl) KZ onnetion is onnetion KZ in the trivil vetor undle It n e written E Ug) m B B. KZ d B 1 i m i j Ω ij t i t j ) dt i, 6) for ertin opertors Ω ij : Ug) m Ug) m. To define them, one onsiders the stndrd invrint C-iliner form Tr : g g C, Tr : A,B) TrAB), whih provides n isomorphism Tr : g g, s it is nondegenerte. Next, one onsiders the identity Id g g g, nd uses the tre on the seond ftor to turn it into n element Ω g g. Now one sets Ω : π Ω) Ug) 2, using the nonil filtrtion-preserving projetionπ : Tensg) Ug). 2 Finlly, ifi j, one defines Ω ij s the left multiplition of Ω on the ith nd jth ftors of Ug) m, nd the identity elsewhere. 3 Finlly, let us set Ĥ KZ i : j i for further use. Those re the KZ Hmiltonins. Shlesinger system. Ω ij t i t j, 7) Another importnt ingredient is the ft tht KZ n e relised s quntistion of the Shlesinger system [Res92). This is the nonliner system of first order PDEs ontrolling the isomonodromi deformtions of Fuhsin systems on CP 1. Fixing gin finite-dimensionl vetor spe W 0, these systems n e written z ψ R i ψ, z t i 1 i m for lol smooth setion ψ of the trivil vetor undle W 0 CP 1 CP 1. Here z is lol holomorphi oordinte tht identifies CP 1 C { }. Suh systems re given y pole positions t i C nd residues R i EndW 0 ). The isomonodromy prolem onsists in looking for modifition of the residues R i, s funtions of the positions t i, suh tht the monodromy of the meromorphi equtions round the poles stys fixed. The solution to this prolem mounts to solving the following system of differentil equtions, the Shlesinger system: [ Ri,R j dr i i j t i t j dt i t j ). 2 This is just the strt onstrution of the Csimir element Ω Z Ug) ) of g, with respet to the nondegenerte iliner form Tr. 3 Notie tht one usully dds omplex prmeter in front of the 1-form KZ : i j Ω ij dlogt i t j ) Ω 1 B,End Ug) m)). This however doesn t ffet the strong fltness of the KZ onnetion: every onnetion of the form KZ d B KZ would e strongly flt s well, for every omplex prmeter C. Using the onstrution relled in 5.2 one ould dd the quntum prmeter in the SLQC too. 22

If one sets G : GL C W 0 ),g : gl C W 0 ), then this is system of equtions for lol setions of the trivil Poisson firtion F : g m B B, where B C m \{digs} prmetrises the hoies of pole positions. Geometrilly, this mounts to Ehresmnn onnetion on the firtion. It n now e shown tht 8) dmits n Hmiltonin formultion, mening tht there exist smooth funtions Hi Sh : F C suh tht R j {Hi Sh,R j }, t i for 1 i,j m. The Poisson rket is the stndrd liner one on g m g ) m. These Hmiltonins re lled the Shlesinger Hmiltonins, nd they expliitly given y the formul Hi Sh H i R,T) TrR i R j ) Sym g m ) ). 8) t i t j i j It is no oinidene tht there re mny similrities etween this system nd the simplyled isomonodromy system 4) for the str. In ft, the former n e otined from the ltter vi simple redution, s shown in [Bo12. Before delving into tht, let us show why KZ is quntistion of Shlesinger. 10.3. KZ is quntistion of Shlesinger. There is stndrd quntistion mhinery for Lie lger g. The PBW theorem ssures tht one hs n isomorphism of vetor spes Q : Symg) Ug), defined on monomils y symmetristion: Q : x 1...x n 1 σ1... x σn. 9) n! σ Σ n x Here x Ug) denotes the imge of x g Symg) under the omposition g Tensg) Ug), nd Σ n is the symmetri group on n ojets. The point of ourse is tht the produt in the universl lger is nonommuttive, therey deforming the ommuttive one tht is defined on the symmetri lger. The semilssil limit σ : Ug) Symg) is given y the grding mp, sine gr Ug) ) Symg). This filtered quntistion is the Poisson nlogue of the sympleti onstrution of the Weyl lger of 5.1. Notie lso tht there exist nonil isomorphisms Ug m ) Ug) m nd Symg) m Symg) m for ll m 1, nd tht there is unique nturl wy to extend the quntistion to n isomorphism Q : Symg) m Ug) m. One n pply this onstrution vertim to g m gl C W 0 ) ) m, getting quntistion mp Q s ove. This will e referred to s the PBW quntistion, in the rest of the rtile. Now, the Shlesinger Hmiltonins re smooth setions H Sh i : B Symg ) m, sine to every point {t i } i B in the se they ssoite polynomil funtion on the fire g m of F. Thnks to the tre-isomorphism g g, one my s onsider them s 23

elements of Symg) m, usively written Hi Sh s well. Now it mkes sense to ompre the firewise quntistion QHi Sh ) Ug) m with the KZ Hmiltonin 7). Proposition 23. One hs Q TrR i R j ) ) Ω ij for ll i j {1,...,m}. Proof. It is helpful to fix the nonilc-sis{e ij } i,j ofgonsisting of the squre mtries suh tht e ij ) kl δ ik δ jl. The formul TrAB) i,j A ijb ji mens preisely tht Tr i,j de ij de ji g g, where de ij g is the dul vetor to e ij. Now, the tre-isomorphism Tr : g g in the hosen ses reds Tr : de ij e ji, sine indeed de ij e kl ) δ ik δ jl Tre ji e kl ). Now one should introdue some nottion for the ftors of the produt g m on whih the Hmiltonin Hi Sh ts nontrivilly. We orrow the supersript nottion de i) kl : g m C from [FMTV00, to denote the funtion tht ts s de kl on the ith ftor nd tht does not depend on the other vriles). Then one hs: TrR i R j ) k,l R i ) kl R j ) lk k,l de i) kl de j) lk R), where R R 1,...,R m ) g m. The tre-dul of this element is k,l ej) omputes: ) Q e j) lk ei) kl 1 ê j) kl ê i) kl +ê i) kl ê j) lk 2 ê i) kl ê j) lk. k,l k,l k,l lk ei) kl, nd one The lst pssge is due to the ft tht the tions on two different ftors ommute, hene [ ê i) kl,êj) lk 0 s elements of Ug m ). Wht is left to do is hek tht Ω ij k,lêi) kl êj) lk for this hoie of sis. But indeed, the identity Id g g g is written Id g i,j e ij de ij, so tht one hs Ω i,j e ij e ji g g, with the nottion of 10.2. Now the Csimir element is the nonil projetion to the universl enveloping lger: Ω π Ω) i,j ê ij ê ji Ug) 2. The tion of Ω on the ith nd jth ftor of Ug) m y left multiplition then reds Ω ij k,l ê i) kl ê j) lk, s it ws to e shown. This proposition implies s orollry tht QHi Sh ) ĤKZ i, y linerity: ) QHi Sh TrR i R j ) ) Q Q TrR i R j ) ) Ω ij t i t j t i t j t i t ĤKZ i. j j i j i j i 24

It is in this sense tht we sy tht the KZ onnetion is quntistion of the Shlesinger system. 4 10.4. The lssil redution. The min ide is to reple the produt Q i P i EndW 0 ) tht ppers in 4) with the residue R i EndW 0 ) tht ppers in 8). This trnsforms the former into the ltter, s one sees diretly on the expliit formule. To mke this rigorous, get k to the vetor spes W 0,W i I V i, nd set g 0 : glw 0 ). Thnks to the tre-piring, one hs nonil identifition L i : W 0 V i HomV i,w 0 ) HomW 0,V i ) W 0 ) V i, nd this for ll i I. One now onsiders the mp given y the omposition of liner funtions, tht is µ i : L i L i g0, A,B) AB, This est expressed y hoosing ses. If{e j } j is sis ofw 0, then one hs nonil sis of g 0, provided y {e jk : e j de k } jk : e jk is the endomorphism tht mps e k into e j. If one next hooses sis {f i) j } j of V i, then one hs sis {ef i) ) jk : e j df i) k } jk of L i : ef i) ) jk is the liner funtion tht mps f i) k into e j. The tre-dulity sends this to sis {f i) e) jk : f i) j de k } jk of L i, with fi) e) jk : W 0 V i sending e k to f i) j. With those hoies mde, the produt µ i : T L i g 0 reds µ i ef i) ) jk,f i) e) lm ) µ i ej df i) k ) fi) l de m ) ) δ kl e j de m δ kl e jm. Then one expnds y ilinerity, to get the usul mtrix produt L i L i g0. Notie tht µ i is nothing ut restrition of the moment mp for the stndrd tion of GLW 0 ) on M. Equivlently, it is the Poisson mp for the restrited tion of GLW 0 ) on the invrint sypleti suspe T L i M: with g.q j,p j ) j I Q j,p j) j I, Q j,p j) { Q j,p j ), j i, gq i,p i g 1 ), else. In prtiulr, µ i is smooth Poisson mp. This ws the sitution for single leg of the str-shped grph G. One n now glue the mps µ i to the full moment mp µ : M T L i g 0, µ : Q i,p i ) i I µ i Q,P) Q i P i, i I i I i I whih will stisfy the sme s ove. We shll lso usively denote µ : M g 0 ) m the mp Q i,p i ) i I Q i P i ) i I tht seprtes the omponents. Proposition 24. One hs µ H Sh i ) H i for ll i I. 4 Notie tht we hose to trnsport Hi Sh to Symg) m vi the dulity defined y the tre piring, nd then to pply Q. It would hve een the sme to trnsport the Lie rket of g to Lie rket on g, still vi the tre, nd then to onsider the quntistion of the Shlesinger Hmiltonin s n element of Ug ) m. Next, one n show tht this elements orresponds to Ω vi the ovious lift of Tr : g g to morphism Tr : Ug ) m Ug) m. This is tutologil, sine the rket of g is y definition the one tht mkes Tr : g g n isomorphism of Lie lgers. 25

Proof. By linerity, it is enough to hek tht for i j. This follows from the ft tht µ TrR i R j ) TrQ i P i Q j P j ), R i ) kl de kl R i ), Q i ) kl def i) ) kl Q i ), P i ) kl df i) e) kl P i ), with the sme nottion s ove, y the very definition of the omponent mps with respet to the ses {e j } j of W 0 nd {f i) j } j of V i. Notie tht the oordinte funtion R R i ) kl de kl R i ) n lso e written de i) kl, s in 10.3. Hving understood this nottion, one hs µ i dei) jk ef i) ) lm f i) e) no ) de i) jk µ i whih yields the formul ef i) ) lm f i) e) no ) de i) µ i dei) jk def i) ) jm df i) e) mk OT L i ). m Hene the following omputtion yields the result: ) ) µ i R i ) kl µ j R j ) lk jk δ mne i) lo ) δ mnδ jl δ ko, µ TrR i R j ) µ k,l k,l,m,n µ i de i) kl R i ) kl R j ) lk k,l ) µ j de j) ) lk def i) ) km df i) e) ml def j) ) ln df j) e) nk k,l,m,n k,l Q i ) km P i ) ml Q j ) ln P j ) nk TrQ i P i Q j P j ). This proposition mens tht there is onsistent wy to pss from the str-shped SLIMS to the Shlesinger ones, y the hnge of vrile R i : Q i P i. We view this s lssil redution, in the following sense. 10.5. Dul sympleti pirs nd lssil Hmiltonin redution. Consider two smooth ffine omplex Poisson vrieties P 1,P 2. Definition 10.1. A smooth ffine sympleti vriety M, ω) over C, together with ouple of Poisson mps µ 1,µ 2 : M P i, is lled sympleti dul pir if one hs {µ 1OP 1 )),µ 2OP 2 ))} ω 0, where OP i ) re the glol setions of the struturl shef of P i, nd with {, } ω eing the Poisson rket on OM) defined y ω. This notion ws introdued in [Kr89. 5 Suh sitution rises in prtiulr for the moment mps with respet to ommuting Hmiltonin tions. To prove this, pik two omplex lgeri groups G 1,G 2 with Lie lgers g 1,g 2, nd sympleti mnifold M,ω). Lemm 25. Assume tht G 1,G 2 t on M,ω) with moment µ i : M g i. If the two tions ommute, then one hs dul sympleti pir. 5 This is the wekest possile notion tht one finds in the literture. Some uthors require the mps µ i to e sumersive. Some other require tht the two sulgers µ i OP i)) e the mutul entrliser of one nother into OM). 26

Proof. One n onsider the nturl tion of G : G 1 G 2 on M,ω). It dmits the moment µ µ 1 µ 2 : M g 1 g 2. Now one hs, for x i g i : {µ 1 x 1),µ 2 x 2)} ω {µ x 1,0),µ 0,x 2 )} ω µ [x 1,0),0,x 2 ) ) µ [x 1,0,[0,x 2 ) µ 0,0) 0, where one used the ft tht µ : g 1 g 2 OM) is morphism of Lie lgers, plus the definition of the diret sum of Lie lgers. To pply this to the se t hnd, set G 0 : GLW 0 ),G : i I GLV i ), with Lie lgers g 0,g. The two groups t on M,ω ) with ommuttive Hmitonin tions. Introdue the nottion µ 0 : M g 0 g 0 ) nd µ : M g g ) for the moment. One would now like to relte the sulger µ 0 Og0 )) OM) to tht of regulr funtions on the redution M/G. Rell tht this is y definition the ffine Poisson sheme defined s M/G : Spe OM) G ), using elementry ffine GIT theory. This is well defined, euse one is ting vi redutive group on ffine spe, ut it n hve geometri issues: the spe my e nonredued nd/or singulr. Here we re however only interested in the dul funtionl viewpoint, i.e. the lgeri one, whih is more suited to deformtion quntistion. Let us then riefly rell how to define the lssil) lgeri redutionrom),g,i) of OM) with respet to the Lie lger g nd n idel I Symg ), ssuming there to e o)moment µ : Symg ) OM). Nmely, one onsiders the idel J OM) generted y µ I), nd then one sets where nd J g J OM) g. Notie tht ROM),g,I) : OM) g /J g, OM) g : {f OM) {µ g ),f} 0}, OM) g OM) G : {f OM) G ) f f}, y tking the derivtive of the G -tion. Lemm 26. One hs {OM) g,j} J. Proof. Pik OM) g, J. One my write i iµ i ) for suitle i OM), i I. Then: {,} i {, i µ i)} i i {,µ i)}+µ i){, i } i µ i){, i } J, sine {µ i ),} 0 y g -invrine. This implies tht the invrint prt J g is Poisson idel in OM) g, nd thus the quotient is Poisson. Notie tht one hs ) g OM) g /J g OM)/J, 27