Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem

Similar documents
Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Foundations of the stochastic Galerkin method

Space-time sparse discretization of linear parabolic equations

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

Multi-Element Probabilistic Collocation Method in High Dimensions

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Isogeometric Analysis:

Adaptive Collocation with Kernel Density Estimation

Application of QMC methods to PDEs with random coefficients

arxiv: v2 [math.na] 8 Sep 2017

Sparse polynomial chaos expansions in engineering applications

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity

J. Beck 1, F. Nobile 2, L. Tamellini 2 and R. Tempone 1

arxiv: v1 [math.na] 14 Dec 2018

Schwarz Preconditioner for the Stochastic Finite Element Method

Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities

Interpolation via weighted l 1 -minimization

Solving the steady state diffusion equation with uncertainty Final Presentation

Fast Numerical Methods for Stochastic Computations

Low-rank techniques applied to moment equations for the stochastic Darcy problem with lognormal permeability

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Nonlinear stabilization via a linear observability

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Stochastic Spectral Approaches to Bayesian Inference

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Monte Carlo Methods for Uncertainty Quantification

Stochastic methods for solving partial differential equations in high dimension

STOCHASTIC SAMPLING METHODS

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Collocation methods for uncertainty quantification in PDE models with random data

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods. Crowder, Adam J and Powell, Catherine E

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Solving the stochastic steady-state diffusion problem using multigrid

TECHNISCHE UNIVERSITÄT BERLIN

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form

1 Math 241A-B Homework Problem List for F2015 and W2016

Finite element approximation of the stochastic heat equation with additive noise

Hierarchical Parallel Solution of Stochastic Systems

Multiscale methods for time-harmonic acoustic and elastic wave propagation

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

arxiv: v2 [math.na] 8 Apr 2017

ACMAC s PrePrint Repository

hp-dg timestepping for time-singular parabolic PDEs and VIs

Partial Differential Equations

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne

Lecture Notes on PDEs

A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient

Second Order Elliptic PDE

Analysis and finite element approximations of stochastic optimal control problems constrained by stochastic elliptic partial differential equations

Introduction to Computational Stochastic Differential Equations

Bath Institute For Complex Systems

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

Greedy control. Martin Lazar University of Dubrovnik. Opatija, th Najman Conference. Joint work with E: Zuazua, UAM, Madrid

A Concise Course on Stochastic Partial Differential Equations

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Solving Boundary Value Problems (with Gaussians)

COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS

Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University

Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Uncertainty Quantification in Computational Science

Math 46, Applied Math (Spring 2008): Final

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

November 7, 2002 GALERKIN FINITE ELEMENT APPROXIMATIONS OF STOCHASTIC ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Sparse deterministic approximation of Bayesian inverse problems

Preconditioned space-time boundary element methods for the heat equation

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

Numerical Analysis Comprehensive Exam Questions

Finite difference method for elliptic problems: I

Some lecture notes for Math 6050E: PDEs, Fall 2016

Projected Surface Finite Elements for Elliptic Equations

arxiv: v3 [math.na] 18 Sep 2016

Multivariable Calculus

Lecture I: Asymptotics for large GUE random matrices

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

Optimal polynomial approximation of PDEs with stochastic coefficients by Galerkin and collocation methods

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Space time finite and boundary element methods

Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods

Uncertainty Quantification in Discrete Fracture Network Models

arxiv: v1 [math.na] 3 Apr 2019

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

i=1 α i. Given an m-times continuously

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis and Computation of Hyperbolic PDEs with Random Data

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Experiences with Model Reduction and Interpolation

A Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems

Heat kernels of some Schrödinger operators

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Awards Screening Test. February 25, Time Allowed: 90 Minutes Maximum Marks: 40

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Transcription:

Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem Christoph Schwab Seminar for Applied Mathematics ETH Zürich Albert Cohen (Paris, France) & Ron DeVore (Texas A& M) R. Andreev, M. Bieri and G.J. Gittelson ( UQ-Group ) (SAM,ETH) Workshop Tutorial Computation with Uncertainty IMA, Minneapolis, MN, USA, October 16 & 17, 2010 ERC Project 247277 STAHDPDE and Swiss National Science Foundation

Outline 1. Elliptic BVP with stochastic data 2. infinite - Dimensional Deterministic BVP 3. Regularity 4. Best N-term Convergence Rates of sgfem 5. Localization of active gpc-modes. Complexity. 6. Discretization in D. Sparse Tensor sgfem. 7. Parabolic and Hyperbolic Problems 8. Conclusions & References 1

Elliptic BVP with stochastic data Given: probability space (Ω,Σ,P) on data space X(D) L (D), V H 1 (D), random diffusion coefficient a(x,ω) L (Ω,dP;X(D)), deterministic source term f H 1 (D) = (H0 1(D)) =: V, (sbvp) Find u(x,ω) L 2 (Ω,dP;V) = L 2 (Ω,dP;H0 1(D)) L2 (Ω,dP) V such that [ˆ ] [ˆ ] E a(x, ) x u(x, ) x v(x, )dx = E f(x)v(x, )dx D for all v L 2 (Ω,dP;V) a L (Ω,dP;X(D)) and a max a(, ) a min > 0!u L 2 (Ω,dP;H0 1(D)). D 2

Karhunen-Loève expansion - separation of deterministic and stochastic variables - Example 1 (Karhunen-Loève Expansion) If a L 2 (Ω,dP;L (D)) then in L 2 (Ω,dP;L 2 (D)), a(x,ω) = E[a](x)+ m 1 ψ m (x)y m (ω) = E[a](x)+ m 1 λm ϕ m (x)y m (ω), (λ m,ϕ m ) m 1 eigensequence of (cpt., s.a.) covariance operator ˆ C[a] : L 2 (D) L 2 (D) (C[a]v)(x) := C a (x,x )v(x )dx v L 2 (D), D C a = E[(a E[a]) (a E[a])] Y m (ω) := 1 λmˆ D (a(x,ω) E[a](x))ϕ m (x)dx : Ω Γ m R m = 1,2,... 3

Karhunen-Loève expansion - convergence - a(x,ω) = E a (x)+ m 1 λm ϕ m (x)y m (ω) KL expansion converges in L 2 (D Ω), not necessarily in L (D Ω) To ensure L (D Ω) convergence, must - estimate decay rate of KL eigenvalues λ m : Schwab & Todor JCP (2006), - bound ϕ m L (D): Todor Diss ETH (2005), SINUM (2006) - assume: bounds for Y m L (Ω) 4

Karhunen-Loève expansion - eigenvalue estimates - Regularity of C a ensures decay of KL-eigenvalue sequence (λ m ) m 1 C a (x,x ) : D D R is piecewise analytic on D D if ex. smoothness partition D = {D j } J j=1 of D into a finite sequence of simplices D j such that D = J j=1 D j (1) and C a (x,x ) analytic in open neighbourhood of D j D j for any (j,j ). piecewise H t,t on D D if V a Hpw t,t (D D) := L 2 (D i,h t (D j )) i,j J 5

Karhunen-Loève expansion - eigenvalue estimates - (H,, ) separable Hilbert space, C K(H) compact, s.a., eigenpair sequence (λ m,φ m ) m 1. If C m B(H) is any operator of rank at most m, λ m+1 C C m B(H). (2) (e.g. Pinkus 1985: n-widths in Approx. Theory). 6

Proposition 2 (KL-eigenvalue decay) Karhunen-Loève expansion - eigenvalue estimates - (> exponential KL decay: Gaussian C a (x,x )) C a (x,x ) := σ 2 exp( γ x x 2 ) = 0 λ m c(γ,σ)/m! m 1 (exponential KL decay: Piecewise analytic C a (x,x )) C a pw analytic on D D = c > 0 0 λ m cexp( bm 1/d ) m 1 (Algebraic KL-eigenvalue decay for p.w. H t (D)-kernels) C a H t,t pw(d D) (t d/2) = 0 λ m cm t/d m 1 7

Karhunen-Loève expansion - eigenvalue estimates - 10 Largest eigenvalues of exp( x x 2 ), x ( 1,1) 10 1 10 0 10 1 10 2 observed predicted 10 1 10 Largest eigenvalues of exp( x x 1+δ ), x ( 1,1) 10 0 10 1 δ=0.00, observed δ=0.00, predicted δ=0.25, observed δ=0.25, predicted δ=0.50, observed δ=0.50, predicted δ=0.75, observed δ=0.75, predicted 10 3 10 4 10 2 10 5 10 6 10 3 10 7 10 4 10 8 10 9 1 2 3 4 5 6 7 8 9 10 10 5 0 1 2 3 4 5 6 7 8 9 10 8

Karhunen-Loève expansion - eigenfunction estimates - Regularity of C a ensures L bounds for L 2 -scaled eigenfunctions (ϕ m ) m 1 Theorem 3 ( Schwab & Todor JCP 2006) Assume C a H t,t pw(d D) for t > d. Then Hence: δ > 0 ex.c(δ) > 0 s.t. m 1 : ϕ m L (D) C(δ)λ δ m. b m := λ1/2 m ϕ m L (D) inf x D E[a] C(δ)λ 1/2 δ m C(δ)m t/2d δ 9

Karhunen-Loève expansion - convergence rate - Conclusion: KL expansion of a(x,ω) L 2 (Ω,dP;L (D)) converges uniformly and exponentially on D Ω if - C a (x,x ) piecewise analytic - (Y m (ω)) m 1 uniformly bounded on Ω (e.g. Y m (ω) U( 1,1)) 10

Karhunen-Loève expansion - convergence rate - λ m 10 1 Largest 2000 Eigenvalues of Factorizable Kernel exp( 10 x x 2 ), x ( 1,1) 3 10 0 10 1 10 2 10 3 10 4 10 5 computed eigenvalues λ m estimated eigenvalues 1/ Γ(m 1/3 /2) relative L 2 norm of remainder after truncation at level M 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 L 2 Norm Decay of KL Series Remainder for Kernel e 10 x y 2 in 3D 10 6 0 200 400 600 800 1000 1200 1400 1600 1800 2000 m 0 0 50 100 150 200 250 300 350 400 450 500 M 11

Karhunen-Loève expansion - truncation from infinite to finite dimension M - > M N KL-truncation order a M (x,ω) := E[a](x)+ M m 1 (SBVP) with stochastic coefficient a(x,ω) div(a(x,ω) x u(x,ω)) = f(x) λm ϕ m (x)y m (ω) in L 2 (Ω,dP;H 1 (D)) (SBVP) M with truncated stochastic coefficient a M (x,ω) div(a M (x,ω) x u M (x,ω)) = f(x) in L 2 (Ω,dP;H 1 (D)) Theorem 4 If C a pw analytic and (Y m ) m 1 uniformly bounded, then δ > 0 ex. b,c(δ),m 0 > 0 such that (SBVP) M well-posed for M M 0 and u u M L2 (Ω;H 1 0(D)) { Cexp( bm 1/d ) M M 0 if C a pw analytic C(δ)M t/2d+1 δ M M 0 if C a H t,t pw(d D) 12

High dimensional deterministic bvp a M : D Ω R, a M (x,ω) = E[a](x)+ M m 1 λm ϕ m (x)y m (ω) Assumption (Y m ) m 1 independent, uniformly bounded family of rv s (e.g. Y m uniformly distributed in Γ m = I = ( 1/2,1/2), m = 1,2,3,...) Random variable Y m Parameter y m I m, m = 1,2,... (Y 1,Y 2,...,Y M ) y = (y 1,y 2,...,y M ) I M := I 1... I M dp(ω) ρ(y)dy = m 1ρ m (y m )dy m M ã M : D I M R, ã M (x,y) = E[a](x)+ λm ϕ m (x)y m m 1 13

Parametric Deterministic BVP a(x,ω) = E[a](x)+ j 1 ψ j (x)y j (ω) a(x,y) := E[a](x)+ j 1ψ j (x)y j, y = (y 1,y 2,...) U = ( 1,1) N, P(dω) = ρ(dy) = ρ(y)dy = j 1 ρ j (y j )dy j Parametric, deterministic problem, pointwise form: for every y U = ( 1,1) N, find u(x,y) such that x (a(x,y) x u(x,y)) = f(x) in D, u D = 0. 14

Parametric, deterministic problem, variational form: for every y U = ( 1,1) N, find U u u(y) V = H0 1 (D) such that ˆ ˆ v V : a(,y) u vdx = f(x)v(x)dx. } D {{} D =:b(y;u,v) Parametric deterministic problem, stochastic Galerkin form: Find u L 2 (U,dµ;V) such that ˆ ˆ ˆ ˆ v L 2 (U,dµ;V) : a(,y) u vdxµ(dy) = y U x D U D }{{} =:B(u,v)= y U b(y;u,v)µ(dy) f(x)v(x, y)dxµ(dy).

sgfem F: set of all ν = (ν j ) j 1 N N 0 such that only finitely many ν j are non-zero. Notation: ν F : ν := j 1 ν j = ν l 1 <, ν! = j 1 ν j! <, y ν = j 1 y ν j j y U. Tensorized (L 2 ( 1,1;1/2dx)-normalized) Legendre polynomials: L ν (y) = j 1L νj (y j ). Proposition 5: Assume Y j U( 1,1), i.e. ρ j (dy j ) = µ j (dy j ) := 1/2dy j, µ := j 1 µ j(dy j ). Then (L ν ) ν F is a complete orthonormal system in L 2 (U,dµ). 15

each v L 2 (U,dρ;V) has a representation ˆ v = v ν L ν, where v ν = v(,y)l ν (y)µ(dy) V ν F and there holds Parseval s equation v L2 (U,dµ;V) = ( v ν V ) l2 (F). U

sgfem For any finite subset Λ F, define X Λ := {v Λ (x,y) = ν Λv ν (x)l ν (y) ; v ν V} L (U,dµ;V) L 2 (U,dµ;V) where {L ν } ν F is the basis of Legendre polynomials. Galerkin approximation: u Λ = ν Λ u νl ν X Λ s.t. Cea s lemma: where C 1 := amax a min. u Λ X Λ such that B(u Λ,v Λ ) = F(v Λ ) v Λ X Λ. u u Λ L2 (U,dµ;V) C 1 inf v Λ X Λ u v Λ L2 (U,dµ;V), 16

sgfem Legendre expansion of u(x, y): u(x,y) = ν Fv ν (x)l ν (y) where v ν := ˆ U u(,y)l ν (y)µ(dy) V. u u Λ L2 (U,dµ;V) C 1 ( ν/ Λ v ν 2 V Choice of Λ? Summability of sequence α ν := v ν V, ν F. Lemma 6 (Stechkin): Let 0 < p q and assume α = (α ν ) ν F l p (F). If F N is the set of indices corresponding to N largest α ν, ( α ν q 1 ) q α lp (F)N r, ν/ F N where r := 1 p 1 q 0. )1 2. 17

Regularity b = (b j ) j=1, b j := ψ j L (D) a min, j = 1,2,... Theorem 7 (A-priori estimates of gpc coefficients) Assume ψ j L (D) b l1 (N) = κ < 1. a min j 1 Then v ν V ( ) ν! f V ν! bν, b ν = b ν 1 a min 1 bν 2 2..., ν F. Estimate of v ν V by a real variable bootstrap argument. 18

Regularity Theorem 8 (Sequence Summability) For 0 < p 1, ( ν! ν! bν ) ν F l p (F) iff b l1 (N) < 1 b l p (N). 19

Convergence rates - semi-discretization in stochastic variable - Focus on approximation in L 2 (mean square, maximum likelihood) and L (worst case). Tool: Classical Legendre basis (P n ) n 0 : P n L ([ 1,1]) = P n (1) = 1. (3) L 2 normalized Legendre Sequence L n (t) = 2n+1P n (t), Note ˆ 1 1 L n (t) 2dt 2 = 1. L 0 = P 0 = 1. For ν F, recall tensorized polynomials P ν (y) := j 1 P νj (y j ) and L ν (y) := j 1L νj (y j ). (4) Note: 20

(L ν ) ν F orthonormal basis of L 2 (U,dµ), µ = j 1 1 2 dy j every u L (U,dµ;V) L 2 (U,dµ;V) admits gpc expansions u(y) = ν F u ν P ν (y) = ν Fv ν L ν (y). (5) These gpc expansions converge in L 2 (U,dµ;V) with ˆ v ν := u(y)l ν (y)µ(dy) and u ν := j ) j 1(1+2ν U 1/2 v ν. (6) Estimates of u ν V, v ν V through complex analysis. Note v ν V u ν V.

Uniform Ellipticity Assumption: UEA(r, R) 0 < r R < such that x D and y U Example: 1-term KL expansion. 0 < r a(x,y) R <. (7) a(x,y) = ā(x)+yψ(x), ess inf x Dā(x) a min, ψ L (D) κa min = r = a min (1 κ).

Define A δ = {z C N : δ R(a(x,z)) a(x,z) 2R for every x D.} (8) Polydiscs: let ρ = (ρ j ) j 1 be a sequence of radii ρ j > 0 and define: U U ρ := j C : z j ρ j } C j 1{z N. (9) When a and ψ j are real valued, UEA(r,R) = x D and z U, 0 < r R(a(x,z)) a(x,z) 2R, (10) ρ = (ρ j ) j 1 is δ-admissible iff x D : ρ j ψ j (x) R(ā(x)) δ. (11) j 1 If ρ = (ρ j ) j 1 is δ-admissible, then U ρ A δ.

Lemma 9: Assume UEAC(r,R) for some 0 < r R <, ρ = (ρ j ) j 1 δ-admissible for some 0 < δ < r with ρ j > 1 for all j such that ν j 0. Then for any ν F hold a-priori bounds on gpc coeff s v ν V u ν V f V φ(ρ j )(2ν j +1)ρ ν j j, (12) δ where φ(t) := πt 2(t 1) for t > 1. j 1,ν j 0 Choice of δ-admissible weight sequence (ρ j ) j 1?

Legendre coefficient estimate in Lemma 6 and ν-dependent δ-admissible ρ : fix 1 < κ 2 such that (κ 1) j 1 ψ j L (D) r 8. (13) Choose J 0 as smallest integer such that j>j 0 ψ j L (D) r(κ 1) 18πκ, (14) Then define ρ j := Then ρ is δ admissible with δ = r 2 and κ if 1 j J 0, rν 2+ j 4 ν F ψ j L (D), j J 0 such that ν j 0, 1 j J 0 such that ν j = 0. v ν V u ν V ρ ν ν F. (15)

Theorem 10: Assume a(x,z) satisfies UEAC(r,R) for some 0 < r R < ( ψ j L (D)) j 1 l p (N) for some p < 1, Then for the same value of p ( u ν V ) ν F, ( v ν V ) ν F l p (F). The Legendre expansions (5) converge in L (U,dµ;V): i.e. S ΛN u(y) := ν Λ N u ν (x)p ν (y) = ν Λ N v ν (x)l ν (y) converge lim sup u(y) S ΛN u(y) V = 0 (16) N + y U for (Λ N ) N 1 F any sequence of finite sets which exhausts F. Moreover,...

1. L ( worst case ) convergence: If Λ N is the set of ν F corresponding to indices of N largest u ν V, then holds the convergence estimate sup y U u(y) S ΛN u(y) V ( u ν V ) lp (F)N r, r = 1 p 1 0. (17) 2. L 2 ( maximum likelihood ) convergence: If Λ N is the set of ν F corresponding to indices of N largest v ν V, then u S ΛN u L2 (U,dµ;V) ( v ν V ) lp (F)N r, r = 1 p 1 2 1 2. (18)

Finding Λ l - I Problem: Theorem does not give a constructive way of finding sets Λ 1 Λ 2... Λ l...f 1. Adaptive sgfem, or 2. A-priori selection of the Λ l. Consider 2: given ρ = (ρ 1,ρ 2,...) > 0 s.t. 1 < ρ 1 ρ 2... ρ m and ε > 0, define Λ ε (ρ) := { ν F ρ ν ε } = {ν F ρ ν 1/ε} If our bounds on gpc coeff s v ν V are sharp, Λ ε (ρ) will contain essentially the #Λ ε (ρ) largest coefficients v ν V. Monotonicity: for any ρ, ρ Λ as above and any ε,ε > 0, ε ε implies Λ ε (ρ) Λ ε (ρ), ρ ρ implies Λ ε (ρ) Λ ε ( ρ). 21

Finding Λ l - II Consider comparison sequences ν σ l (N) such that Note: ρ 1 ν σ := {(m+1) σ : m = 1,2,...}, σ > 0. ρ 1 ν σ ν F : ρ ν νσ ν Scaling: given σ > 0, find { Λ ε (ν σ ) = Λ ε 1/σ(ν } 1 ) = ν N N 0 : (m+1) ν m ε 1/σ, ε 0. m N ν Λ ε (ν σ ) iff ν is a multiplicative partition of some integer x < ε 1/σ. 22

Complexity (finding Λ l ) Proposition 11 (R. Andreev 08) 1. Λ ε (ν σ ) can be localized in work and memory growing log-linearly in #Λ ε (ν σ ). 2. As ε 0, e 2 logx #Λ ε (ν σ ) x 2 with x = ε 1/σ, π(logx) 3/4 E.R. Canfield, Paul Erdös and C. Pomerance: On a Problem of Oppenheim concerning Factorisatio Numerorum J. Number Theory 17 (1983) 1 ff., G. Szekeres and P. Turán: Über das zweite Hauptproblem der Factorisatio Numerorum Acta Litt. Sci. Szeged 6 (1933) 143-154. 23

Smoothness in D: Norms: Discretization in D W = {v V : v L 2 (D)} V. v W := v V + v W, Note: D convex = W = H 2 (D) V. v W = v L2 (D). Theorem 12 (Regularity) Assume f L 2 (D) and a(x,z) satisfies UEAC(r,R) for 0 < r R <. If for some 0 < p < 1 ( ψ j L (D)) j 1 l p (N) and ( ψ j L (D)) j 1 l p (N) then ( u ν W ) ν F,( v ν W ) ν F l p (F). 24

Discretization in D (Nonadaptive(!)) Finite Element Approximation in D: D Convex = inf w v h V Ch w W CM 1 d w W. v h V h Non-convex polyhedra D: W H 2 (D). Convergence as M = dim(v h ) reduced to inf v h V h w v h V C t M t w W some 0 < t < 1 d. See Brenner & Scott: Intro FEM, Babuška, Kellogg and Pitkäranta (1979) 25

Discretization in D (Nonadaptive(!)) Finite Element Approximation in D: Theorem 13: Assume FE spaces (V h ) h>0 in D R d have approximation order 0 < t 1/d, a satisfies UEAC(r,R) and ( ψ j W 1, (D)) j=1 lp (N) some 0 < p 1. Then (i) With Λ N the set of indices corresponding to N largest u ν V, there exist finite element spaces V ν of dimensions M ν, ν Λ N, such that u(y) sup y U ũ ν P ν (y) V CN min{r,t} dof, r := 1 p 1, ν Λ N where N dof = ν Λ N M ν and C = ( C t + ( u ν V ) lp (F)) ( u ν W ) lp (F). 26

(ii) With Λ N the set of indices corresponding to N largest v ν V, there exist finite element spaces V ν of dimension M ν, ν Λ N, such that u ṽ ν L ν L2 (U,dµ;V) CN min{r,t} dof, r := 1 p 1 2, ν Λ N where N dof = ν Λ N M ν and C = ( C 2 t + ( v ν V ) 2 l p (F) )1 2 ( v ν W ) lp (F). Here, t ν, ũ ν and ṽ ν are V-projections of t ν, u ν and v ν, respectively, onto V ν.

Numerical Example (R. Andreev) D = ( 1,1), E a (x) = 5+x, C a (x,x ) = min{x,x }+1 2 H 1,1 (D D). KL Eigenpairs: λ m = Algebraic KL decay with rate 2. 8 π 2 (2m 1) 2, ψ m(x) = sin((x+1)/ 2λ m ) Bieri, Andreev and CS. SISC (2010) 27

Error vs. N total 10 1 error 10 2 10 3 10 4 MC, L 2 (H 1 ) FTP, L 2 (H 1 ) STP, L 2 (H 1 ) FTP, L 2 (L 2 ) STP, L 2 (L 2 ) 10 2 10 3 10 4 10 5 10 6 ndof

Heat Eqn w. Random Conductivity (w. V.H. Hoang) Q T = I D. In Q T, u t (a(x,ω) u) = g(t,x), u D I = 0, u t=0 = h(x). V = H 1 0(D) H = L 2 (D) H V = H 1 (D) X = L 2 (I;V) H 1 (I;V ) and Y = L 2 (I;V) H. In X and Y norms X and Y, for u X and v = (v 1,v 2 ) Y given by u X = ( u 2 L 2 (I;V) + u 2 H 1 (I;V ) )1/2 and v Y = ( v 1 2 L 2 (I;V) + v 2 2 H )1/2. 28

Heat Eqn w. Random Conductivity Parametric Deterministic Problem: u t (t,x,y) x [a(x,y) x u(t,x,y)] = g(t,x) in Q T, u(t,x,y) D I = 0, u t=0 = h(x), where, for y = (y 1,y 2,...) U a(x,y) = ā(x)+ y j ψ j (x). Pointwise parametric (x, t)-variational Formulation [Sc. & R. Stevenson2009]: given f Y, find u(y) : U y X such that j=1 b(y;u,v) = f(v), v = (v 1,v 2 ) Y. where ˆ b(y;u,(v 1,v 2 )) = du ˆ ˆ I dt,v 1(t, ) H dt+ a(x,y) u(t,x) v 1 (t,x)dxdt+ w(0),v 2 H. D I ˆ f(v) = g(t),v 1 (t) H dt+ h,v 2 H, v = (v 1,v 2 ) Y. I 29

Heat Eqn w. Random Conductivity Galerkin parametric (x, t) variational formulation: Bochner spaces X = L 2 (U,dρ;X) L 2 (U,dρ) X and Y = L 2 (U,dρ;Y) L 2 (U,dρ) Y. where Find u X such that B(u,v) = F(v) for all v Y B(u,v) = ˆ ˆ b(y, u, v)ρ(dy) and F(v) = U U f(v)ρ(dy). 30

Heat Eqn w. Random Conductivity gpc Approximation: Λ F, N = #Λ <. X Λ := {u Λ (t,x,y) = ν Λu ν (t,x)l ν (y) : u ν X} X, and Y Λ := {v Λ (t,x,y) = ν Λv ν (t,x)l ν (y) : v ν X} Y. In the Legendre basis (L ν ) ν F, we write v 1Λ (t,x,y) = ν Λ v 1ν (t,x)l ν (y) and v 2Λ (x,y) = ν Λv 2ν (x)l ν (y), respectively, where v ν = (v 1ν,v 2ν ) Y for all ν F. Galerkin approximation: u Λ X Λ : B(u Λ,v Λ ) = F(v Λ ) v Λ Y Λ. (19) 31

Heat Eqn w. Random Conductivity Theorem 14: Λ F, (19) is coupled system of N = #Λ parabolic equations, admits a unique solution u Λ X Λ a-priori error bound: ( u u Λ X c ν/ Λ u ν 2 X) 1/2. u ν X Legendre coefficients of the solution of the parametric deterministic problem, c independent of Λ. ( ψ j L (D)) j 1 l p (N) for some 0 < p 1 = ( u ν ) ν F l p (F) 32

and (Λ N ) N N F of index sets with #Λ N such that the solutions u ΛN of the Galerkin semidiscretized problems (19) satisfy u u ΛN X CN r, r = 1 p 1 2. Space-Time (x, t) Discretization: regularity, (x,t) wavelets, optimal error bounds in terms of N dof Analogous results for wave equations in random media

Conclusion gpc: Transform SPDE into parametric, deterministic PDE on U = ( 1,1) N ST approximation by gpc Ψ of Regularity: W V smoothness space in (x,t) U y u(y, ) V ( u ν W ) ν F l p (F), 0 < p 1. p = 1: ST-rate equal to MLMC convergence rate (A. Barth, CS, N. Zollinger 2010) Sparse tensorization of D and Ω Galerkin discretizations: Dimension independent convergence rates in terms of N total. 33

requires mixed regularity in both, D and U: if { ψ j W 1, (D)} j=1 l p (N) then { u ν W : ν F} l p (F) L 2 (mean square) and L (worst case) convergence rates. Adaptivity essential to avoid curse of dimensionality. Diffusion problems in physical dimension d = 2, with λ m m 2.2 and suppλ {1,...,1500} on PC (R. Andreev, M. Bieri and CS (SISC 2010)) (superior to Smolyak construction). Sparse composite collocation on lattices of points in U = ( 1,1) N, U = R N (M. Bieri Dissertation ETH (2009) and SINUM (2010)) Lognormal Case (C.J. Gittelson (M 3AS 2010)) Heat and Wave Eqn. (C.S. & V. Hoang 2010), Eigenvalue Problems (C.S. & R. Andreev) Adaptive, Convergent Algorithm (w. A. Cohen, R. DeVore 2010)

References N. Wiener (Am. J. Math. 1938), Cameron and Martin (Ann. Math. 1947) G. E. Karniadakis et al. ( 2000 - ), Babuška, Nobile, Tempone etal. (SINUM 2004, 2006, 2008) (CMAME 2005) P. Frauenfelder, R.A. Todor and CS (CMAME 2005) R.A. Todor (SINUM 2005 and Diss. ETH 2005) CS and R.A. Todor (JCP 2006 and IMAJNA 2007) R. Andreev, M. Bieri and CS (SISC 2010) M. Bieri (SINUM 2010) V. H. Hoang and CS (2010) A. Cohen, R. DeVore and CS (2009) (2010) C.J. Gittelson Dissertation ETH (2010). www.sam.math.ethz.ch/ reports 34