Coupled channel dynamics in Λ and Σ production

Similar documents
Meson-baryon interaction in the meson exchange picture

Pion photoproduction in a gauge invariant approach

πn scattering and π photoproduction in a dynamical coupled-channels model

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

MESON PRODUCTION IN NN COLLISIONS

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

arxiv: v2 [nucl-th] 18 Sep 2009

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Satoshi Nakamura (EBAC, JLab)

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Valence quark contributions for the γn P 11 (1440) transition

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Cornelius Bennhold George Washington University

Dynamical coupled channel calculation of pion and omega meson production

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Dynamical coupled-channels channels study of meson production reactions from

Hunting for the Nucleon Resonances by Using Kaon Photoproduction

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

Light Baryon Spectroscopy What have we learned about excited baryons?

Dynamical understanding of baryon resonances

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

Understanding the basic features of Cascade Photoproduction

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Resonance properties from finite volume energy spectrum

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Neutrino-induced meson productions in resonance region

Clebsch-Gordan Coefficients

Photoexcitation of N* Resonances

arxiv: v2 [hep-ph] 1 Feb 2018

Phenomenological aspects of kaon photoproduction on the nucleon

Report on NSTAR 2005 Workshop

Coupled-channel Bethe-Salpeter

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Covariant quark-diquark model for the N N electromagnetic transitions

Overview of N* Physics

Nucleon resonances from coupled channel reaction model

Exotic baryon resonances in the chiral dynamics

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Cascade Production in K- and Photon-induced Reactions. Collaboration: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N.

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 19 Nov 2000

arxiv: v1 [nucl-th] 13 Apr 2011

The Beam-Helicity Asymmetry for γp pk + K and

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

Nucleon Spectroscopy with CLAS

Electroexcitation of Nucleon Resonances BARYONS 02

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Pion-Nucleon P 11 Partial Wave

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

arxiv: v3 [nucl-ex] 15 Dec 2015

Hadron Spectroscopy at COMPASS

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Measurement of Double-Polarization

Facilities and Detectors for Baryon Physics

Pion-nucleon scattering around the delta-isobar resonance

Electroexcitation of Nucleon Resonances BARYONS 02

The search for missing baryon resonances

Structure of near-threshold s-wave resonances

Hadronic parity-violation in pionless effective field theory

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

arxiv: v2 [nucl-th] 25 Oct 2018

Baryon Spectroscopy: what do we learn, what do we need?

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

arxiv: v1 [nucl-th] 6 Aug 2008

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

A final state interaction model of resonance photoproduction

Overview of Light-Hadron Spectroscopy and Exotics

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

Recent Results from Jefferson Lab

Photoproduction of mesons off light nuclei

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Bonn-Gatchina partial wave analysis. Comparison of the K-matrix and D-matrix (N/D based) methods

Extracting Resonance Parameters from Exclusive Electroproduction off Protons at CLAS. Kijun Park. August 23, 2017

8 September Dear Paul...

Chiral dynamics and baryon resonances

Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

Nature of the sigma meson as revealed by its softening process

CHAPTER 2 ELECTRON-PROTON COLLISION

Analyticity and crossing symmetry in the K-matrix formalism.

Kaon Photoproduction Results from CLAS

arxiv: v2 [hep-ph] 23 Jul 2010

Asymmetry dependence of Gogny-based optical potential

arxiv: v1 [nucl-ex] 9 Jul 2013

Electroproduction of p-shell hypernuclei

Nucleon EM Form Factors in Dispersion Theory

Excited Nucleons Spectrum and Structure

arxiv: v1 [nucl-th] 23 Feb 2016

Isospin-breaking corrections to the pion nucleon scattering lengths

Physik Department, Technische Universität München D Garching, Germany. Abstract

arxiv:nucl-th/ v1 22 Nov 1994

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park

Transcription:

Coupled channel dynamics in Λ and Σ production S. Krewald M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, George Washington University, University of Georgia, Universität Bonn EmNN*, Columbia,SC, August 14, 212 1/ 39

The model Coupled channel dynamics πn ππn π ηn Nρ σn KΛ KΣ Nω 177 1215 1486 1688 1611 1722 E CM [MeV ] Athens-Bonn-Jülich-Washington collaboration Dynamical coupled-channels model for elastic & inelastic meson-baryon scattering up to and beyond 2 GeV Lagrangian of Wess & Zumino + additional channels(su3) 12 Nucleon and 1 Delta Resonances with total spin up to J = 9/2 Simultaneous fit to πn, ηn, KΣ, and KΛ Used as input for a gauge invariant analysis of pion photoproduction respects unitarity(2-body) and analyticity; Resonance poles and residues EmNN*, Columbia,SC, August 14, 212 2/ 39

The scattering equation Coupled channel dynamics T I µν( k, λ, k, λ) = V I µν( k, λ, k, λ) + d 3 qv I µγ( k, λ, q, λ 1 ) Z E γ(q) + iɛ T I γν( q, λ, k, λ) γ,λ EmNN*, Columbia,SC, August 14, 212 3/ 39

Analyticity Coupled channel dynamics N*(1535)S11 N*(165)S11 Energy Definition of a resonance: Pole in the complex plane of the scattering energy E ( z W); - Pole position ( mass & width ) - Residues ( branching ratios ) Extractions of resonance parameters in terms of poles and residues Re E Re E Not every bump is a resonance and not every resonance is a bump. Moorhouse 196ties EmNN*, Columbia,SC, August 14, 212 4/ 39

πn πn : Partial wave amplitudes I=1/2 (preliminary) Detail P 11:.4 Re S 11.2 -.2 -.4.4.2 -.2 -.4 S 11(1535) and S 11(165) Re P 11 12 14 16 18 2 1.8.6.4.2.8.6.4.2 Im S 11 Im P 11 12 14 16 18 2 dynamical Roper P 11(144) genuine P 11(171).1 -.1 Re P 11 15 16 17 18 19.6.5.4 Im P 11 15 16 17 18 19 Inclusion of P 11 (171) necessary to improve KΛ Input in the fit: energy-dependent solution (black line) But: Our solution matches single-energy solution (data points) Coupled-channels essential Signal for a N (17XX)P 11 Single-energy solutions are not data Fit to πn observables required EmNN*, Columbia,SC, August 14, 212 5/ 39

πn πn : Partial wave amplitudes I=1/2 (preliminary) Detail P 11:.4 Re S 11.2 -.2 -.4.4.2 -.2 -.4 S 11(1535) and S 11(165) Re P 11 12 14 16 18 2 1.8.6.4.2.8.6.4.2 Im S 11 Im P 11 12 14 16 18 2 dynamical Roper P 11(144) genuine P 11(171).1 -.1 Re P 11 15 16 17 18 19.6.5.4 Im P 11 15 16 17 18 19 Inclusion of P 11 (171) necessary to improve KΛ Input in the fit: energy-dependent solution (black line) But: Our solution matches single-energy solution (data points) Coupled-channels essential Signal for a N (17XX)P 11 Single-energy solutions are not data Fit to πn observables required EmNN*, Columbia,SC, August 14, 212 5/ 39

Importance of polarization measurements: The P 33 (192) 12 z = 219 MeV 231 MeV 259 MeV 274 MeV 1 8 dσ/dω [ µb / sr ] 6 4 2 12 1 216 MeV 2118 MeV 2147 MeV 2158 MeV 8 6 1.5 4 2 1.5-1 -.5.5 1 -.5.5 1 -.5.5 1 -.5.5 1 z = 219 MeV 231 MeV 259 MeV 274 MeV Orange: Only dσ/dω in fit: no P 33(192) necessary Green: dσ/dω + P in fit: Need for P 33(192)! -.5 P -1-1.5 1 216 MeV 2118 MeV 2147 MeV 2158 MeV.5 -.5-1 -1.5-1 -.5.5 1 -.5.5 1 -.5.5-11 -.5.5 1 EmNN*, Columbia,SC, August 14, 212 6/ 39

πn πn : Partial wave amplitudes I=1/2 (preliminary) -.1 -.2 Re P 13.4.3.2.1 Im P 13.5 -.5 Re F 17.1.5 Im F 17.4.2 -.2 -.4.2.1 Re D 13.8.6.4.2.3 Im D 13 Re D 15 Im D.4 15.1.5 Re G 17 Re G 19.2.1.1 Im G 17 Im G 19 -.1.2.1 -.5.5.4.2 -.2 -.4 Re F 15.8 Im F 15 12 14 16 18 2.6.4.2 12 14 16 18 2.1 Re H 19 12 16 2.2.1 Im H 19 12 16 2 EmNN*, Columbia,SC, August 14, 212 7/ 39

πn πn : Partial wave amplitudes I=3/2 (preliminary) -.1 -.2 Re S 31.6 Im S 31.5 Re F 35 Im F 35.15 -.3.4 -.5.1 -.4 -.5.2 -.1 -.15.5 -.1 -.2 -.3 -.4 -.5.4.2 -.2 -.4 -.1 -.2 Re P 31 Re D 33 Re P 33.5.4.3.2.1 1.8.6.4.2.25.2.15.1.5 Im P 31 Im P 33 Im D 33.3.2.1 -.1 -.5 -.1.4.2 -.2 -.4 -.6 -.8 Re F 37.4.3.2.1 Re G 37 Im G 37.15 Re G 39.1.5.14.12.1.8.6.4.2 Im F 37 Im G 39 -.5 -.1 -.15 Re D 35 Im D 35.15 12 14 16 18 2.1.5 12 14 16 18 2.4.2 -.2 -.4 Re H 39 12 16 2.4.3.2.1 Im H 39 12 16 2 EmNN*, Columbia,SC, August 14, 212 8/ 39

π p ηn : Cross section and Polarization (preliminary) Selected results dσ/dω [ mb/sr ] P x dσ/dω [ mb/sr ].4.3.2.1 Bayadilov 8, Eur. Phys. J. A. 35, 287 z=1496 MeV -1 -.5.5 1.1 1793 MeV.5 157 MeV -1 -.5.5 1 1989 MeV 1674 MeV -1 -.5.5 1 z = 27 MeV 1897 MeV -1 -.5.5 1 2148 MeV Difficult data situation Inconsistencies among different data sets Data at higher energies questionable Polarization data questionable Full results ηn -.5-1 -.5.5 1-1 -.5.5 1-1 -.5.5 1-1 -.5.5 1 EmNN*, Columbia,SC, August 14, 212 9/ 39

π p K Λ: dσ/dω, Polarization & Spinrotation angle (preliminary) Seclected results dσ/dω [ µb/sr ] 12 1.5 -.5 8 4 1 P.5-1 z = 1626 MeV -1 -.5.5 1 2 z = 1633 MeV -1 -.5.5 1 Full results KΛ 177 MeV -1 -.5.5 1 1845.5 MeV -1 -.5.5 1 1973 MeV -1 -.5.5 1 1939 MeV -1 -.5.5 1 2316 MeV -1 -.5.5 1 26 MeV -1 -.5.5 1 β [rad] β [rad] 6 4 2-2 6 4 2-2 z = 1852 MeV 216 MeV -1 -.5.5 1 EmNN*, Columbia,SC, August 14, 212 1/ 39

π p K Σ : dσ/dω & Polarization (preliminary) dσ/dω [ µb/sr ] 8 6 4 2 z = 1694 MeV -1 -.5.5 1 1938 MeV -1 -.5.5 1 226 MeV -1 -.5.5 1 2316 MeV -1 -.5.5 1 2 1 P 1724.5 MeV 1825.5 MeV -1-2 -1 -.5.5 1-1 -.5.5 1 1999 MeV -1 -.5.5 1 228 MeV -1 -.5.5 1 Full results K Σ EmNN*, Columbia,SC, August 14, 212 11/ 39

π p K + Σ : dσ/dω (preliminary) dσ/dω [ µb/sr ] 8 6 4 2 1763 MeV 1818 MeV z = 225 MeV 245 MeV -1 -.5.5 1-1 -.5.5 1-1 -.5.5 1-1 -.5.5 1 No polarization data Full results K + Σ EmNN*, Columbia,SC, August 14, 212 12/ 39

π + p K + Σ + (preliminary) Cross section, polarization and spinrotation parameter dσ/dω [ µb/sr ] P 1 8 6 4 2 1.5 -.5-1 z = 1729 MeV -1 -.5.5 1 z = 1729 MeV -1 -.5.5 1 Full results K + Σ + 1985 MeV -1 -.5.5 1 z = 1822 MeV -1 -.5.5 1 2118 MeV -1 -.5.5 1 231 MeV -1 -.5.5 1 2318 MeV -1 -.5.5 1 2318 MeV -1 -.5.5 1 β [rad] β [rad] 6 4 2-2 6 4 2-2 z = 221 MeV z = 217 MeV -1 -.5.5 1 Green dashed line: Jülich model solution from NPA 851, 58 (211) EmNN*, Columbia,SC, August 14, 212 13/ 39

Photoproduction: dσ/dω and Σ γ for γp π + n F. Huang, M. Döring, K. Nakayama et al., Phys. Rev. C85 (212) 543 Differential cross section for γp π + n Photon spin asymmetry for γp π + n Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...] EmNN*, Columbia,SC, August 14, 212 14/ 39

Resonance content: I = 1/2 (preliminary) Re(z ), -2Im(z ) r, θ Γ πn /Γ tot (Γ 1/2 πn Γ1/2 ηn )/Γ tot (Γ 1/2 πn Γ1/2 KΛ )/Γ tot (Γ 1/2 πn Γ1/ K N(144)P 11 1343 69.5 48.7 1/2 + **** (a) 266-113 N(152)D 13 1523 37.8 75.78 3/2 **** 1-357.1 N(1535)S 11 1496 13 38.13 43.9 1/2 **** 66-4 N(165)S 11 1677 3.2 44.95 15.69 18.82 1/2 **** 134 36 N(171)P 11 1678 8.8 15.25 22.93 21.2 1/2 + *** 116-321.2 N(1675)D 15 1643 33.4 36.63 2.85 1.95 5/2 **** 18-32.7 N(168)F 15 1664 4.6 65.44 1.59.1 5/2 + **** 124-2.7 N(172)P 13 1742 16.7 12.8 4.91 4.11 2.4 3/2 + **** 258-32.6 N(199)F 17 1851 4 3.2.46 1.32.8 7/2 + ** 26-99.8 N(219)G 17 249 31.8 17.65.32 1.27.5 7/2 **** 356-23.3 N(222)H 19 2146 38 15.82.6 1.79.2 9/2 + **** 47-65.7 N(225)G 19 2117 15.6 6.27.13 1.36.1 9/2 **** 488-63.4 EmNN*, Columbia,SC, August 14, 212 15/ 39

Resonance content: I = 3/2 (preliminary) Re(z ), -2Im(z ) r, θ Γ πn /Γ tot (1232)P 33 1216 51 1 (Γ 1/2 πn Γ1/2 KΣ )/Γtot 3/2 + **** 96-39.3 (162)S 31 1598 16 41.63 1/2 **** 76-16 (17)D 33 1636 32.1 16.72 3/2 **** 37-25.7 (195)F 35 1757 1.6 1.65.2 5/2 + **** 198-56.8 (191)P 31 1797 47.8 24.62 2.32 1/2 + **** 378-125.4 (192)P 33 1848 28 6.24 15.28 3/2 + *** 818-351.6 (193)D 35 1767 16.9 7.18 2.93 5/2 *** 452-1.7 (195)F 37 1892 55.2 5.74 3.89 7/2 + **** 216-2.5 (22X)G 37 2133 16.8 7.56.56 7/2 * 438-64 (24)G 39 1933 16.5 5.76.89 9/2 ** 552-116.7 EmNN*, Columbia,SC, August 14, 212 16/ 39

Summary and outlook Coupled channel dynamics Lagrangian based, field theoretical description of meson-baryon interaction Unitarity and analyticity are ensured; branch points in the complex plane included precise, model independent determination of resonance parameters Coupled channel formalism links different reactions in one combined description: πn πn, π + p K + Σ +,..., γn πn,... Extension to kaon photoproduction EmNN*, Columbia,SC, August 14, 212 17/ 39

Matching with lattice Coupled channel dynamics The lattice results depend on a finite volume V and a pion mass >= M exp pion. M lattice pion The dynamical coupled channel approach is based on a Lagrangian and therefore can vary V and M pion. May we hope to interpolate between experiment and the state-of-the-art lattice? EmNN*, Columbia,SC, August 14, 212 18/ 39

Matching with quark dynamics Question: Do the towers of excited baryons predicted by quark models merge into a continuum after coupling to meson-baryon dynamics is considered? Why not a pragmatic approach? Quark model M N couplings N N π, N η, ΛK, ΣK. Match: N H quark N π = ψ N L int ψ N π for q on shell = MN 2 (1 ( m N +m π M N ) 2 ) 1 2 (1 ( m N m π M N ) 2 ) 1 2. Use as input in time-ordered perturbation theory! This might be the first step for a generalization to electroproduction. Analogy: quasielastic bump in nuclear physics = superposition of nuclear modes coupled to continuum. EmNN*, Columbia,SC, August 14, 212 19/ 39

π p K Λ: Total cross section (preliminary) σ [mb] 1.8.6.4.2 1.8.6.4.2 1625 165 1675 17 1725 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 2/ 39

π p K Λ: Total cross section (preliminary) 1 1.8.8.6 σ [mb].6.4.2.4.2 1625 165 1675 17 1725 1 Partial wave content: 17 18 19 2 21 22 23.1 P 11 S 11 P 13 σ [mb].1 D 15 H 19 D 13.1 F 17 G 17 G 19 F 15.1 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 2/ 39

π p K Σ : Total cross section (preliminary).25.2 σ [mb].15.1.5 17 18 19 2 21 22 23 24 EmNN*, Columbia,SC, August 14, 212 21/ 39

π p K Σ : Total cross section (preliminary).25 σ [mb].2.15.1 Partial wave content I = 1/2:.5 17 18 19 2 21 22 23 24.1 S 11.1 σ [mb].1 D 15 F 17 P 13 D 13 P 11.1 F 15 G 17 1e-5 17 18 19 2 21 22 23 24 H 19 G 19 EmNN*, Columbia,SC, August 14, 212 21/ 39

π p K Σ : Total cross section (preliminary).25 σ [mb].2.15.1 Partial wave content I = 3/2:.5 17 18 19 2 21 22 23 24.1 P 33.1 S 31 G 39 σ [mb].1 D 35 F 37 D 33 P 31 F 35.1 G 37 1e-5 17 18 19 2 21 22 23 24 EmNN*, Columbia,SC, August 14, 212 21/ 39

π p K + Σ : Total cross section (preliminary).25.2 σ [mb].15.1.5 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 22/ 39

π p K + Σ : Total cross section (preliminary).25.2 σ [mb].15.1 Partial wave content I = 1/2:.5 17 18 19 2 21 22 23.1 S 11.1 D 15 F 17 σ [mb].1 P D 13 13 P 11 F 15.1 G 17 H 19 G 19 1e-5 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 22/ 39

π p K + Σ : Total cross section (preliminary).25.2 σ [mb].15.1 Partial wave content I = 3/2:.5 17 18 19 2 21 22 23.1 P 33.1 S 31 F 37 σ [mb].1 D 33 D 35 P 31.1 G 39 F 35 G 37 1e-5 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 22/ 39

π + p K + Σ + : Total cross section (preliminary).8.7.6.5 σ [mb].4.3.2.1 17 18 19 2 21 22 23 24 EmNN*, Columbia,SC, August 14, 212 23/ 39

π + p K + Σ + : Total cross section (preliminary).8.7.6 σ [mb].5.4.3 Partial wave content:.2.1 17 18 19 2 21 22 23 24.1 S 31 P 33 F 37.1 D 33 G 39 σ [mb].1 D 35 P 31 F 35.1 G 37 1e-5 17 18 19 2 21 22 23 24 EmNN*, Columbia,SC, August 14, 212 23/ 39

π p ηn : Total cross section (preliminary) σ [mb] 3.5 3 2.5 2 1.5 1 3 2.5 2 1.5 1.5 149 15 151 152 153.5 15 16 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 24/ 39

π p ηn : Total cross section (preliminary) 3.5 σ [mb] 3 2.5 2 1.5 1 3 2.5 2 1.5 1.5 149 15 151 152 153 Partial wave content:.5 15 16 17 18 19 2 21 22 23 1.1 S P11 11 D P 15 13 σ [mb].1.1 F 17 D 13 G17.1 F 15 1e-5 G 19 H 19 15 16 17 18 19 2 21 22 23 EmNN*, Columbia,SC, August 14, 212 24/ 39

Photoproduction: Coupled channels and gauge invariance Haberzettl, PRC56 (1997), Haberzettl, Nakayama, Krewald, PRC74 (26) Gauge invariance: Generalized Ward-Takahashi identity (WTI) k µm µ = F sτ S p+k Q i S 1 p + S 1 p Q f S p k F uτ + 1 p p +k Q pi p p F t τ Photoproduction amplitude: M µ = M µ s + M µ u + M µ t }{{} coupling to external legs + M µ int }{{} coupling inside hadronic vertex Strategy: Replace generalized WTI is satisfied by phenomenological contact term such that the EmNN*, Columbia,SC, August 14, 212 25/ 39

Photoproduction: dσ/dω and Σ γ for γn π p F. Huang, M. Döring, K. Nakayama et al., Phys. Rev. C85 (212) 543 Differential cross section for γn π p Photon spin asymmetry for γn π p Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...] EmNN*, Columbia,SC, August 14, 212 26/ 39

Photoproduction: dσ/dω and Σ γ for γp π p F. Huang, M. Döring., K. Nakayama et al., Phys. Rev. C85 (212) 543 Differential cross section for γp π p Photon spin asymmetry for γp π p Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...] EmNN*, Columbia,SC, August 14, 212 27/ 39

Photoproduction: dσ/dω and Σ γ for γp π + n F. Huang, M. Döring, K. Nakayama et al., Phys. Rev. C85 (212) 543 Differential cross section for γp π + n Photon spin asymmetry for γp π + n Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...] EmNN*, Columbia,SC, August 14, 212 28/ 39

/appendix Coupled channel dynamics EmNN*, Columbia,SC, August 14, 212 29/ 39

Error estimates for masses: (195)F 35 Table: Error estimates of bare mass m b and bare coupling f for the (195)F 35 resonance. m b [MeV] πn ρn π ΣK 2258 +44 43.5 +.11.12 1.62 +1.29 1.61 1.15 +.3.22.12 +.65.59 EmNN*, Columbia,SC, August 14, 212 29/ 39

Motivation: Baryon spectrum, πn scattering Higher energies: more states are predicted than seen in elastic πn scattering ( misssing resonance problem ) coupling to other channels like multi-pion and KY Predicted resonances from recent lattice calculations [Edwards et al., Phys.Rev. D84 (211)]: 2. 1.8 1.6 1.4 1.2 1..8.6 m π = 396MeV EmNN*, Columbia,SC, August 14, 212 3/ 39

The scattering equation Coupled channel dynamics T I µν( k, λ, k, λ) = V I µν( k, λ, k, λ) + d 3 qv I µγ( k, λ, q, λ 1 ) Z E γ(q) + iɛ T I γν( q, λ, k, λ) γ,λ EmNN*, Columbia,SC, August 14, 212 31/ 39

The scattering equation Coupled channel dynamics T I µν ( k, λ, k, λ) = V I µν ( k, λ, k, λ) + d 3 qv I µγ ( k, λ, q, λ 1 ) Z E γ(q) + iɛ T I γν ( q, λ, k, λ) γ,λ Features: Coupled channels πn, ηn, KΛ, KΣ, ππn [π, σn, ρn] Hadron exchange: relevant degrees of freedom in 2nd and 3rd resonance region t- and u-channel processes: background, all channels are linked s-channel processes: genuine resonances (only a minimum) Channels/reactions linked (SU(3) symmetry in Lagrangian framework) No on-shell factorization, full analyticity (dispersive parts) EmNN*, Columbia,SC, August 14, 212 31/ 39

s-, t- and u-channel exchanges s-channel states coupling to πn, ηn, KΛ, KΣ, π, ρn. t- and u-channel exchanges: πn ρn ηn πδ σn KΛ KΣ πn N,Δ,(ππ) σ, N, Δ, Ct., N, a N, Δ, ρ N, π Σ, Σ*, K* Λ, Σ, Σ*, (ππ) ρ π, ω, a 1 K* ρn N, Δ, Ct., ρ - N, π - - - ηn N, f - - K*, Λ Σ, Σ*, K* πδ N, Δ, ρ π - - σn N, σ - - KΛ Ξ, Ξ*, f, Ξ, Ξ*, ρ ω, φ KΣ Ξ, Ξ*, f, ω, φ, ρ EmNN*, Columbia,SC, August 14, 212 32/ 39

ππn states: π, σn, ρn Coupled channel dynamics π π J,M l,s,m Δ π Δ ππ/πn subsystems fit the respective phase shifts. σ, ρ π Towards a consistent inclusion of 3-body cuts. l,s,m J,M N σ, ρ π σ, ρ π π Consistent 3-body cuts N Allow for a-priori 3-body unitarity per construction [Aaron, Almado, Young, PR 174 (1968) 222]. EmNN*, Columbia,SC, August 14, 212 33/ 39

Crossing symmetry at the level of the potential (not the amplitude) N N t (NN ππ) π π σ, ρ π π s (πn πn) π π For σ(6) and ρ(77) quantum numbers: πn t-channel interaction from N N ππ (analytically continued) data. Use of crossing symmetry and dispersion techniques [Schütz et al. PRC 49 (1994) 2671]. EmNN*, Columbia,SC, August 14, 212 34/ 39

Scattering equation: partial wave decomposition Expand T ( k, λ, k, λ) in terms of the eigenstates of the total angular momentum J: λ k T λ k = 1 (2J + 1)D J λλ 4π (Ω k k, ) λ k T J λ k J Scattering equation: 1 4π J + 1 4π (2J + 1)D J λλ (Ω k k, ) λ 3λ 4 k T J λ 1λ 2 k = λ3λ 4 k V J λ 1λ 2 k + γ 1,γ 2 J,J dqdω qk q 2 (2J + 1)(2J + 1)D J γλ (Ω k q, ) D J λγ (Ω qk, ) λ 3λ 4 k V J γ 1γ 2 q G(q) γ 1γ 2 q T J λ 1λ 1 k dω qk D J γλ (Ω k q, ) D J λγ (Ω qk, ) = D J λλ (Ω k k, 4π ) 2J + 1 δ J J EmNN*, Columbia,SC, August 14, 212 35/ 39

Scattering equation: partial wave decomposition Expand T ( k, λ, k, λ) in terms of the eigenstates of the total angular momentum J: λ k T λ k = 1 (2J + 1)D J λλ 4π (Ω k k, ) λ k T J λ k J Scattering equation: 1 4π J + 1 4π (2J + 1)D J λλ (Ω k k, ) λ 3λ 4 k T J λ 1λ 2 k = λ3λ 4 k V J λ 1λ 2 k + γ 1,γ 2 J,J dqdω qk q 2 (2J + 1)(2J + 1)D J γλ (Ω k q, ) D J λγ (Ω qk, ) λ 3λ 4 k V J γ 1γ 2 q G(q) γ 1γ 2 q T J λ 1λ 1 k dω qk D J γλ (Ω k q, ) D J λγ (Ω qk, ) = D J λλ (Ω k k, 4π ) 2J + 1 δ J J EmNN*, Columbia,SC, August 14, 212 35/ 39

Scattering equation: partial wave decomposition Expand T ( k, λ, k, λ) in terms of the eigenstates of the total angular momentum J: λ k T λ k = 1 (2J + 1)D J λλ 4π (Ω k k, ) λ k T J λ k J 1 4π J + 1 4π (2J + 1)D J λλ (Ω k k, ) λ 3λ 4 k T J λ 1λ 2 k = λ3λ 4 k V J λ 1λ 2 k + γ 1,γ 2 J,J dqdω qk q 2 (2J + 1)(2J + 1)D J γλ (Ω k q, ) D J λγ (Ω qk, ) λ 3λ 4 k V J γ 1γ 2 q G(q) γ 1γ 2 q T J λ 1λ 1 k Scattering equation: λ 3λ 4 k T J λ 1λ 2 k = λ3λ 4 k V J λ 1λ 2 k + γ 1,γ 2 dqq 2 λ 3λ 4 k V J γ 1γ 2 q G(q) γ 1γ 2 q T J λ 1λ 1 k. 1-dim. integral equation sizable reduction of numerical effort EmNN*, Columbia,SC, August 14, 212 35/ 39

Scattering equation in JLS basis experimental data (partial wave analyses) usually in JLS basis switch from helicity to JLS basis: JMλ 1 λ 2 k = JMLS JMλ 1 λ 2 JMLS LS J: total angular momentum M: z-projection of J L: orbital angular momentum S: total spin λ i: helicity, λ := λ 1 λ 2 JMLS JMλ 1 λ 2 = L S k V J LSk = Scattering equation in JLS basis: ( ) 1 2L + 1 2 LSλ Jλ S1 λ 1 S 2 λ 2 Sλ 2J + 1 }{{} Clebsch-Gordan coefficients λ 1 λ 2 λ 3 λ 4 JML S JMλ 3 λ 4 λ 3 λ 4 k V J λ 1 λ 2 k JMλ 1 λ 2 JMLS L S k T IJ µν LSk = L S k V IJ µν LSk + γ,l S q 2 dq L S k V IJ µγ L S q G(q) L S q T IJ γν LSk EmNN*, Columbia,SC, August 14, 212 36/ 39

Scattering equation in JLS basis experimental data (partial wave analyses) usually in JLS basis switch from helicity to JLS basis: JMλ 1 λ 2 k = JMLS JMλ 1 λ 2 JMLS LS J: total angular momentum M: z-projection of J L: orbital angular momentum S: total spin λ i: helicity, λ := λ 1 λ 2 JMLS JMλ 1 λ 2 = L S k V J LSk = Scattering equation in JLS basis: ( ) 1 2L + 1 2 LSλ Jλ S1 λ 1 S 2 λ 2 Sλ 2J + 1 }{{} Clebsch-Gordan coefficients λ 1 λ 2 λ 3 λ 4 JML S JMλ 3 λ 4 λ 3 λ 4 k V J λ 1 λ 2 k JMλ 1 λ 2 JMLS L S k T IJ µν LSk = L S k V IJ µν LSk + γ,l S q 2 dq L S k V IJ µγ L S q G(q) L S q T IJ γν LSk EmNN*, Columbia,SC, August 14, 212 36/ 39

Scattering equation in JLS basis experimental data (partial wave analyses) usually in JLS basis switch from helicity to JLS basis: JMλ 1 λ 2 k = JMLS JMλ 1 λ 2 JMLS LS J: total angular momentum M: z-projection of J L: orbital angular momentum S: total spin λ i: helicity, λ := λ 1 λ 2 JMLS JMλ 1 λ 2 = L S k V J LSk = Scattering equation in JLS basis: ( ) 1 2L + 1 2 LSλ Jλ S1 λ 1 S 2 λ 2 Sλ 2J + 1 }{{} Clebsch-Gordan coefficients λ 1 λ 2 λ 3 λ 4 JML S JMλ 3 λ 4 λ 3 λ 4 k V J λ 1 λ 2 k JMλ 1 λ 2 JMLS L S k T IJ µν LSk = L S k V IJ µν LSk + γ,l S q 2 dq L S k V IJ µγ L S q G(q) L S q T IJ γν LSk EmNN*, Columbia,SC, August 14, 212 36/ 39

Analytic structure of the scattering amplitude Analytic properties of the amplitude important information: cuts, poles and zeros on different Riemann sheets determine global behaviour of the amplitude on the physical axis parameterization of resonances in a well defined way poles and residues: relevant quantities for comparison of different experiments Jülich model: derived within a field theoretical approach analyticity is respected reliable extraction of resonance properties Extraction of resonance parameters, pole search on 2nd sheet: Analytic continuation EmNN*, Columbia,SC, August 14, 212 37/ 39

Analytic continuation via Contour deformation...enables access to all Riemann sheets [Nucl.Phys.A829:17-29,29] 1 Propagator for a particle with width: G σ(z, k) = z k 2 + (mσ )2 Π σ(z, k) Example: Selfenergy righthand cut along positive real axis, starting at z thresh = 2m π Π σ(z) = q 2 (v σππ (q, k)) 2 analytic continuation along the cut to the 2nd sheet: dq z 2 q 2 + mπ 2 + iɛ Π (2) σ = Π (1) σ 2ImΠ(1) σ = Π (1) σ + 2πiqonE(1) E(2) on v 2 (q on, k) z case (a), Im z > : straight integration from q = to q =. case (b), Im z = : Pole is on real q axis. case (c), Im z < : Deformation gives analytic continuation. Special case: Pole at q = branch point at z = m 1 + m 2 (= threshold). EmNN*, Columbia,SC, August 14, 212 38/ 39

Analytic continuation via Contour deformation...enables access to all Riemann sheets [Nucl.Phys.A829:17-29,29] 1 Propagator for a particle with width: G σ(z, k) = z k 2 + (mσ )2 Π σ(z, k) Example: Selfenergy righthand cut along positive real axis, starting at z thresh = 2m π Π σ(z) = q 2 (v σππ (q, k)) 2 analytic continuation along the cut to the 2nd sheet: dq z 2 q 2 + mπ 2 + iɛ Π (2) σ = Π (1) σ 2ImΠ(1) σ = Π (1) σ + 2πiqonE(1) E(2) on v 2 (q on, k) z Scattering equation on the 2nd sheet: with q cd T (2) V q ab = δg + dq mnq 2 q cd V q mn q mn T (2) q ab mn z E mn + iɛ δg = 2πiqonE(1) E(2) on q cd V q on mn z qon mn T (2) q ab EmNN*, Columbia,SC, August 14, 212 38/ 39

Effective ππn channels: Analytic structure new structure, induced by addititonal branch points π σ N σ π = dk k 2 1 z m 2 N + k2 (mσ )2 + k 2 Π σ(z σ(z, k), k) }{{} b 1 }{{} b 2,b 2 The cut along Im z = is induced by the cut of the self energy of the unstable particle. The poles of the unstable particle (σ) induce branch points (b 2, b 2 ) in the σn propagator at z b2 = m N + z, z b 2 = m N + z 3 branch points and 4 sheets for each of the σn, ρn, and π propagators. EmNN*, Columbia,SC, August 14, 212 39/ 39