Growth of A lgan f ilm s w ith d ifferen t A l fraction on A ln tem pla te

Similar documents
Effects of V/III ratio on the growth of a-plane GaN films

Effects of Pressure and NH 3 Flow on the Two-Dimensional Electron Mobility in AlGaN/GaN Heterostructures

POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES

: O646 : A (DFAFC),,,, DFAFC. PdCl 2, Pd2NH 3, H 2. CO 2,. : Pd, Vol. 15 No. 4 Nov ELECTROCHEM ISTRY : (2009)

Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract

Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

The mobility of two-dimensional electron gas in AlGaN/GaN heterostructures with varied Al content

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method

Effects of Si doping on optical properties of GaN epitaxial layers

III Nitride UV Devices

Nitride HFETs applications: Conductance DLTS

Unipolar Vertical Transport in GaN/AlGaN/GaN Heterostructures

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Supplementary Information for

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids

Solid-State Electronics

Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping Zhao *

Nanocomposite photonic crystal devices

Progress Report to AOARD

Cathodoluminescence and its temperature dependence in Tm-doped Al x Ga 1 x N thin films

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Band Gap Shift of GaN under Uniaxial Strain Compression

Spontaneous and piezoelectric polarization effects in III V nitride heterostructures

Strain and Temperature Dependence of Defect Formation at AlGaN/GaN High Electron Mobility Transistors on a Nanometer Scale

Simulation of GaN-based Light-Emitting Devices

Cl 2 -Based Dry Etching of GaN and InGaN Using Inductively Coupled Plasma

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT

Supporting Information

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and

Optical Investigation of the Localization Effect in the Quantum Well Structures

Morphology and surface reconstructions of m-plane GaN

Electron leakage effects on GaN-based light-emitting diodes

Double-Scaled Potential Profile in a Group-III Nitride Alloy Revealed by Monte Carlo Simulation of Exciton Hopping

Current and optical noise of GaN/ AlGaN light emitting diodes

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

UC Santa Barbara UC Santa Barbara Previously Published Works

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes

Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Mechanically Strong Graphene/Aramid Nanofiber. Power

Electronic Supplementary Information

Inversion of wurtzite GaN(0001) by exposure to magnesium

Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet Light-Emitting Diodes at Different Temperatures

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

Supplementary Information for

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea *

Journal of Beijing University of Aeronautics and A stronautics PCNN, PCNN. Nove l adap tive deno ising m e thod fo r extrem e no ise ba sed on PCNN

Ultrafast carrier dynamics in InGaN MQW laser diode

TEPZZ 7676 ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supporting Information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

M R S Internet Journal of Nitride Semiconductor Research

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Carrier capture by threading dislocations in (In,Ga)N/GaN heteroepitaxial layers

Thermal conductivity of symmetrically strained Si/Ge superlattices

Contents. Zusammenfassung Abbreviations and Acronyms Notations for Precursor Molecules

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

我国一次能源消费的人均碳排放重心 移动及原因分析

Fabrication and Property Study of PTFE Composite Coatings Yang Q inpeng Tang J iaoning Gu Kunm ing

Supporting Information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Lecture 3. Profiling the electrostatic field and charge distributions using electron holography. F. A. Ponce, J. Cai and M.

Supporting Information

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Supporting Information for:

Epitaxially grown semiconducting hexagonal boron nitride. as a deep ultraviolet photonic material

X-RAY PHOTOELECTRON DIFFRACTION MEASUREMENTS OF HEXAGONAL GaN(0001) THIN FILMS

T he group III-nitrides, as representative materials for light-emitting diodes (LEDs), has attracted a wide range

Supporting Information

bifunctional electrocatalyst for overall water splitting

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups.

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

β-ga 2 O 3 Material Properties of Beta-Gallium Oxide

Stripes developed at the strong limit of nematicity in FeSe film

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki

Supporting Information

Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy

Supplementary Figures

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Interfacial Coherency and Ferroelectricity of BaTiO 3 /SrTiO 3 Superlattice Films

Performance characteristics of cw InGaN multiple-quantum-well laser diodes

Kinetic Monte Carlo simulation of semiconductor quantum dot growth

Supporting information for

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure

Supporting Information. 1T-Phase MoS 2 Nanosheets on TiO 2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance

GCr M cm.

Transcription:

15 6 Vol115, No16 2009 12 JOURNAL OF FUNCTIONAL MATER IALS AND DEV ICES Dec., 2009 : 1007-4252 (2009) 06-0575 - 06 AlN Al AlGaN,, (, 710071;,, 710071) : 200nm A ln, XRD 130arcsec, 2. 021nm A ln A l A lgan, XRD, A l, A ln A lgan,, A lgan A l 0. 67,, A lgan : MOCVD, A lgan, : TN304, O484 : A Growth of A lgan f ilm s w ith d ifferen t A l fraction on A ln tem pla te ZHOU Xiao2wei, L I Pei2xian, HAO Yue, CHEN Hai2feng, DU Yang ( School of M icroelectronics, Key Laboratory for W ide B and - gap Sem iconductor M aterials and Devices of M inistry of Education, Xidian University, Xi an 710071, China) Abstract: 200nm A ln film is grown by pulse MOCVD. It s Fullwidth at halfmaximum ( FWHM ) of XRD rocking curve is only 130arcsec and root mean square (RMS) roughness is 2. 021nm. U sed A ln as tem2 p late, A lgan film s with different A l fraction are grown. H igh resolution XRD measurement indicate that comp ressive strain which A ln temp late app ly to A lgan film s and tensile strain which come from coales2 cence of islands in A lgan film s increase with increasing A l fraction. W hen the A l fraction is about 0. 67, the tensile strain and the comp ressive strain is in the balance, the A lgan film has best quality. Key words: Pulse MOCVD; A lgan M aterial; Film Strain 0 GaN,,, [ 1-2 ], A l A lgan, : 2008-11 - 01; : 2009-05 - 07 : (60736033) 863 (2996AA03A108). : (1980 - ),, ( E - mail: zhouxiaowei0924@163. com).

576 15, Kam iyama [ 3 ] A ln GaN A lgan Han [ 4 ] A lgan A lgan, Bykhovsky [ 5 ] Zhang J. P [ 6-7 ] GaN /A ln GaN /A lgan, Khan A ln, A ln LED, [ 8-11 ] A ln A lgan, 0 1 A lgan, A ln A l,, A ln, A ln, A l A lgan, AFM SEM XRD 1 MOCVD, (0001), NH 3 TMA TEG N A l Ga, H 2 Fig. 1 The relation between input and interrup t in p luse MOCVD 1 600 10nm A ln, 1050 A ln, 1, TMA, NH 3, 6 s A ln, TEG TMA, A l A lgan Philip s X pert X, 2 2. 1 A ln 2 A ln, 300nm XRD,, A ln 546arcsec, 130arcsec;, AFM, 3, MOCVD ( 3 ( a) ), 5. 126nm, 2. 021nm, XRD AFM,, A l N A ln, NH 3 N,, ; A l N N A l A l - N, A l,, Fig. 2 XRD scan rocking curve of A ln film s grown by ( a) normal and ( b) p luse MOCVD 2 ( a) ( b)mocvd A ln XRD

6, : A ln A l A lgan 577 Fig. 3 The morphology of A ln film grown by ( a) normal and ( b) p luse MOCVD 3 ( a) ( b)mocvd A ln, A ln, A l A lgan 2. 2 A lgan A lgan 4, XD1023 200nm A ln, TMA TEG, 400nm A l A lgan XRD GaN A ln, A lgan, A l, XRD A l, A ln A l A lgan 5 XRD - 2, A ln ( XD1023) A B C D, A lgan, A ln,, A l, A lgan,, A ln A B C D XD1023 A ln, A < B < C < D. B ragg, A ln c c A > c B > c C > c D,, a a A < a B < a C < a D, A l, A ln Fig4 The structure of the samp le 4 A lxga1 - XN A l,, E g, A lgan ( x) = (1 - x) E g, GaN + xe g, A ln - bx (1 - x) E g, GaN = 3. 4ev, E g, A ln = 6. 2ev, b = 0. 9 [ 12 ] 1 A l 1 A lgan A l Table 1 The A l fraction of the A lgan samp les A B C D ( nm) 309 271 244 228 A l 0. 28 0. 50 0. 67 0. 78 Fig. 5 The XRD - 2 scan curves of samp les 5 XRD - 2 GaN a 0. 3189nm,

578 15 A ln 3. 112nm [ 13 ], a A ln < a A lgan < a GaN A l2 GaN, A l, a A ln A lgan,, A l, A lgan A ln, A lgan A ln a F1, XRD, A ln A lgan F2, F2 > F1 F2, A l A lgan, A l,,, 3 ( b) A ln, A l A lgan, F2, A l,,, A ln A l2 GaN, A lgan A ln,, F A < F B < F C < F D Fig. 6 The XRD rocking curves of A lgan (0002) p lane 6 A lgan (0002) XRD ( FWHM ) A l A lgan XRD ( 6 ), A B C D 347arcsec 316arcsec 207arcsec 330arcsec, C Fig. 7 The relation between Al fraction and FWHM of rocking curve 7 A l FWHM A l 7 A l, A lgan, A l 0. 67,, ;, SEM A l, 8 A,, A lgan ; B, ; C, ; D, A l2 GaN SEM, A lgan A l 0. 67,, 200nm A ln A l A lgan,

6, : A ln A l A lgan 579 A ln,,, A lgan A l, A lgan, A ln, ; A l, A lgan, A ln, A lgan, A l 0. 67, A lgan ; A l, A lgan, 200nm A ln, Fig. 8 The SEM morphology of different A l fraction samp les 8 A l SEM 3 A l, A ln 200nm A ln A l A lgan, A ln A lgan A lgan A l, A ln A l, A ln A lgan, ; A l,, A l 0. 67,, ; A l, A lgan, A ln A lgan,, 200nm A ln A lgan A l, 0. 67 : [ 1 ]J ianp ing Zhang, Xuhuong Hu, et al. A lgan Deep - U ltravi2 olet L ight - Em itting D iodes. 2005. Jpn, J. App l. Phys. Vol. 44, No. 10: 7250 7253. [ 2 ] Ting Gang Zhu, U ttiya Chowdhury, et al. A lgan /A lgan UV light - em itting diodes grown on sapphire by metalorgan2 ic chem ical vapor deposition. Journal of Crystal Growth. 2003, 248: 548 551. [ 3 ] S. Kam iyama, M, Sawaki, et. al. Low - temperature - depos2 ited A lgan interlayer for imp rovement of A lgan / GaN het2 erostructure. Journal of Crystal Growth. 2001, 223: 83 91. [ 4 ]J. Han, K. E. W aldrip, S. R. Lee, J. J. Figiel, S. J. Hearne, G. A. Petersen and S. M. Myers. Control and elim ination of cracking of A lgan using low - temperature A lgan interlayers. 2001, App l. Phys. Lett. 78 : 67 69. [ 5 ]A. D. Bykhovski, B. L. Gelmont and M. S. Shur. Elastic

580 15 strain relaxation and p iezoeffect in GaN - A ln, GaN - A l2 GaN and GaN - InGaN superlattices. J. App l. Phys. 1997, 81: 6332. 6338 [ 6 ]J. P. Zhang, H. M. W ang, M. E. Gaevski, C. Q. Chen, Q. Fareed, J. W. Yang, G. Sim in and M. A. Khan. Crack - free thick A lgan grown on sapphire using A ln /A l2 GaN superlattices for strain management. 2002, App l. Phys, Lett. 80 : 3542 3544.. [ 7 ]H. M. W ang, J. P. Zhang, C. Q. Chen, Q. Fareed, J. W. Yang and M. A. Khan. A ln /A lgan superlattices as dislocation filter for low - threading - dislocation thick A l2 GaN layers on sapphire. App l. Phys. Lett. 2002, 81: 604 607. [ 8 ]M. A. Khan, J. N. Kuznia, R. A. Skogman, D. T. O l2 son, M. Macm illan and W. J. Choyke. Low p ressure meta2 lorganic chem ical vapor deposition of A IN over sapphire sub2 strates. App l. Phys. Lett. 1992, 61: 2539 2541. [ 9 ]M. A. Khan, J. N. Kuznia, D. T. O lson, T. George and W. T. Pike. GaN /A ln digital alloy short - period superlat2 tices by switched atom ic layer metalorganic chem ical vapor deposition App l. Phys. Lett. 1993, 63: 3470 3472. [ 10 ]J. P. Zhang, M. A. Khan, W. H. Sun, H. M. W ang, C. Q. Chen, Q. Fareed, E. Kuokstis and J. W. Yang. Pulsed atom ic - layer ep itaxy of ultrahigh - quality A lxga1 - xn structures for deep ultraviolet em issions below 230 nm. App l. Phys. Lett. 2002, 81: 4392 4394. [ 11 ] K. Kazlauskas, A. Zukauskas, and G. Tamulaitis, et al. Exciton hopp ing and nonradiative decay in A lgan ep ilay2 ers. App l. Phys, Lett. 2005, 87: 241918. [ 12 ]O. Ambacher. Growth and app lications of Group III - ni2 trides. J. Phys. D: App l. Phys. 1999, 31: 2653 2710. [ 13 ] Stephen J. Pearton.. GaN and Related Materials. Gorden and B reach Science Publishers, 1997.