Fast solvers for steady incompressible flow

Similar documents
A Review of Preconditioning Techniques for Steady Incompressible Flow

Fast Iterative Solution of Saddle Point Problems

Preconditioners for the incompressible Navier Stokes equations

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1)

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

DELFT UNIVERSITY OF TECHNOLOGY

Fast Solvers for Unsteady Incompressible Flow

Chebyshev semi-iteration in Preconditioning

7.4 The Saddle Point Stokes Problem

Numerische Mathematik

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

ETNA Kent State University

ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Mathematics and Computer Science

Uncertainty Quantification: Does it need efficient linear algebra?

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

A parallel block multi-level preconditioner for the 3D incompressible Navier Stokes equations

Theoretical advances. To illustrate our approach, consider the scalar ODE model,

Preconditioning for Nonsymmetry and Time-dependence

A TAXONOMY AND COMPARISON OF PARALLEL BLOCK MULTI-LEVEL PRECONDITIONERS FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

Algebraic Multigrid Methods for the Oseen Problem

The Mixed Finite Element Multigrid Preconditioned Minimum Residual Method for Stokes Equations

Combination Preconditioning of saddle-point systems for positive definiteness

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000

A Review of Solution Techniques for Unsteady Incompressible Flow

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

c 2006 Society for Industrial and Applied Mathematics

A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations

Robert Shuttleworth Doctor of Philosophy, 2007

c 2011 Society for Industrial and Applied Mathematics

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

Preface to the Second Edition. Preface to the First Edition

A comparison of preconditioners for incompressible Navier Stokes solvers

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J.

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

The Mixed Finite Element Multigrid Preconditioned MINRES Method for Stokes Equations

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

DELFT UNIVERSITY OF TECHNOLOGY

Department of Computer Science, University of Illinois at Urbana-Champaign

Efficient iterative algorithms for linear stability analysis of incompressible flows

Indefinite and physics-based preconditioning

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini

Multigrid absolute value preconditioning

UNIVERSITY OF MARYLAND NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 OCTOBER 1999

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems

Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Linear Solvers. Andrew Hazel

X. He and M. Neytcheva. Preconditioning the incompressible Navier-Stokes equations with variable viscosity. J. Comput. Math., in press, 2012.

Numerical behavior of inexact linear solvers

Preconditioning Strategies for Models of Incompressible Flow

Algebraic Multigrid as Solvers and as Preconditioner

Solving PDEs with Multigrid Methods p.1

Adaptive preconditioners for nonlinear systems of equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Multigrid Methods and their application in CFD

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Divergence-conforming multigrid methods for incompressible flow problems

M.A. Botchev. September 5, 2014

Solving Large Nonlinear Sparse Systems

AN AUGMENTED LAGRANGIAN APPROACH TO LINEARIZED PROBLEMS IN HYDRODYNAMIC STABILITY

New multigrid smoothers for the Oseen problem

Contents. Preface... xi. Introduction...

Linear and Non-Linear Preconditioning

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

EQUATIONS WITH LOW VISCOSITY HOWARD C. ELMAN UMIACS-TR November 1996

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices

Termination criteria for inexact fixed point methods

Using Python to Solve the Navier-Stokes Equations - Applications in the Preconditioned Iterative Methods

NAVIER-STOKES OPERATORS HOWARD C. ELMAN UMIACS-TR November Revised July 1996

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS

Optimal solvers for PDE-Constrained Optimization

arxiv: v1 [math.na] 18 Dec 2017

Adaptive algebraic multigrid methods in lattice computations

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

Regularized HSS iteration methods for saddle-point linear systems

The Conjugate Gradient Method

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

On solving linear systems arising from Shishkin mesh discretizations

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS

Incompressible Flow & Iterative Solver Software (IFISS) Installation & Software Guide 1

Using PETSc Solvers in PyLith

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Finite Elements for Magnetohydrodynamics and its Optimal Control

arxiv: v3 [math.na] 9 May 2011

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

Structured Preconditioners for Saddle Point Problems

DELFT UNIVERSITY OF TECHNOLOGY

OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control)

DELFT UNIVERSITY OF TECHNOLOGY

Transcription:

ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland, USA) David Silvester (University of Manchester, UK) Acknowledgements: EPSRC, British Energy

ICFD 25 p.2/21 Steady Incompressible Navier-Stokes: ν 2 u + u. u + p = f u = 0 mixed finite element approximation (or other approx eg. MAC scheme): u u h = u i φ i X h (H 1 ) d p p h = p k ψ k M h L 2 Galerkin F(u) B T u p f 0 B 0 = u: velocity coefficients, p: pressure coefficients

ICFD 25 p.3/21 Steady Incompressible Navier-Stokes: ν 2 u + u. u + p = f u = 0 F(u) B T u p f 0 Approximation B 0 = u: velocity coefficients, p: pressure coefficients B/B T : discrete divergence/gradient F(u) = νa + N(u): discrete advection diffusion operator A: discrete (vector) Laplacian, N: advection

ICFD 25 p.4/21 Linearisation: Slow flow Stokes νa B T B 0 u p = f 0

ICFD 25 p.4/21 Linearisation: Slow flow Stokes νa B T u p f 0 B 0 = Picard (simple fixed point) Oseen νa + N(u k ) B T u (k+1) f 0 B 0 p (k+1) =

ICFD 25 p.4/21 Linearisation: Slow flow Stokes νa B T u p f 0 B 0 = Picard (simple fixed point) Oseen νa + N(u k ) B T u (k+1) f 0 B 0 p (k+1) = Newton F(u k ) + M(u k ) B T δu (k+1) B 0 δp (k+1) = residual M(u) = F u (u).u: zeroth order term

ICFD 25 p.5/21 Fast solution of these linearised INDEFINITE systems: Direct (elimination) methods: dimensions 10 4, 10 5 Multigrid: effective smoothers Krylov subspace methods (Conjugate Gradients, MINRES, GMRES,...): PRECONDITIONING

An observation (Murphy, Golub, W) H B T preconditioned by H 0 0 S H B T 0 S B 0 has 3 distinct eigenvalues has 2 distinct eigenvalues where S = BH 1 B T (Schur Complement) MINRES /GMRES terminates in 3 / 2 iterations want approximations Ĥ, Ŝ 3 / 2 clusters fast convergence ICFD 25 p.6/21

Ĥ: ICFD 25 p.7/21

ICFD 25 p.7/21 Ĥ: for Stokes: H = νa is just discrete Laplacian use multigrid

ICFD 25 p.7/21 Ĥ: for Stokes: H = νa is just discrete Laplacian use multigrid for Oseen: H = F(u k ) = νa + N(u k ) is discrete advection-diffusion use multigrid

ICFD 25 p.7/21 Ĥ: for Stokes: H = νa is just discrete Laplacian use multigrid for Oseen: H = F(u k ) = νa + N(u k ) is discrete advection-diffusion use multigrid for Newton: H = F(u k ) + M(u k ) is discrete 2nd order operator use multigrid?

Ŝ? (Schur Complement Approximation) ICFD 25 p.8/21

ICFD 25 p.8/21 Ŝ? (Schur Complement Approximation) Stokes: directly use div-stabilty γ p sup u (p, u) u in matrix form: γ(p T Qp) 1/2 max u = max w=a 1/2 u p T Bu (u T Au) 1/2 p T BA 1/2 w (w T w) 1/2 = (p T BA 1 B T p) 1/2

ICFD 25 p.8/21 Ŝ? (Schur Complement Approximation) Stokes: directly use div-stabilty and boundedness γ p sup u (p, u) u Γ p in matrix form: γ(p T Qp) 1/2 max u = max w=a 1/2 u p T Bu (u T Au) 1/2 p T BA 1/2 w (w T w) 1/2 = (p T BA 1 B T p) 1/2 Γ(p T Qp) 1/2 shows Q, the pressure mass matrix, is (spectrally) equivalent to the Schur complement BA 1 B T use Ŝ = Q (or diag(q) or diag scaled Chebyshev for Q)

Preconditioner for Stokes: AMG 0 0 Q = Ĥ 0 0 Ŝ Theory (Silvester and W): Convergence (in right norm) independent of h Practice: number of MINRES iterations for 10 6 residual reduction (CPU time) A MG : 1 V-cycle Ŝ: 4 diag scaled Conj Grad iterations Driven Cavity flow Mixed Element Grid Q 1 P 0 Q 2 Q 1 Q 2 P 1 Q 2 P 0 direct 16 16 36 (6) 31 (5) 29 (5) 25 (5) (.3) 32 32 38 (8) 33 (10) 31 (7) 25 (6) (3) 64 64 38 (21) 31 (21) 31 (19) 27 (16) (31) 128 128 37 (76) 31 (74) 29 (69) 27 (59) (221) 256 256 36 (313) 29 (309) 29 (305) 27 (267) (8961) ICFD 25 p.9/21

ICFD 25 p.10/21 Results from Rene Schneider (Leeds/Chemnitz): P 2 P 1 on 1 processor of a cluster of Sun Fire 6800 with UltraSPARC II Cu 900MHz processors CPU time degrees of freedom iterations for solution for setup 659 23 2.3e-2 1.5e-1 2467 25 6.4e-1 5.0e-2 9539 25 2.0 1.5e-1 37507 25 1.2e+1 5.9e-1 148739 22 6.9e+1 2.5 592387 24 3.5e+2 1.0e+1 2364419 23 1.5e+3 4.2e+1 9447427 24 6.7e+3 1.7e+2 37769219 24 2.7e+4 6.8e+2

Ŝ? (Schur Complement Approximation) Oseen: non-symmetric S = BF 1 B T, F = νa + N, advection-diffusion Note: BB T QA p : discrete Laplacian on pressure space If F p is similarly an advection-diffusion operator on the pressure space, can expect FB T B T F p BB T BF 1 B T F p = SF p S 1 F p (BB T ) 1 F p A 1 p Q 1 Outcome: choose Ŝ 1 = F p A 1 p Q 1 (Kay & Loghin) with A 1 p MG cycle and Q 1 diag scaled Conj Grad ICFD 25 p.11/21

ICFD 25 p.12/21 FMG B Oseen preconditioner: T, 0 Ŝ Ŝ 1 = F p A 1 p Q 1 This is the Pressure Convection-Diffusion Preconditioner Theory (Krzyzanowski, Loghin, Elman, Silvester & W): Eigenvalues bounded independent of h ( GMRES convergence bounded independent of h?) Mild dependence on ν Practice: number of GMRES iterations for Oseen solve (zero initial vector), driven cavity flow Q 2 Q 1 Q 1 P 0 Grid ν =1/10 1/100 1/1000 1/10 1/100 1/1000 8 8 14 24 75 18 28 56 16 16 15 25 76 18 28 80 32 32 15 26 65 18 28 83 64 64 16 26 55 18 28 66

ICFD 25 p.13/21 3-D Driven Cavity flow, u top = (1/ 3, 2/ 3, 0) Maximum number of GMRES iterations for each Picard iteration (Oseen solve) Q 2 Q 1 element ν = 1/Re degees of freedom 1/20 1/40 1/80 1/160 6934 31 39 49 58 15468 30 37 51 64 49072 29 36 48 64 112724 28 35 45 61 (results from David Kay)

ICFD 25 p.14/21 3-D Driven Cavity flow, u top = (1/ 3, 2/ 3, 0) Maximum number of GMRES iterations for each Picard iteration (Oseen solve) Q 2 Q 1 element, degees of freedom: 49072 element aspect ratio: maximum edge length/minimum edge length ν = 1/Re element aspect ratio 1/50 1/100 1/200 1 40 52 67 2 37 49 63 4 38 47 59 8 45 49 61

Comment: alternative derivation (using Greens tensors) and analysis of ν-dependence: Kay, Loghin & W, Elman, Silvester & W,Loghin & W ICFD 25 p.15/21

ICFD 25 p.15/21 Comment: alternative derivation (using Greens tensors) and analysis of ν-dependence: Kay, Loghin & W, Elman, Silvester & W,Loghin & W Also alternative component preconditioning blocks can easily be used: Results from Vicki Howle (Sandia National Lab, USA) using (Smoothed Aggregation) Algebraic Multigrid ν = 1/Re Grid 1 1/10 1/20 1/100 8 8 8 13 19 20 23 16 16 16 16 21 25 36 32 32 32 17 23 27 41

ICFD 25 p.16/21 Preconditioner for Newton: as M(u k ) is zeroth order, use F 1 (u k ) + M 1,1 (u k ) M 1,2 (u k ) 0 F 2 (u k ) + M 2,2 (u k ) 0 Ŝ B T with Ŝ 1 = F p A 1 p Q 1 (as before for Oseen) Theory: eigenvalues bounded and bounded away from 0 independently of h (Elman, Loghin & W) Practice: needs approximations to F i (u k ) + M i,i (u k ) as well as multigrid cycles for A p, Conj Grad for Q and construction of F p (multiply).

ICFD 25 p.17/21 Driven cavity: number of GMRES iterations for first Newton iteration Q 2 Q 1 Q 1 P 0 Grid ν =1/10 1/100 1/1000 1/10 1/100 1/1000 8 8 16 30 83 20 36 >200 16 16 16 32 139 20 37 135 32 32 17 34 141 20 37 164 64 64 17 34 128 19 37 162

ICFD 25 p.18/21 Alternative algebraic preconditioner for Oseen/ Newton (Elman): instead of FB T B T F p start from so BFB T BB T F p (BB T ) 1 BFB T A 1 p Q 1 F p A 1 p Q 1 (BB T ) 1 BFB T (BB T ) 1 S 1 and (BB T ) 1 ( ) 1 use (Laplace) multigrid!

ICFD 25 p.18/21 Alternative algebraic preconditioner for Oseen/ Newton (Elman): instead of FB T B T F p start from BFB T BB T F p (BB T ) 1 BFB T A 1 p Q 1 F p A 1 p Q 1 In fact with the correct mesh scaling: Ŝ 1 = (BD 1 B T ) 1 BD 1 FD 1 B T (BD 1 B T ) 1 S 1 where D is diagonal of velocity mass matrix D. This is the Least-Squares Commutator Preconditioner

ICFD 25 p.19/21 Ŝ 1 = (BD 1 B T ) 1 BD 1 FD 1 B T (BD 1 B T ) 1 S 1 Note again only multiply by advection-diffusion operator F and multigrid cycles for Laplacian, but mild mesh-dependence of convergence for this algebraic preconditioner Practice: number of GMRES iterations for Oseen solve (zero initial vector), driven cavity flow, Q 2 Q 1 mixed element Oseen Newton Grid ν =1/10 1/100 1/1000 1/10 1/100 1/1000 8 8 8 13 55 8 18 78 16 16 11 16 62 11 21 106 32 32 14 21 55 15 27 107 64 64 18 27 45 19 34 95

ICFD 25 p.20/21 Important points: need only approximate solvers/preconditioners for Laplacian and advection-diffusion simple multigrid for such scalar problems can be applied any (stable or stabilised) discretisation need advection-diffusion operator for pressure space

ICFD 25 p.21/21 Main Reference Elman, H.C., Silvester, D.J. & Wathen, A.J., 2005, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005 and associated matlab software: IFISS freely downloadable from www.manchester.ac.uk/ifiss