Photochemical and Structural Studies on Cyclic Peptide Models

Similar documents
An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility

Supporting Information

Principles of NMR Protein Spectroscopy. 2) Assignment of chemical shifts in a protein ( 1 H, 13 C, 15 N) 3) Three dimensional structure determination

Physiochemical Properties of Residues

SUPPLEMENTARY INFORMATION

Structural Basis of Multivalent Binding to Wheat Germ Agglutinin

Magnetic Resonance Lectures for Chem 341 James Aramini, PhD. CABM 014A

A prevalent intraresidue hydrogen bond stabilizes proteins

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

Introduction solution NMR

Peptides And Proteins

NMR Assay of Purity and Folding

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Secondary and sidechain structures

Supporting Information

HSQC spectra for three proteins

Macrocyclization of Peptide Side Chains by Ugi Reaction: Achieving Peptide

SUPPLEMENTARY INFORMATION

The Effect of Motional Averaging on the Calculation of NMR-Derived Structural Properties

Magic-Angle Spinning (MAS) drive bearing

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy

Structure determination through NMR

Supplementary Information. Oxidation increases the strength of the methionine-aromatic interaction

NMR in Structural Biology

Useful background reading

Supplemental Information

Resonance assignments in proteins. Christina Redfield

Tridip Sheet, Raja Banerjee*

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Deuteration: Structural Studies of Larger Proteins

CHMI 2227 EL. Biochemistry I. Test January Prof : Eric R. Gauthier, Ph.D.

Supporting Information

NMR of proteins (and all things regular )

April, The energy functions include:

Biochemistry 530 NMR Theory and Practice

Table S1. Primers used for the constructions of recombinant GAL1 and λ5 mutants. GAL1-E74A ccgagcagcgggcggctgtctttcc ggaaagacagccgcccgctgctcgg

Accurate Characterisation of Weak Protein- Protein Interactions by Titration of NMR Residual Dipolar Couplings

Stereoselectivity of Proline / Cyclobutane Amino Acid-Containing Peptide. Organocatalysts for Asymmetric Aldol Additions: a Rationale

Timescales of Protein Dynamics

Structure determination

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1. Identification of polymorphs and secondary structure.

Studies Leading to the Development of a Highly Selective. Colorimetric and Fluorescent Chemosensor for Lysine

Finding Bonds, H-bonds

Citation for published version (APA): Feenstra, K. A. (2002). Long term dynamics of proteins and peptides. Groningen: s.n.

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190

Using NMR to study Macromolecular Interactions. John Gross, BP204A UCSF. Nov 27, 2017

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Timescales of Protein Dynamics

Labelling strategies in the NMR structure determination of larger proteins

NMR, X-ray Diffraction, Protein Structure, and RasMol

Packing of Secondary Structures

PROTEIN'STRUCTURE'DETERMINATION'

1. 3-hour Open book exam. No discussion among yourselves.

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Presenter: She Zhang

Protein-protein interactions and NMR: G protein/effector complexes

Electronic Supplementary Information

Course Notes: Topics in Computational. Structural Biology.

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

SUPPORTING INFORMATION

Supporting Information. for. Formation of 1,10-phenanthroline-N,N -dioxide under mild conditions: the kinetics and

BMB/Bi/Ch 173 Winter 2018

NMR Spectroscopy: A Quantum Phenomena

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

Sequential Proton Coupled Electron Transfer (PCET): Dynamics Observed over 8 Orders of Magnitude in Time.

Connecting NMR data to biomolecular structure and dynamics

Supplementary Information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

NMR Assignments using NMRView II: Sequential Assignments

Supporting information

Identification of Two Antiparallel-sheet Structure of Cobrotoxin in Aqueous Solution by'hnmr

Computational Protein Design

Application of automated NOE assignment to three-dimensional structure refinement of a 28 kda single-chain T cell receptor

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Properties of amino acids in proteins

Supplementary Materials for

A water-soluble and fast-response mitochondria-targeted fluorescent

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI )

Supporting Information. for

Biomolecules: lecture 9

Development and Validation of a Fluorescence Method to. Follow the Build-up of Short Peptide Sequences on Solid. 2D Surfaces

Supporting Information

Solutions In each case, the chirality center has the R configuration

VOL. 55 NO. 8, AUG THE JOURNAL OF ANTIBIOTICS pp LARISSA VOLLBRECHT, HEINRICH STEINMETZ and GERHARD HOFLE*

Structure Determination by NMR Spectroscopy #3-1

Protein Structure Bioinformatics Introduction

SUPPLEMENTARY INFORMATION

Problem Set 1

Protein Structure Refinement Using 13 C α Chemical. Shift Tensors. Benjamin J. Wylie, Charles D. Schwieters, Eric Oldfield and Chad M.

Protein Fragment Search Program ver Overview: Contents:

Chapter 4: Amino Acids

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

SUPPLEMENTARY ONLINE DATA

Transcription:

Article Photochemical and Structural Studies on Cyclic Peptide Models Tamás Milán Nagy 1, Krisztina Knapp 2, Eszter Illyés 3, István Timári 1, Gitta Schlosser 4, Gabriella Csík 5, Attila Borics 6, *, Zsuzsa Majer 2, * and Katalin E. Kövér 1, * 1 Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary; tamasmilan.nagy@science.unideb.hu (T.M.N.); timari.istvan@science.unideb.hu (I.T.) 2 Institute of Chemistry, Department of Organic Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest 112. P.O. Box 32, Hungary; knkriszta@gmail.com 3 Chemie Ltd., H-1022 Budapest, Herman Ottó út 15, Hungary; eszter@vichem.hu 4 Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest 112, P.O. Box 32, Hungary; schlosser@caesar.elte.hu 5 Department of Biophysics and Radiation Biology, Semmelweis University Budapest, H-1428 Budapest, P.O. Box 2, Hungary; gabriella.csik@eok.sote.hu * Correspondence: borics.attila@brc.mta.hu (A.B.); majer@elte.hu (Z.M.); kover@science.unideb.hu (K.E.K.); Tel.: +36-52-512-900 ext. 22370 (K.E.K.)

Table of Contents 1.Table S1. Characterization of the devised cyclic peptides by MM calculation...3 2. Figure S1. 1 H- 1 H ROESY spectra of the cyclic peptides showing the sequential and medium range ROE cross peaks of NHs as well as the ROEs of the Trp residue...4 3. Table S2. NMR-ensembles and the summary of structure calculations...5 4. Table S3. Analysis of MD trajectories with regard to the occurrence of hydrogen bonds. Numbers represent the population of structures in the MD ensemble possessing the specified H- bond....6 5. Table S4. Trp-fluorescence measurements of model peptides...7 6. Figure S2. CPM fluorescence I max at 481 nm under various UV illumination times at 280 nm....8 7. Figure S3. Trp fluorescence emission spectra (A) λ ex=280 nm and CPM fluorescence emission spectra (B) λ ex= 387 nm of Ac-c(CWKAC)-NH 2 after irradiation for 1, 1.5, 2 and 3 h....9 8. Figure S4. CPM calibration with Ac-CWAKC(Acm)-NH 2 peptide ( ex= 387 nm, em= 300-600 nm).... 10 9. Table S5. Proton ( 1 H) and carbon ( 13 C) chemical shifts of the studied cyclic peptides... 11 10. Table S6. Analytical characteristics of linear peptides... 13 11. Table S7. Analytical characteristics of cyclic peptides... 13

1. Table S1. Characterization of the devised cyclic peptides by MM calculation d 2 / Å d 3 / Å Peptide d 1 / Å Constitution (Lys-N ) (Arg-C ) Ac-c(CAXAC)-NH 2 X=V 8.26 - C 19H 32N 6O 6S 2 X=W 5.49 - C 25H 33N 7O 6S 2 NMR Ac-c(CXAGC)-NH 2 X=V 6.60 - C 18H 30N 6O 6S 2 X=W 9.61 - C 28H 40N 8O 6S 2 NMR Ac-c(CXGAC)-NH 2 X=V 6.81 C 18H 30N 6O 6S 2 X=W 9.68 C 24H 31N 7O 6S 2 Ac-c(CXAKC)-NH 2 X=V 6.57 - C 22H 39N 7O 6S 2 X=W 7.92 7.87 C 28H 40N 8O 6S 2 Ac-c(CXARC)-NH 2 X=W 9.88-10.45 C 28H 40N 10O 6S 2 Ac-c(CXKAC)-NH 2 X=V 7.76 - C 22H 39N 7O 6S 2 X=W 7.95 7.82 C 28H 40N 8O 6S 2 NMR Ac-c(CXRAC)-NH 2 X=W 9.76-10.80 C 28H 40N 10O 6S 2 Ac-c(CAXKC)-NH 2 X=V 8.19 - C 22H 39N 7O 6S 2 X=W 8.62 7.44 C 28H 40N 8O 6S 2 Ac-c(CKXAC)-NH 2 X=V 8.48 - C 22H 39N 7O 6S 2

2. Figure S1. 1 H- 1 H ROESY spectra of the cyclic peptides showing the sequential and medium range ROE cross peaks of NHs as well as the ROEs of the Trp residue a) Ac-c(CAWAC)-NH 2 b) Ac-c(CWAGC)-NH 2 c) Ac-c(CWKAC)-NH 2 d) Ac-c(CWAGC)-NH 2

3. Table S2. NMR-ensembles and the summary of structure calculations Ac-c(CWKAC)-NH 2 Ac-c(CAWAC)-NH 2 Ac-c(CWAGC)-NH 2 No. structures 20 20 20 RMSD to mean (backbone) 0.74 +/- 0.21 Å 0.15 +/- 0.03 Å 0.14 +/- 0.04 Å NOE restaraints per 8.20 11.20 8.0 residue No. dihedral restraints 20 18 18 Secondary structures Ramachandran statistics ß-turn type IV: 30 % coil: 20 % ß-turn type VIII: 5 % inordered: 45 % 23.33 % most favoured, 60% additionaly allowed, 15 % generously allowed 1.67 % disallowed ß-turn type IV: 100 % 21.67 % most favoured, 55% additionaly allowed, 23.33 % generously allowed 0 % disallowed inordered: 100% 0 % most favoured, 50 % additionaly allowed, 50 % generously allowed 0 % disallowed

4. Table S3. Analysis of MD trajectories with regard to the occurrence of hydrogen bonds. Numbers represent the population of structures in the MD ensemble possessing the specified H-bond. Ac-c(CWKAC)-NH2 Cys 1 (O)- Lys 3 (NH) Trp 2 (O)- Cys 5 (NH) Cys 1 (O)- Ala 4 (NH) Lys 3 (O)-Cys 5 (NH) NH2- Cys 5 (O) Ac(O)- Trp 2 (NH) Ac(O)- Cys 1 (NH) water 24% - 5% 36% 100% 13% 100% DMSO 20% - - 30% 100% 10% 100% Ac-c(CAWAC)-NH2 Cys 1 (O)- Trp 3 (NH) Trp 2 (O)- Cys 5 (NH) Cys 1 (O)- Ala 4 (NH) Trp 3 (O)- Cys 5 (NH) NH2-Cys 5 (O) Ac(O)- Ala 2 (NH) Ac(O)- Cys 1 (NH) water 27% - 4% 21% 100% - 100% DMSO 12% - - 43% 100% - 100% Ac-c(CWAGC)-NH2 Cys 1 (O)- Ala 3 (NH) Trp 2 (O)- Cys 5 (NH) Cys 1 (O)- Gly 4 (NH) Ala 3 (O)- Cys 5 (NH) NH2-Cys 5 (O) Ac(O)- Trp 2 (NH) Ac(O)- Cys 1 (NH) water 59% - 10% 2% 100% 66% 100% DMSO 29% - - 13% 100% 4% 100%

5. Table S4. Trp-fluorescence measurements of model peptides Peptide Max. fluorescence intensity (cps) 1 Ac-c(CWKAC)-NH 2 82690 2 Ac-CWKAC-NH 2 108940 3 Ac-c(CAWAC)-NH 2 124660 4 Ac-CAWAC-NH 2 178975 5 Ac-c(CWAGC)-NH 2 108255 6 Ac-CWAGC-NH 2 124650

6. Figure S2. CPM fluorescence Imax at 481 nm under various UV illumination times at 280 nm.

7. Figure S3. Trp fluorescence emission spectra (A) λex=280 nm and CPM fluorescence emission spectra (B) λex= 387 nm of Ac-c(CWKAC)-NH2 after irradiation for 1, 1.5, 2 and 3 h.

8. Figure S4. CPM calibration with Ac-CWAKC(Acm)-NH2 peptide ( ex= 387 nm, em= 300-600 nm).

9. Table S5. Proton ( 1 H) and carbon ( 13 C) chemical shifts of the studied cyclic peptides Ac-c(CWKAC)-NH 2 Ac-c(CAWAC)-NH 2 Cys(1) δ Cα = 51.84 ppm Cys(1) δ Cα = 52.61 ppm Cys(1) δ Cβ = 41.97 ppm Cys(1) δ Cβ = 42.65 ppm Cys(1) δ NH = 8.28 ppm Cys(1) δ NH = 8.26 ppm Cys(1) δ Hα = 4.58 ppm Cys(1) δ Hα = 4.49 ppm Cys(1) δ Hβ = 3.21 ppm Cys(1) δ Hβ = 3.20 ppm Cys(1) δ Hβ' = 2.87 ppm Cys(1) δ Hβ' = 2.87 ppm Trp(2) δ Cα = 54.80 ppm Ala(2) δ Cα = 50.19 ppm Trp(2) δ Cβ = 26.92 ppm Ala(2) δ Cβ = 17.69 ppm Trp(2) δ CΔ1 = 123.31 ppm Ala(2) δ NH = 8.29 ppm Trp(2) δ Cε3 = 117.92 ppm Ala(2) δ Hα = 4.09 ppm Trp(2) δ CZ = 111.04 ppm Ala(2) δ Hβ = 1.13 ppm Trp(2) δ CZ' = 118.16 ppm Trp(3) δ Cα = 55.32 ppm Trp(2) δ CH2 = 120.80 ppm Trp(3) δ Cβ = 27.40 ppm Trp(2) δ NH = 8.26 ppm Trp(3) δ CΔ1 = 24.21 ppm Trp(2) δ Hα = 4.42 ppm Trp(3) δ Cε3 = 18.81 ppm Trp(2) δ Hβ = 3.18 ppm Trp(3) δ CZ = 11.78 ppm Trp(2) δ Hβ' = 3.00 ppm Trp(3) δ CZ' = 18.75 ppm Trp(2) δ HΔ1 = 7.12 ppm Trp(3) δ CH2 = 21.32 ppm Trp(2) δ Hε1 = 10.89 ppm Trp(3) δ NH = 7.73 ppm Trp(2) δ Hε3 = 7.53 ppm Trp(3) δ Hα = 4.35 ppm Trp(2) δ HΖ = 7.34 ppm Trp(3) δ Hβ = 3.17 ppm Trp(2) δ HZ' = 6.98 ppm Trp(3) δ HΔ1 = 7.13 ppm Trp(2) δ HH = 7.07 ppm Trp(3) δ Hε1 = 10.86 ppm Lys(3) δ Cα = 53.54 ppm Trp(3) δ HE3 = 7.53 ppm Lys(3) δ Cβ = 30.60 ppm Trp(3) δ HZ = 7.33 ppm Lys(3) δ Cγ = 21.62 ppm Trp(3) δ HZ' = 6.98 ppm Lys(3) δ CΔ = 26.34 ppm Trp(3) δ HH2 = 7.06 ppm Lys(3) δ Cε = 38.42 ppm Ala(4) δ Cα = 49.53 ppm Lys(3) δ NH = 7.91 ppm Ala(4) δ Cβ = 17.64 ppm Lys(3) δ Hα = 4.02 ppm Ala(4) δ NH = 8.03 ppm Lys(3) δ Hβ = 1.68 ppm Ala(4) δ Hα = 4.16 ppm Lys(3) δ Hβ' = 1.59 ppm Ala(4) δ Hβ = 1.19 ppm Lys(3) δ Hγ = 1.14 ppm Cys(5) δ Cα = 52.25 ppm Lys(3) δ HΔ = 1.46 ppm Cys(5) δ Cβ = 41.26 ppm Lys(3) δ Hε = 2.70 ppm Cys(5) δ NH = 8.05 ppm Lys(3) δ HZ = 7.72 ppm Cys(5) δ Hα = 4.47 ppm Ala(4) δ Cα = 48.86 ppm Cys(5) δ Hβ = 3.07 ppm Ala(4) δ Cβ = 17.24 ppm Ala(4) δ NH = 8.06 ppm Ala(4) δ Hα = 4.18 ppm Ala(4) δ Hβ = 1.25 ppm Cys(5) δ Cα = 51.65 ppm Cys(5) δ Cβ = 40.72 ppm Cys(5) δ NH = 8.12 ppm Cys(5) δ Hα = 4.54 ppm Cys(5) δ Hβ = 3.10 ppm

Cys(5) δ Hβ' = 3.02 ppm Ac-c(CWAGC)-NH 2 Cys(1) δ Cα = 55.91 ppm Ala(3) δ Cα = 49.28 ppm Cys(1) δ Cβ = 27.32 ppm Ala(3) δ Cβ = 17.89 ppm Cys(1) δ NH = 8.30 ppm Ala(3) δ NH = 7.95 ppm Cys(1) δ Hα = 4.33 ppm Ala(3) δ Hα = 4.21 ppm Cys(1) δ Hβ = 3.12 ppm Ala(3) δ Hβ = 1.17 ppm Cys(1) δ Hβ' = 3.04 ppm Gly(4) δ Cα = 43.07 ppm Trp(2) δ Cα = 52.49 ppm Gly(4) δ NH = 7.96 ppm Trp(2) δ Cβ = 42.27 ppm Gly(4) δ Hα2 = 3.55 ppm Trp(2) δ CΔ1 = 124.01 ppm Gly(4) δ Hα3 = 3.90 ppm Trp(2) δ Cε3 = 118.55 ppm Cys(5) δ Cα = 52.42 ppm Trp(2) δ CZ = 111.72 ppm Cys(5) δ Cβ = 41.76 ppm Trp(2) δ CZ' = 118.73 ppm Cys(5) δ NH = 8.09 ppm Trp(2) δ CH2 = 121.34 ppm Cys(5) δ Hα = 4.36 ppm Trp(2) δ NH = 8.19 ppm Cys(5) δ Hβ = 3.25 ppm Trp(2) δ Hα = 4.58 ppm Cys(5) δ Hβ' = 3.01 ppm Trp(2) δ Hβ = 3.04 ppm Trp(2) δ Hβ' = 2.94 ppm Trp(2) δ HΔ1 = 7.12 ppm Trp(2) δ Hε1 = 10.86 ppm Trp(2) δ Hε3 = 7.53 ppm Trp(2) δ HZ = 7.32 ppm Trp(2) δ HZ' = 6.97 ppm Trp(2) δ HH2 = 7.05 ppm

10. Table S6. Analytical characteristics of linear peptides Linear peptide HPLC retention time (min) Molecular mass, calculated / measured [M+H + ] Ac-CAWAC-NH2 22.0 593.7 594.6 Ac-CWAGC-NH2 17.5 579.7 580.6 Ac-CWKAC-NH2 18.9 650.8 651.7 Ac-CVAKC-NH2 12.0 563.7 564.3 Ac-CWAKC(Acm)-NH2 16.4 721.3 722.3 11. Table S7. Analytical characteristics of cyclic peptides Cyclic peptide HPLC retention time (min) Molecular mass, calculated / measured [M+H] + Ac-c(CAWAC)-NH2 22.9 591.7 / 592.6 Ac-c(CWAGC)-NH2 16.4 577.7 / 578.6 Ac-c(CWKAC)-NH2 16.2 648.8 / 649.7 Ac-c(CVAKC)-NH2 6.0 561.7 / 562.3