Homogenous Optic-Null Medium Performs as Optical Surface Transformation

Similar documents
Directive Emission Obtained by Coordinate Transformation

New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics

RECIPROCAL INVISIBLE CLOAK WITH HOMOGE- NEOUS METAMATERIALS

Concealing arbitrary objects remotely with multi-folded transformation optics

Citation for the original published paper (version of record):

Enhancing and suppressing radiation with some permeability-near-zero structures

Progress In Electromagnetics Research, PIER 97, , 2009

Super-reflection and Cloaking Based on Zero Index Metamaterial

Electromagnetic cloaking by layered structure of homogeneous isotropic materials

Infrared carpet cloak designed with uniform silicon grating structure

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures

A Simple Unidirectional Optical Invisibility Cloak Made of Water

Super-resolution image transfer by a vortex-like metamaterial

Experimental demonstration of an ultra-thin. three-dimensional thermal cloak

Cloaking The Road to Realization

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

Route to low-scattering cylindrical cloaks with finite permittivity and permeability

arxiv: v1 [physics.optics] 19 Jun 2008

Design method for quasi-isotropic transformation materials based on inverse Laplace s equation with sliding boundaries

arxiv: v1 [physics.optics] 31 Jul 2008

Research Article Design of a Minimized Complementary Illusion Cloak with Arbitrary Position

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Controlling elastic wave with isotropic transformation materials

Translation and Rotation of Transformation Media under Electromagnetic Pulse

Transformation Optics: From Classic Theory and Applications to its New Branches

Experimental Realization of Strong DC Magnetic Enhancement with Transformation Optics

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

Inside-out electromagnetic cloaking

Electrostatic Field Invisibility Cloak

新型人工电磁媒质对电磁波的调控及其应用. What s Metamaterial? Hot Research Topics. What s Metamaterial? Problem and Motivation. On Metamaterials 崔铁军 东南大学毫米波国家重点实验室

Workshop on New Materials for Renewable Energy

Metamaterials for Space Applications

UNIVERSITY OF LJUBLJANA FACULTY OF MATHEMATICS AND PHYSICS DEPARTMENT OF PHYSICS Seminar 2009/2010. Invisibility cloak

Gradient-index metamaterials and spoof surface plasmonic waveguide

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

Electromagnetic Absorption by Metamaterial Grating System

07/7001 METAMATERIALS FOR SPACE APPLICATIONS

Noise Shielding Using Acoustic Metamaterials

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China

Tuning the far-field superlens: from UV to visible

Plasmonic metamaterial cloaking at optical frequencies

H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University Zhejiang University, Hangzhou , China

Creation of Ghost Illusions Using Metamaterials in Wave Dynamics

Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials

Design and Control of Advanced Functional Systems with Non- Conventional Material Properties

Design Method for Electromagnetic Cloak with Arbitrary Shapes Based on Laplace s Equation

arxiv: v1 [physics.optics] 1 May 2011

Dielectric Optical Cloak

Canalization of Sub-wavelength Images by Electromagnetic Crystals

Metamaterial-Based Flat Lens: Wave Concept Iterative Process Approach

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency

Theoretical study of subwavelength imaging by. acoustic metamaterial slabs

An efficient way to reduce losses of left-handed metamaterials

I n the past a few years, transformation optics (TO) devices have caused much attention1 20, such as electromagnetic

Negative refractive index response of weakly and strongly coupled optical metamaterials.

Optical anisotropic metamaterials: Negative refraction and focusing

TRANSITION BEHAVIOR OF k-surface: FROM HYPERBOLA TO ELLIPSE. S. Qiao Zhejiang University City College Zhejiang University Hangzhou , China

Optical anisotropic metamaterials: Negative refraction and focusing

Robustness in design and background variations in metamaterial/plasmonic cloaking

Alternative approaches to electromagnetic cloaking and invisibility

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain

Experimental demonstration of non-magnetic metamaterial cloak at microwave frequencies

Negative epsilon medium based optical fiber for transmission around UV and visible region

Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials

arxiv: v2 [physics.optics] 30 Apr 2010

Ray Optics at a Deep-Subwavelength Scale: A Transformation Optics Approach

limitations J. Zhou, E. N. Economou and C. M. Soukoulis

Geometry & light:! the science of invisibility!! Ulf Leonhardt"! SCNU & Weizmann Institute!

Ideal and nonideal invisibility cloaks

Experimental demonstration of an ultra-thin. three-dimensional thermal cloak

arxiv: v2 [cond-mat.other] 20 Nov 2008

arxiv: v4 [physics.optics] 30 Sep 2008

From Active Metamaterials to Transformation Electromagnetics: AMULET from the academic's perspective

Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies

Spherical cloaking with homogeneous isotropic multilayered structures

Designing of a simulation software for acoustical layout and shape optimization of new materials for diffusers in room acoustics and architecture

Guiding light with conformal transformations

Configurable metamaterial absorber with pseudo wideband spectrum

Metamaterials. Engineering the structure of materials to discover the unexplored and unexpected

Antipodal radiation pattern of a patch antenna combined with superstrate using transformation electromagnetics

Frequency converter implementing an optical analogue of the cosmological redshift

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Supporting Information

arxiv: v3 [cond-mat.mtrl-sci] 19 Jan 2009

A dvancement of modern transformation optics (TO) has enabled the design and demonstration of many

Wave scattering and splitting by magnetic metamaterials

Two-dimensional Cross Embedded Metamaterials

A metamaterial frequency-selective super-absorber that has absorbing cross section significantly bigger than the geometric cross section

AnisotropicMagneticMetamaterialinNumericalAnalysisforElectromagneticWavePropagationaroundCloakingDevice

Progress In Electromagnetics Research, Vol. 108, , 2010

3D PRINTING OF ANISOTROPIC METAMATERIALS

Metamaterials for Space Applications

Zeroth-order transmission resonance in hyperbolic metamaterials

Optical Cloaking with Non-Magnetic Metamaterials

Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings

Broadband Acoustic Cloak for Ultrasound Waves

arxiv: v1 [physics.optics] 17 Jun 2007

Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

Breaking the imaging symmetry in negative refraction lenses

Transcription:

Progress In Electromagnetics Research, Vol. 151, 169 173, 2015 Homogenous Optic-Null Medium Performs as Optical Surface Transformation Fei Sun 1 and Sailing He1, 2, * Abstract An optical surface transformation (OST) method is proposed briefly in this short paper. Compared with Transformation Optics (TO), we do not need to consider what kinds of coordinate transformation should be used when designing a novel device, but only need to choose the shapes of two end surfaces (namely, the input and output surfaces of the device), which are linked by an optic-null medium (ONM) that is a highly anisotropic homogeneous medium. All devices designed by OST can be realized by some ONM. The design process of an optical device with some pre-designed function can be converted to the simple choice of the shape and size of the optical surfaces with the OST, which will become a simple and yet innovative way to design electromagnetic/optical devices. 1. INTRODUCTION Designing optical devices by a coordinate transformation has become a very hot topic in recent years owing to the theory of transformation optics (TO) and its late development [see, e.g., [1 4] and references cited therein]. Many scattering-related problems can be tackled with the help of TO, e.g., cancelling the scattering pattern of an arbitrarily shaped object [1, 5 7], steering the radiation angle [8, 9], creating the scattering illusions [10 13]. Due to the development of metamaterials (i.e., a kind of artificial materials composed of some subwavelength structures) [14], many devices designed by TO have been fabricated and experimentally demonstrated. Although TO gives a new approach to the design of novel optical devices, there are some limitations on this theory: Firstly, we have to find a proper coordinate transformation or a well-designed reference space according to the specific device that we want to realize with a pre-designed function. The coordinate transformation can be designed analytically (or numerically), which is not convenient to some engineers who are not good at mathematical derivation. Secondly, the medium designed by TO (i.e., the transformation medium) is often very complicated (e.g., often inhomogeneous anisotropic impedance-matched media), which means that we have to simplify/approximate the ideal media before the experimental realization and scarify some performances of the device. In this short paper we propose a simple idea for the design of optical devices, namely, the so-called optical surface transformation (OST). Based on the special properties of the optic-null medium (ONM), we find that the design process can be very simple: all we need to do is to design the shapes of the input and output surfaces of the device and use a properly shaped ONM that links these two surfaces. 2. METHOD AND AN EXAMPLE ONM has been used for different optical/electromagnetic devices, e.g., an optical hyper-lens [15], magnetic hoses [16], field concentrators [17], radome for a phased array antenna [8], etc.. Actually the Received 28 April 2015, Accepted 16 June 2015, Scheduled 19 June 2015 * Corresponding author: Sailing He (sailing@coer.zju.edu.cn). 1 Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP, East Building # 5, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. 2 Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm S-100 44, Sweden.

170 Sun and He (a) (b) Figure 1. 2D FEM (finite element method) simulation results: we plot the normalized absolute value of electric field s z component for TE wave case. The white region is filled with the ONM whose main axis is along x direction. The shapes of the input and output surfaces are chosen at random. If we put a line current of unit amplitude 1 A at the input surface S 1 of the device, we will obtain its image point at the output surface S 2 of the device. role of the ONM is just like a surface projecting medium, which can make a projection transformation from one surface (e.g., the input surface of the device) to the other surface (e.g., the output surface of the device). As shown in Figure 1, two arbitrarily shaped surfaces (having the same projected cross section along the x direction) connected by the ONM with main axis in x direction, will perform equivalently and can be treated as the equivalent optical surfaces (i.e., each point on surface S 1 will be projected to its corresponding point on surface S 2 ). This means that the ONM with the main axis in the x direction will perform like a projection transformation along the x direction on its two end surfaces. The relative permittivity and permeability tensors of an ONM whose main axis is along the x direction can be described as: ( ) 1 ε X = μ X =diag Δ, Δ, Δ, Δ 0 (1) Note that label X means the main axis of this ONM is along x direction. Similarly, the main axis of the ONM can be in any other direction, e.g., in the radial direction (in this case the permittivity and permeability of the ONM are extremely large along the radial direction and nearly zero along other orthogonal directions, and its function is to project surfaces along the radial direction). Two arbitrarily shaped surfaces can always be linked by the ONM (or a combination of many ONMs with different main axes), which means that we can always make two arbitrarily shaped surfaces sharing the same projected cross section by projecting many times along different directions. The ONM can be used to perform an OST to its two end surfaces. We should note that the ONM has been designed for many specific applications [15 17], and has been experimentally realized at a microwave frequency [18, 19]. In this short paper, we propose the idea of using the OST function of the ONM to design optical devices without any mathematical formula. Next we will give an example to show that a device design that has been achieved through TO can be obtained in a much simpler way with the present idea of OST. A hyper-lens is a super-resolution imaging device that converts the evanescent wave to the propagation wave in the far field region [15, 20, 21]. Actually the hyper-lens can be treated as a special kind of the ONM whose main axis is along the radial direction. The object and image surfaces of a hyperlens are both cylindrical surfaces, which are not convenient for practical applications. Although TO has been utilized to reshape the object or image surface of a hyper-lens (see, e.g., [22, 23]), these methods require complicated mathematical calculations/derivations/formulas (and new calculations should be made if the size of the hyper-lens changes). We can simply convert the image and object surfaces of a hyper-lens to flat planes with the help of the present OST. As shown in Figure 2(a), the original hyper-lens (the half-circular ring region of purple color) has a cylindrical object plane S 1 and a cylindrical image plane S 2. We can simple add two ONMs both having main axes along the y direction (the yellow regions) to project the original object and image surfaces (i.e., S 1 and S 2 ) to the new object and image planes (i.e., S 1 and S 2 ), respectively. The

Progress In Electromagnetics Research, Vol. 151, 2015 171 (a) (b) (c) Figure 2. (a) Our idea of using the OST to convert the curved object and image surfaces of a hyper-lens to flat planes. The purple region is the original hyper-lens whose relative permittivity and permeability are extremely large along the radial direction and nearly zero in other orthogonal directions. The yellow regions are the ONM with main axis along the y direction. The original object and image surfaces (S 1 and S 2 ) are converted to flat planes (S 1 and S 2 ). (b) and (c) are FEM simulation results for the normalized absolute value of the electric field s z component for the TE case. As the objects the two incoherent line currents with unit amplitude 1 A are separated by a distance λ 0 /3. (b) The original hyper-lens: the objects are set on the cylindrical object surface of the lens. (c) The transformed hyper-lens: the objects are set on the flat object surface of the lens. new object and image planes are both flat planes. The imaging ability of the original hyper-lens and the transformed hyper-lens are given in Figures 2(b) and 2(c), respectively. We should note that the object and image planes can also be converted to any other shapes (not limited to flat planes). Compared with the previous TO methods converting the object or image surface of a hyper-lens [22, 23], our OST method is much simpler (no mathematical calculation is needed during the whole design process). When the size of the hyper-lens changes, we can still use the same idea to convert its image or object surface to a flat plane. Furthermore, only one homogeneous anisotropic medium (ONM) with main axis in the y direction is needed to realize the whole device. 3. SUMMARY AND DISCUSSION Our idea of designing an optical device by an OST is very simple: First we choose two surfaces of arbitrary shape as the input and output surfaces of the device (also as the two end surfaces of the ONM) according to the specific application. Then we find a commonly projected cross section of these two surfaces by projecting these surfaces along different directions, which also determine the direction of ONM s the main axis in each part of the device. There is no mathematical effort (e.g., a coordinate transformation) during the whole design process. All devices designed by the OST can be realized with only one homogeneous anisotropic medium (i.e., the ONM). The ONM may have different main axes in different parts of the designed device, i.e., the optic-null media are the same homogeneous anisotropic material positioned with its main axis along different projecting directions in different parts. The ONM

172 Sun and He has been experimentally demonstrated at a microwave frequency through metamaterials [18, 19]. An OST can greatly simplify the design process. We will give a detailed description with more examples and applications of the OST in a future full-length paper. ACKNOWLEDGMENT This work is partially supported by the National Natural Science Foundation of China (Nos. 91233208 and 60990322), the National High Technology Research and Development Program (863 Program) of China (No. 2012AA030402), the Program of Zhejiang Leading Team of Science and Technology Innovation, Swedish VR grant (# 621-2011-4620) and SOARD. REFERENCES 1. Pendry, J. B., D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science, Vol. 312, 1780 1782, 2006. 2. Chen, H., C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nature Materials, Vol. 9, No. 5, 387 396, 2010. 3. Liu, Y. M. and X. Zhang, Recent advances in transformation optics, Nanoscale, Vol. 4, 5277 5292, 2012. 4. Sun, F. and S. He, Transformation magneto-statics and illusions for magnets, Scientific Reports, Vol. 4, 6593, 2014. 5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, Vol. 314, No. 5801, 977 980, 2006. 6. Lai, Y., H. Chen, Z. Q. Zhang, and C. T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Vol. 102, 093901, 2009. 7. Sun, F. and S. He, A third way to cloak an object: Cover-up with a background object, Progress In Electromagnetics Research, Vol. 149, 173 182, 2014. 8. Sun, F. and S. He, Extending the scanning angle of a phased array antenna by using a null-space medium, Scientific Reports, Vol. 4, 6832, 2014. 9. Sun, F., S. Zhang, and S. He, A general method for designing a radome to enhance the scanning angle of a phased array antenna, Progress In Electromagnetics Research, Vol. 145, 203 212, 2014. 10. Lai, Y., J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., Vol. 102, No. 25, 253902, 2009. 11. Li, C., X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, Experimental realization of a circuit-based broadband illusion-optics analogue, Phys. Rev. Lett., Vol. 105, No. 23, 233906, 2010. 12. Xu, Y., S. Du, L. Gao, and H. Chen, Overlapped illusion optics a perfect lens brings a brighter feature, New J. Phys., Vol. 13, 023010, 2011. 13. Pendry, J., All smoke and metamaterials, Nature, Vol. 460, 579 580, 2009. 14. Sihvola, A., Metamaterials in electromagnetic, Metamaterials, Vol. 1, No. 1, 2 11, 2007. 15. Kildishev, A. V. and E. E. Narimanov, Impedance-matched hyperlens, Opt. Lett., Vol. 32, No. 23, 3432 3434, 2007. 16. Navau, C., J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez, Long-distance transfer and routing of static magnetic fields, Phys. Rev. Lett., Vol. 112, No. 25, 253901, 2014. 17. Sadeghi, M. M., H. Nadgaran, and H. Chen, Perfect field concentrator using zero index metamaterials and perfect electric conductors, Frontiers of Physics, Vol. 9, No. 1, 90 93, 2014. 18. He, Q., S. Xiao, X. Li, and L. Zhou, Optic-null medium: Realization and applications, Opt. Express, Vol. 21, No. 23, 28948 28959, 2013. 19. Sadeghi, M. M., S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry-Pérot resonances, Scientific Reports, Vol. 5, 8680, 2015.

Progress In Electromagnetics Research, Vol. 151, 2015 173 20. Jacob, Z., L. V. Alekseyev, and E. Narimanov, Optical hyperlens: Far-field imaging beyond the diffraction limit, Opt. Express, Vol. 14, No. 18, 8247 8256, 2006. 21. Lu, D. and Z. Liu, Hyperlenses and metalenses for far-field super-resolution imaging, Nat. Commun., Vol. 3, 1205, 2012. 22. Han, S., Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, Ray optics at a deep-sub-wavelength scale: A transformation optics approach, Nano Lett., Vol. 8, 4243 4247, 2008. 23. Kildishev, A. V. and V. M. Shalaev, Engineering space for light via transformation optics, Opt. Lett., Vol. 33, No. 1, 43 45, 2008.