Multiplicative calculus and its applications

Similar documents
The Regulated and Riemann Integrals

Definite integral. Mathematics FRDIS MENDELU

A short introduction to local fractional complex analysis

Chapter 4. Additional Variational Concepts

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Calculus of Variations

The one-dimensional Henstock-Kurzweil integral

Review of Calculus, cont d

Chapter 6. Riemann Integral

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Math 554 Integration

Math 360: A primitive integral and elementary functions

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Journal of Inequalities in Pure and Applied Mathematics

1. On some properties of definite integrals. We prove

1 The Riemann Integral

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

New Expansion and Infinite Series

ODE: Existence and Uniqueness of a Solution

Calculus in R. Chapter Di erentiation

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

8 Laplace s Method and Local Limit Theorems

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Introduction to the Calculus of Variations

Hermite-Hadamard type inequalities for harmonically convex functions

Recitation 3: More Applications of the Derivative

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

ON LINE AND DOUBLE MULTIPLICATIVE INTEGRALS

Lecture 1. Functional series. Pointwise and uniform convergence.

Math 116 Calculus II

IMPORTANT THEOREMS CHEAT SHEET

Overview of Calculus I

Review of Riemann Integral

Advanced Calculus I (Math 4209) Martin Bohner

Indefinite Integral. Chapter Integration - reverse of differentiation

LECTURE. INTEGRATION AND ANTIDERIVATIVE.

Theoretical foundations of Gaussian quadrature

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003, Alba Iulia

Week 10: Riemann integral and its properties

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Chapter 1. Basic Concepts

Abstract inner product spaces

The Riemann Integral

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Calculus II: Integrations and Series

Chapter 3. Vector Spaces

Review of basic calculus

ON THE C-INTEGRAL BENEDETTO BONGIORNO

An iterative method for solving nonlinear functional equations

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

MAA 4212 Improper Integrals

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Math 61CM - Solutions to homework 9

Mathematical Analysis: Supplementary notes I

4. Calculus of Variations

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

Main topics for the First Midterm

Integrals along Curves.

Section 6.1 INTRO to LAPLACE TRANSFORMS

7.2 Riemann Integrable Functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Continuous Random Variables

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

Properties of the Riemann Integral

Math 113 Exam 1-Review

Chapters 4 & 5 Integrals & Applications

Riemann Sums and Riemann Integrals

1.9 C 2 inner variations

Taylor Polynomial Inequalities

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Math 8 Winter 2015 Applications of Integration

Math& 152 Section Integration by Parts

Math 1B, lecture 4: Error bounds for numerical methods

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Riemann Sums and Riemann Integrals

Quadrature Rules for Evaluation of Hyper Singular Integrals

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Principles of Real Analysis I Fall VI. Riemann Integration

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Improper Integrals, and Differential Equations

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Recitation 3: Applications of the Derivative. 1 Higher-Order Derivatives and their Applications

II. Integration and Cauchy s Theorem

Lecture notes. Fundamental inequalities: techniques and applications

Notes on length and conformal metrics

7.2 The Definite Integral

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Convex Sets and Functions

Numerical Analysis: Trapezoidal and Simpson s Rule

Transcription:

J. Mth. Anl. Appl. 337 2008) 36 48 www.elsevier.com/locte/jm Multiplictive clculus nd its pplictions Agmirz E. Bshirov,b, Emine Mısırlı Kurpınr c, Ali Özypıcı c, Deprtment o Mthemtics, Estern Mediterrnen University, Gzimgus, Mersin 10, Turkey b Institute o Cybernetics, Ntionl Acdemy o Sciences, F. Agyev St. 9, Az1141 Bku, Azerbijn c Deprtment o Mthemtics, Ege University, Izmir, Turkey Received 27 My 2006 Avilble online 3 April 2007 Submitted by Steven G. Krntz Abstrct Two opertions, dierentition nd integrtion, re bsic in clculus nd nlysis. In ct, they re the ininitesiml versions o the subtrction nd ddition opertions on numbers, respectively. In the period rom 1967 till 1970 Michel Grossmn nd Robert Ktz gve deinitions o new kind o derivtive nd integrl, moving the roles o subtrction nd ddition to division nd multipliction, nd thus estblished new clculus, clled multiplictive clculus. In the present pper our im is to bring up this clculus to the ttention o reserchers nd demonstrte its useulness. 2007 Elsevier Inc. All rights reserved. Keywords: Clculus; Derivtive; Integrl; Limit; Semigroup; Dierentil eqution; Clculus o vritions 1. Introduction Dierentil nd integrl clculus, the most pplicble mthemticl theory, ws creted independently by Isc Newton nd Gottried Wilhelm Leibnitz in the second hl o the 17th century. Lter Leonrd Euler redirect clculus by giving centrl plce to the concept o unction, nd thus ounded nlysis. Two opertions, dierentition nd integrtion, re bsic in clculus nd nlysis. In ct, they re the ininitesiml versions o the subtrction nd ddition opertions on numbers, respectively. * Corresponding uthor. E-mil ddresses: gmirz.bshirov@emu.edu.tr A.E. Bshirov), emine.kurpinr@ege.edu.tr E.M. Kurpınr), li.ozypici@emu.edu.tr A. Özypıcı). 0022-247X/$ see ront mtter 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jm.2007.03.081

A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 37 In the period rom 1967 till 1970 Michel Grossmn nd Robert Ktz gve deinitions o new kind o derivtive nd integrl, moving the roles o subtrction nd ddition to division nd multipliction, nd thus estblished new clculus, clled multiplictive clculus. Sometimes, it is clled n lterntive or non-newtonin clculus s well. Unortuntely, multiplictive clculus is not so populr s the clculus o Newton nd Leibnitz lthough it perectly nswers to ll conditions expected rom theory tht cn be clled clculus. We, the uthors o this pper, think tht the gp is insuicient dvertising o multiplictive clculus. We cn ccount only two relted ppers [1,2]. Multiplictive clculus hs reltively restrictive re o pplictions thn the clculus o Newton nd Leibnitz. Indeed, it covers only positive unctions. Thereore, one cn sk whether it is resonble to develop new tool with restrictive scope while well-developed tool with wider scope hs lredy been creted. The nswer is similr to why do mthemticins use polr coordinte system while there is rectngulr coordinte system, well-describing the points on plne. We think tht multiplictive clculus cn especilly be useul s mthemticl tool or economics nd innce becuse o the interprettion given to multiplictive derivtive below in Section 2. In the present pper our im is to bring up multiplictive clculus to the ttention o reserchers in the brnch o nlysis nd demonstrte its useulness. Sections 2 nd 3 contin known results in the min. They re used in Section 4 to demonstrte some pplictions o multiplictive clculus. 2. Multiplictive derivtives For motivtion, ssume tht depositing $ in bnk ccount one gets $b ter one yer. Then the initil mount chnges b/ times. How mny times it chnges monthly? For this, ssume tht the chnge or month is p times. Then or one yer the totl mount becomes b = p 12.Now we cn compute p s p = b/) 1/12. Assuming tht deposits chnge dily, t ech hour, t ech minute, t ech second, etc. nd the unction, expressing its vlue t dierent time moments is, we ind the ormul ) 1 x+ h) h lim, 1) h 0 x) showing how mny times the mount x)chnges t the time moment x. Compring 1) with the deinition o the derivtive x+ h) x) x) = lim, 2) h 0 h we observe tht the dierence x+ h) x) in 2) is replced by the rtio x+ h)/ x) in 1) nd the division by h is replced by the rising to the reciprocl power 1/h. The limit 1) is clled the multiplictive derivtive or, briely, derivtive o t x nd it is denoted by x).i x) exists or ll x rom some open set A R, where R denotes the rel line, then the unction : A R is well deined. The unction itsel is clled the derivtive o : A R or which the symbol d /dt cn lso be used. The derivtive o is clled the second derivtive o nd it is denoted by. In similr wy the nth derivtive o cn be deined, which is denoted by n) or n = 0, 1,..., with 0) =. I is positive unction on A nd its derivtive t x exists, then one cn clculte

38 A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 x+ h) x) = lim h 0 x) = lim h 0 1 + ) 1 h x+ h) x) x) ) x) x+h) x) x+h) x) h = e x) x) = e ln ) x), where ln )x) = ln x). I, dditionlly, the second derivtive o t x exists, then by n esy substitution we obtin x) = e ln ) x) = e ln ) x). Here ln ) x) exists becuse x) exists. Repeting this procedure n times, we conclude tht i is positive unction nd its nth derivtive t x exists, then n) x) exists nd n) x) = e ln )n) x), n= 0, 1,... 3) Note tht the ormul 3) includes the cse n = 0 s well becuse x)= e ln )x). Bsed on this, the unction : A R is sid to be dierentible t x or on A i it is positive nd dierentible, respectively, t x or on A. Cn we express n) in terms o n)? A ormul, similr to Newton s binomil ormul, cn be derived. For this, note tht by 3), we hve ln n) ) x) = ln ) n) x) = ln ) k)) n k) x) = ln k) ) n k) x). Hence, using x) = x) ln ) x), we clculte x) = x) ln ) x) + x) ln ) x) or, nd x) = x) ln ) x) + 2 x) ln ) x) + x) ln ) x) or. Repeting this procedure n times, we derive the ormul n 1 n) n 1)! x) = k!n k 1)! k) x) ln n k)) x). 4) k=0 For the constnt unction x)= c>0 on the intervl, b), where <b,wehve x) = e ln c) = e 0 = 1, x, b). Conversely, i x) = 1 or every x, b), then rom x) = e ln ) x) = 1, one cn esily deduce tht x)= const > 0, x, b). Thus, unction is positive constnt on n open intervl i nd only i its derivtive on this intervl is identiclly 1. Recll tht in similr condition, involving derivtive, the neutrl element 0 in ddition ppers insted o the neutrl element 1 o multipliction. 1 x)

A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 39 Here re some rules o dierentition: ) c ) x) = x), b) g) x) = x)g x), c) /g) x) = x)/g x), d) h ) x) = x) hx) x) h x), e) h) x) = hx)) h x), where c is positive constnt, nd g re dierentible, h is dierentible nd in prt e) h is deined. For exmple, the rule b) cn be proved s ollows: g) x) = e ln g)) x) = e ln ) x)+ln g) x) = e ln ) x) e ln g) x) = x)g x). At the sme time, the respective rule or sum nd or dierence s well) is complicted x) gx) + g) x) = x) x)+gx) g x) x)+gx). Let us ormulte some useul results o dierentil clculus in terms o derivtive. They cn be proved by ppliction o the respective results o Newtonin clculus to the unction ln. Theorem 1 Multiplictive Men Vlue Theorem). I the unction is continuous on [,b] nd dierentible on, b), then there exists <c<bsuch tht b) ) = c) b. Corollry 1 Multiplictive Tests or Monotonicity). Let the unction :, b) R be dierentible. ) I x) > 1 or every x, b), then is strictly incresing. b) I x) < 1 or every x, b), then is strictly decresing. c) I x) 1 or every x, b), then is incresing. d) I x) 1 or every x, b), then is decresing. Corollry 2 Multiplictive Tests or Locl Extremum). Let the unction :, b) R be twice dierentible. ) I tkes its locl extremum t c, b), then c) = 1. b) I c) = 1 nd c) > 1, then hs locl minimum t c. c) I c) = 1 nd c) < 1, then hs locl mximum t c. Theorem 2 Multiplictive Tylor s Theorem or One Vrible). Let A be n open intervl nd let : A R be n + 1 times dierentible on A. Then or ny x,x + h A, there exists number θ 0, 1) such tht x+ h) = n m=0 m) x) ) hm m! n+1) x + θh) ) hn+1 n+1)!.

40 A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 The bove results cn be extended to unctions o severl vribles s well. For simplicity, consider the unction x,y) o two vribles deined on some open subset o R 2 = R R). We cn deine prtil derivtive o in x, considering y s ixed, which is denoted by x or / x. In similr wy, the prtil derivtive o in y cn be deined, which is denoted by y or / y. One cn go on nd deine higher-order prtil derivtives o or which the respective nottions re used. Two results, generlizing the property e) o dierentition nd Theorem 2, re s ollows. They cn lso be proved by ppliction o the respective results o Newtonin clculus to the unction ln. Theorem 3 Multiplictive Chin Rule). Let be unction o two vribles y nd z with continuous prtil derivtives. I y nd z re dierentible unctions on, b) such tht yx),zx)) is deined or every x, b), then d yx),zx)) dx = y ) y yx),zx) x) ) z z yx),zx) x). Theorem 4 Multiplictive Tylor s Theorem or Two Vribles). Let A be n open subset o R 2. Assume tht the unction : A R hs ll prtil derivtives o order n + 1 on A. Then or every x, y), x + h, y + k) A so tht the line segment connecting these two points belongs to A, there exists number θ 0, 1), such tht x+ h, y + k) = n 3. Multiplictive integrls m m=0 i=0 hi km i x, y) x i y m i i!m i)! m) n+1 n+1) i=0 hi kn+1 i x + θh,y + θk) x i y n+1 i i!n+1 i)!. Now let us deine n nlog o Riemnn integrl in multiplictive clculus. Let be positive bounded unction on [,b], where <<b<. Consider the prtition P ={x 0,...,x n } o [,b]. Tke the numbers ξ 1,...,ξ n ssocited with the prtition P. The irst step in the deinition o proper Riemnn integrl o on [,b] is the ormtion o the integrl sum n S,P) = ξ i )x i x i 1 ). i=1 To deine the multiplictive integrl o on [,b] we will replce the sum by product nd the product by rising to power n P,P) = ξ i ) x i x i 1 ). 5) i=1 The unction is sid to be integrble in the multiplictive sense or integrble i there exists number P hving the property: or every ε>0 there exists prtition P ε o [,b] such tht P,P) P <εor every reinement P o P ε independently on selection o the numbers ssocited with the prtition P. The symbol x) dx,

A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 41 relecting the eture o the product in 5), is used or the number P nd it is clled the multiplictive integrl or integrl o on [,b]. It is resonble to let x) dx = 1 nd b x) dx = b x) dx ) 1. It is esily seen tht i is positive nd Riemnn integrble on [,b], then it is integrble on [,b] nd x) dx = e ln )x) dx. 6) Indeed, since the Riemnn integrl o ln on [,b] exists, the continuity o the exponentil unction nd P,P) = e n i=1 x i x i 1 )ln )ξ i ) Sln,P) = e imply the bove sttement. Conversely, one cn show tht i is Riemnn integrble on [,b], then x)dx= ln Some rules o integrtion re s ollows: e x) ) dx. 7) ) b) c) d) x) p ) b dx = b ) dx x)gx) = ) x) dx = gx) x) dx = c x) dx ) p, p R, x) dx x)dx, b gx)dx x) dx c gx) dx, x) dx, c b, where nd g re integrble on [,b]. For exmple, the rule b) ollows rom x)gx) ) dx = e ln )x)+ln g)x)) dx = x) dx gx) dx. Theorem 5 Fundmentl Theorem o Multiplictive Clculus). The ollowing sttements hold:

42 A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 ) Let : [,b] R be dierentible nd let be integrble. Then x) dx = b) ). b) Let : [,b] R be integrble nd let Fx)= x t) dt, x b. I is continuous t c [,b], then F is dierentible t c nd F c) = c). Proo. Prt ) ollows rom x) dx = e ln ) x) ) dx = e ln ) x) dx = e ln )b) ln )) = b) ). For prt b), write Fx)= e x ln )t) dt, x b. Then F is dierentible t the point c o continuity o. Furthermore, F c) = e ln F) c) = e F c) Fc) completing the proo o prt b). Fc) ln )c) = e Fc) = e ln )c) = c) Theorem 6 Multiplictive Integrtion by Prts). Let : [,b] R be dierentible, let g : [,b] R be dierentible so the g is integrble. Then x) gx)) dx = b) gb) ) g) 1 x)g x) ). dx Proo. Use the property d) o dierentition nd Theorem 5). 4. Applictions 4.1. Support to Newtonin clculus Some cts o Newtonin clculus cn be proved esily through multiplictive clculus. For exmple, the unction { x)= e 1 x 2 i x 0, 0 ix = 0, clled Cuchy s unction, is ininitely mny times dierentible on R lthough it is not nlytic). The proo o this ct by tools o Newtonin clculus is time consuming nd, thereore, mny uthors void its proo. Using multiplictive clculus this cn be proved reltively esy. Indeed, veriiction o this sttement is esy t every x 0. It is more diicult to veriy it t x = 0.

A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 43 Multiplictive clculus helps us to prove tht n) 0) = 0 or every n = 0, 1,... For this, let us consider x>0nd show tht n) x) = e 1)n+1 n+1)! x n+2, n= 0, 1,... 8) Theormul8)istrueorn = 0. Assume tht it is true or n nd clculte strightorwrdly the n + 1)st derivtive o, n+1) x) = lim e h 0 By the binomil ormul, Hence, 1) n+1 n+1)! x+h) n+2 1)n+1 n+1)! x n+2 ) 1h. ln n+1) x) = lim h 0 1) n+2 n + 1)! x + h) n+2 x n+2 ) hx n+2 x + h) n+2 n+1) x) = e 1)n+2 n+2)! x n+3. = lim h 0 1) n+2 n + 1)! n + 2)hx n+1 + +h n+2 ) hx n+2 x + h) n+2 = lim h 0 1) n+2 n + 1)! n + 2)x n+1 + +h n+1 ) x n+2 x + h) n+2 = 1)n+2 n + 2)! x n+1 x 2n+4 = 1)n+2 n + 2)! x n+3. By induction, 8) holds or every n = 0, 1,... Next, we use the ormul 4) nd obtin n 1 n) x) = k=0 1) n k+1 n 1)!n k + 1)! k) x) k!n k 1)! x n k+2, n= 1, 2,... Multiple ppliction o this ormul yields n) x) x N n = x) m=4 M n,m, n= 1, 2,..., xm where M n,m nd N n re integers nd N n 4. We need not the exct vlues o these integers since by multiple ppliction o L Hopitl s rule, x) lim x 0+ x m = lim x 0+ e 1 x 2 x m Thus, n) x) lim = 0, n= 0, 1,..., x 0+ x = lim 1/x m z m 2 = lim x 0+ e 1 x 2 z e z = 0. implying n+1) 0+) = 0 whenever n) 0+) = 0. Since 0) = 0, by induction, we conclude tht n) 0+) = 0 or every n = 0, 1,...Nowletx<0. Since is n even unction, we esily deduce n) 0 ) = 0 or every n = 0, 1,... Thus, n) 0) = 0 or every n = 0, 1,...

44 A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 4.2. Semigroups o liner opertors Consider the liner dierentil eqution y x) = x)yx), x > 0, y0) = y 0 > 0. We cn write it in the orm y x)/yx) = x) or e ln y) x) = e x), ssuming tht its solution is positive. Thus, y x) = e x), x >0, y0) = y 0, nd we cn express the solution o the bove dierentil eqution in terms o integrl s yx) = y 0 x 0 e t) ) dt, x 0. Thus, integrtion is closely relted to the representtion theory o liner dierentil equtions nd cn be used ter respective generliztion) or construction o semigroups o liner bounded opertors. 4.3. Multiplictive spces The concepts o derivtive nd integrl re bsed on the ordinry limit opertion. We cn deine multiplictive limit or limit s well. Given x R + = 0, ), we let the multiplictive bsolute vlue o x be number x such tht { x i x 1, x = 1/x i x<1. This llows to deine the multiplictive distnce d x, y) between x,y R + s d x, y) = x y. The ollowing properties o multiplictive distnce re obvious: ) x,y R +, d x, y) 1, b) d x, y) = 1 i nd only i x = y, c) x,y R +, d x, y) = d y, x), d) tringle inequlity) x,y,z R +, d x, z) d x, y)d y, z). On the bse o this, one cn deine multiplictive metric spces s lterntive to the ordinry metric spces. In prticulr, R + is multiplictive metric spce nd sequence {x n } in R +, converges to x R + in the multiplictive sense i or every ε>1, there exists N N such tht d x n,x)<εor every n>n. In ct, the convergence in R + in both multiplictive nd ordinry senses re equivlent. But they my be dierent in more generl cses. Another multiplictive metric spce cn be deined on the bse o the collection M + n o positive n n)-mtrices. An n n)-mtrix A is sid to be positive i x T Ax > 0 or every n-vector x, where x T is the trnspose o x. Iλ 1,...,λ n re eigenvlues o positive n n)-mtrix A, then they re positive numbers. One cn deine multiplictive norm o A s n A = λ i, i=1 nd the multiplictive distnce between A nd B s d A, B) = AB 1.

A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 45 4.4. Multiplictive dierentil equtions It is nturl to cll the eqution y x) = x,yx) ), 9) contining the derivtive o y, smultiplictive dierentil eqution. This eqution hs sense i is positive unction deined on some subset G o R R +. To give theorem on existence nd uniqueness o its solution, stisying the condition yx 0 ) = y 0, 10) we need the nlog o the Lipschitz condition in multiplictive cse. Theorem 1 tells us tht such condition or should hve the orm x, y), x, z) G, x,y) x,z) L y z, 11) where L>1 is constnt. In prticulr, i hs prtil derivtive y in its second vrible nd y is bounded in the multiplictive sense, i.e., there exists M>1such tht x, y) G, y x, y) M, then x,y) stisies the multiplictive Lipschitz condition. Theorem 7 Multiplictive Dierentil Eqution). Let be continuous unction on the bounded open region G in R R + to, b), where 0 <<b<. Assume tht stisies the multiplictive nlog o the Lipschitz condition given in 11). Tkex 0,y 0 ) G. Then there exists ε>0 such tht Eq. 9) hs unique solution y : x 0 ε, x 0 + ε) R + stisying the condition 10). Proo. The multiplictive dierentil eqution 9) cn be trnsormed to the ollowing ordinry dierentil eqution y x) = yx)ln x,yx) ). 12) Let us show tht the unction Fx,y) = y ln x,y), x, y) G, stisies the ordinry Lipschitz condition in y, Fx,y) Fx,z) y ln x,y) y ln x,z) + y ln x,z) zln x,z) x,y) y ln x,z) + ln x,z) y z = y ln x,y) x,z) + ln x,z) y z y ln L + ln x,z) ) y z. Here ln is bounded since is bounded in the multiplictive sense. Also, y rnges in bounded set. Hence, F stisies the ordinry Lipschitz condition in y. We conclude tht Eq. 12) hs unique solution stisying the condition 10). This implies the conclusion o the theorem.

46 A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 4.5. Multiplictive clculus o vritions Consider the problem o minimizing the unctionl Jy)= yx),y x) ) dx over ll continuously dierentible unctions yx) on [,b] with ixed end points y) = y 1 nd yb) = y 2. By the ormul 6), this problem is equivlent to the minimiztion o J 0 y) = ln Jy)= ln yx),y x) ) dx, or which the methods o clculus o vritions cn be used. Nevertheless, we re insisting to use multiplictive methods. At irst, let us consider the ollowing multiplictive nlog o the undmentl lemm o clculus o vritions. Lemm 1. I : [,b] R is positive continuous unction so tht x) hx) ) dx = 1 13) or every ininitely mny times dierentible unction h : [,b] R, then x)= 1 or every x b. Proo. From 1 = we obtin x) hx) ) dx = e hx) ln x)dx, hx) ln x)dx= 0. By the undmentl lemm o clculus o vritions, ln x)= 0orx)= 1 or every x b. Turning bck to the unctionl 13), ssume tht y,y ) hs the second-order continuous prtil derivtives in y nd y.lethx) be rbitrry continuously dierentible unction on [,b] stisying h) = hb) = 0 nd let ε R. Then Jy+ εh) 1 = yx) + εhx), y x) + εh x)) dx Jy) b yx),y x)) dx yx) + εhx), y x) + εh ) x)) dx = yx),y x))

A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 47 = o ε) = o ε) b y yx),y x) ) εhx) y yx),y x) ) εh x)) dx y yx),y x) ) hx) y yx),y x) ) ) ε h x)) dx, where o ε) 1/ε 1iε 0. Rising both sides o the obtined inequlity to the power 1/ε nd consequently, moving ε to 0+ nd 0, one cn obtin y yx),y x) ) hx) y yx),y x) ) h x)) dx = 1 or y yx),y x) ) b hx)) dx y yx),y x) ) h x)) dx = 1. By multiplictive integrtion by prts ormul, y yx), y x)) hx) ) dx dx d y yx), y x)) hx) ) = 1 dx or y yx), y x)) d dx y yx), y x)) ) hx) ) dx = 1. By Lemm 1, y yx), y x)) d dx y yx), y x)) = 1 or y yx),y x) ) = d dx y yx),y x) ). 14) This is n nlog o the Euler Lgrnge eqution in the multiplictive cse. As n exmple, consider problem o minimizing Jy)= 1 0 y x) 2) dx over ll continuously dierentible unctions y on [0, 1] stisying y0) = λ nd y1) = μ.here y,y ) = y ) 2. To pply the ormul 14), we clculte y y, y ) = 1, y y, y ) = e 2 y nd d dx y y, y ) = e d dx 2 y ) = e 2y y ) 2.

48 A.E. Bshirov et l. / J. Mth. Anl. Appl. 337 2008) 36 48 By 14), we deduce 2y + y ) 2 = 0. This is Riccti eqution in y nd, hence, y x) = 2c 1 2 + c 1 x, implying yx) = 2c 1 ln2 + c 1 x) + c 2. 15) Here the constnts c 1 nd c 2 re determined rom the system o equtions { 2c1 ln 2 + c 2 = λ, 16) 2c 1 ln2 + c 1 ) + c 2 = μ. In prticulr, the cse λ = μ implies c 1 = 0 nd c 2 = λ, i.e., the unction t which 14) tkes its minimum is the constnt unction yx) = λ on [0, 1]. Otherwise, it is the unction 15) with c 1 nd c 2 deined rom 16). 5. Concluding remrk Assume ϕ is bijective unction o one vrible. Deine derivtive nd integrl o the unction by x) = ϕ ϕ 1 ) b x) nd x)d x = ϕ b ϕ 1 ) ) x) dx, where we ssume tht the rnge o is subset o the rnge o ϕ. On the bse o these deinitions one cn develop clculus. In ct, there re ininitely mny clculi. The multiplictive clculus is one o them. We reer to Grossmn nd Ktz [1] or other interesting clculi. Reerences [1] M. Grossmn, R. Ktz, Non-Newtonin Clculus, Lee Press, Pigeon Cove, MA, 1972. [2] D. Stnley, A multiplictive clculus, Primus IX 4) 1999) 310 326.