INTERNATIONAL CAVITATION EROSION TEST Test Rig Identification Card

Similar documents
Prediction of cavitation erosion based on the measurement of bubble collapse impact loads

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS. SEMESTER 2 May 2013

Laboratory work No 2: Calibration of Orifice Flow Meter

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

TALLER DE HIDROSTÁTICA

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

ZF Series Force Transducers

We know from oxidation and reduction half reactions, a specific number of electrons are lost or gained

A Matter of Fact. Mixtures, Elements and Compounds

Rain Erosion Testing of Lightning Diverters

VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE MHD PRESSURE DROP

Direct and Shear Stress

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

barmesapumps.com SELF-PRIMING CENTRIFUGAL TRASH PUMP SPECIFICATIONS Series: SH8-U Suction: 8" Discharge: 8" Spherical solids handling: 3"

Unsteady conjugate heat transfer analysis for impinging jet cooling

Elements,Compounds and Mixtures

A Cavitation Erosion Model for Ductile Materials

CHAPTER 28 PRESSURE IN FLUIDS

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

Comparison of EFD and CFD investigations of velocity fields for selected body-propeller configurations

Applied Fluid Mechanics

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

Mixtures. Definition 1: Mixture

STEEL. General Information

Step Impulse Diffuser Model SIA

Cryogenic Engineering

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

Introduction to Engineering Materials ENGR2000. Dr. Coates

Name : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Stress-Strain Behavior

C hapter ATOMS. (c) (ii) and (iii) (d) (ii) and (iv)

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005

That teaches better, that feels better. Mass Volume and Density. Over Betuwe College 2013 Page 1

PROPOSAL OF MODERNISATION OF A STEAM TURBINE STAGE BEFORE EXTRACTION, CFD AND CSD ANALYSIS

PORTMORE COMMUNITY COLLEGE

The University of Melbourne Engineering Mechanics

Orifice Plate. Stainless Steel. Flow Data. Herz Valves UK Ltd.

Performance of a Venturi Scrubber in the removal of fine powder. from a confined gas stream

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Fluids. Fluids in Motion or Fluid Dynamics

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

VEIKI-VNL ELECTRIC LARGE LABORATORIES Ltd. TYPE TEST REPORT

Thermal Interface Material Performance Measurement

Hydraulic (Piezometric) Grade Lines (HGL) and

Applied Fluid Mechanics

INFLUENCE OF AIR COOLING AND AIR-JET VORTEX GENERATOR ON FLOW STRUCTURE IN TURBINE PASSAGE

CPO Science Foundations of Physics. Unit 8, Chapter 27

MARIYA INTERNATIONAL SCHOOL. Work sheet I. Term I. Level 9 Chemistry [PAPER 1-MCQ] Name: ELECTRICITY AND CHEMISTRY

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

Air distribution systems. Linear whirl outlet WL...

PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK

CHAPTER 3 EXPERIMENTAL STUDY OF INTERFACE BEHAVIOR BETWEEN COMPOSITE PILES AND TWO SANDS

Transactions on Engineering Sciences vol 9, 1996 WIT Press, ISSN

Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS IN SECTION B Linear graph paper will be provided.

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

Experimental Investigation of a Long Rise- Time Pressure Signature through Turbulent Medium

Figuring sequences on a super-smooth sample using ion beam technique

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

Microelectronics Heat Transfer Laboratory

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

IR 40. Non-Contact Infrared Temperature Sensor/Transmitter. Temperature Range: 0~1000

Experiment No.4: Flow through Venturi meter. Background and Theory

1/54 Circulation pump, safety valve, expansion vessel

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

APPROVAL RECEIVED DESCRIPTION : TUN-CAP P 20 20A NCE PARTS NO. : DF443DF04-A04 PARTS NO. : DRAWING :

Example 4: Design of a Rigid Column Bracket (Bolted)

Thermal Contact Conductance at Low Contact Pressures

Respondence of Sample Temperature during Straight-Line Ion Implantation

Physics Courseware Physics I

Based on the work you have completed in S1 to S3, complete Prior Learning 3.1.

Ackred. nr 1678 Kalibrering ISO/IEC 17025

Thermal Capacity Measurement of Engineering Alloys in Dependence on Temperature.

close to performances of the turbine gas meters designed for custody transfer measurements.

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

Title Process of Ethanol in Activated Car. Citation Physics Procedia (2015), 69:

MEASUREMENT OF THE MECHANICAL STATE OF SUBSURFACE LAYERS BY EDDY-CURRENT METHOD

(Q.) By which process, we can easily obtain gold ornaments at cheaper costs? (1 Mark)

THREE HOLE SPLICE CLEVIS FOR B52 Standard finishes: ZN, GRN Wt./C 126 Lbs. (57.1 kg)

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient)

Temperature, Thermal Expansion, and Ideal Gas Law

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN

Numerical analysis of three-lobe journal bearing with CFD and FSI

CLASS-VIII MATHEMATICS KEY DAY-6 KEY DAY-1 KEY DAY-7 KEY DAY-2 KEY DAY-8 KEY DAY-3 KEY DAY-9 KEY DAY-4 KEY DAY-10 KEY DAY-5 KEY MPC BRIDGE COURSE

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

C2 Revision Questions. C2 Revision cards

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

P U M P S. The quality standard for hydraulic efficiency and suction lift. PERIPHERAL PUMPS TEP/ TSP - SERIES 50Hz

Monte Carlo simulations of neutron and photon radiation fields at the PF 24 plasma focus device

Proceedings of the ASME th Joint US-European Fluids Engineering Division Summer Meeting FEDSM2014 August 3-7, 2014, Chicago, Illinois, USA

TRITIUM PRODUCTION IN PALLADIUM DEUTERIDE/HYDRIDE IN EVACUATED CHAMBER

9 MECHANICAL PROPERTIES OF SOLIDS

Exercise sheet 5 (Pipe flow)

1. Mark the correct statement(s)

Transcription:

Test Rig Identification Card Facility: cavitation tunnel Cavitation is generated by means of: cavitator /venturi/ cylindrical bolt Laboratory: Institute of Water Problems of the Bulgarian Academy of Sciences 1. Sketch of the cavitation chamber with specimens and basic dimensions (streamwise and transverse sections), dimensions and installation sites of the cavitator, specimen, pressure taps etc. 2. Basic operational data pump power 55 kw liquid velocity in the undisturbed flow liquid pressure in the undisturbed flow (gauge) liquid velocity at the specimen surface liquid pressure at the specimen surface (gauge) standard temperature of liquid 22,50 m/s 1260,00 kpa 45,00 m/s 480,00 kpa 15-17 C other data. designer/manufacturer: Institute of Water Problems of the Bulgarian Academy of Sciences Sofia, Bulgaria CT 165

CT 166

POLISH ACADEMY OF SCIENCES INSTITUTE OF FLUID-FLOW MACHINERY Laboratory Results Summarisation Laboratory: INSTITUTE OF WATER PROBLEMS OF THE BULGARIAN ACADEMY OF SCIENCES SOFIA, Bulgaria Facility: CAVITATION TUNNEL cavitator: cylindrical bolt pressure * : 1260,00 kpa specimen: rectangular plate flow velocity: 22,50 m/s impinged area: 242.43 mm 2 working liquid: tap water, ph = 7.5, dissolved oxygen content: 5.8 mg/dm 3 temperature: 15-17 0 C chlorides - 32,77 mg/dm 3, sulphates - 43,88 mg/dm 3 iron - 5,80 mg/dm 3 turbidity - 14,00 mg/dm 3 material Test duration Volume loss Eroded area Mean&Max Depth Incubation period MDPR of Penetration τ0.2 τinc max ultimate min mm 3 mm 2 µm µm min min µm/min PA2 1800 73.69 242.4 303.9-180 312 0.310 < 0.060 M63 1800 0.24 56.9 4.3-960 2850 0.008 0.008 M63 12000 40.97 100.9 406.0-960 2850 0.057 0.024 E04 12000 7.84 42.7 183.6-2500 6660 0.032 0.032 45 12000 2.66 31.8 83.73-3120 8460 0.019 0.019 1H18N9T 12000 0.76 29.3 25.97-5100 11800 0.008 0.008 E04 24000 21.18 52.9 400.3-2500 6660 0.033 0.011 45 24000 16.50 50.1 329.4-3120 8460 0.022 0.013 1H18N9T 24000 7.19 38.1 188.7-5100 11800 0.016 0.015 45 30000 16.50 50.1 329.4-3120 8460 0.022 0.003 1H18N9T 30000 11.30 42.5 265.9-5100 11800 0.016 0.008 1H18N9T 36000 13.56 47.2 287.3-5100 11800 0.016 <0.001 * gauge pressure CT 167

80 PA2 CUMULATIVE VOLUME LOSS [mm 3 ] 60 40 20 M63 E04 laboratory : IWP BASci 45 1H18N9T 0 0 10000 20000 30000 40000 400 MEAN DEPTH OF PENETRATION [µm] 300 200 100 PA2 M63 E04 45 1H18N9T 0 0 10000 20000 30000 40000 CT 168

POLISH ACADEMY OF SCIENCES INSTITUTE OF FLUID-FLOW MACHINERY Laboratory Results Summarisation Laboratory: Facility: INSTITUTE OF WATER PROBLEMS OF THE BULGARIAN ACADEMY OF SCIENCES SOFIA, Bulgaria CAVITATION TUNNEL cavitator: cylindrical bolt pressure: 1260,00 kpa specimen: rectangular plate flow velocity: 22,50 m/s impinged area: 242.43 mm 2 working liquid: tap water, ph = 7.5, dissolved oxygen content: 5.8 mg/dm 3 temperature: 15 17 0 C chlorides - 32,77 mg/dm 3, sulphates - 43,88 mg/dm 3 iron - 5,80 mg/dm 3 turbidity - 14,00 mg/dm 3 Material PA2 aluminium alloy specimen test duration mass loss volume loss eroded area Mean&Max Depth of Penetration Incubation period τ0.2 τinc MDPRmax no. min g mm 3 mm 2 µm µm min min µm/min 1. 1800 0.19675 73.06 240.8 303.4-180 300 0.320 2. 1800 0.19085 70.87 237.2 298.8-180 325 0.300 3. 1800 0.20775 77.14 249.3 309.4-180 310 0.310 Mean values 1800 0.19845 73.69 242.4 303.9-180 312 0.310 Enclosures 1. Photographs of eroded surface 2. Microsection photographs 3. Results of hardness and microhardness measurement 4. Eroded area curves Instytut Maszyn Przepływowych PAN ul. Gen.J.Fiszera 14, 80-952 GDAŃSK, P.O.Box 621, Poland phone: (+4858) 341 12 71, fax: (+4858) 341 61 44, e-mail: steller@imp.gda.pl CT 169

CT 170 80 60 TOTAL VOLUME LOSS CURVES material : PA2 aluminium laboratory : IWP BASci Al. PA 2 - Sp. No.1 VOLUME LOSS [mm 3 ] 40 Al. PA 2 - Sp. No.2 Al. PA 2 - Sp. No.3 20 0 0 500 1000 1500 2000 CT 170

MEAN DEPTH OF PENETRATION [µm] 400 300 200 100 MEAN DEPTH OF PENETRATION CURVES material : PA 2 aluminium laboratory : IWP IWP BASci Al. PA 2 - Sp. No.1 Al. PA 2 - Sp. No.2 Al. PA 2 - Sp. No.3 Mean value 0 0 500 1000 1500 2000 MEAN DEPTH OF PENETRATION RATE [µm/min] 0.4 0.3 0.2 0.1 0.0 0 500 1000 1500 2000 CT 171

Enclosure 1: Photographs of eroded surface specimen no.3 prior to the test, and after 360 and 720 minutes of exposure, respectively CT 172

Enclosure 1: Photographs of eroded surface (continued) specimen no.3 after 1080, 1320 and 1800 minutes of exposure, respectively 1 3 2 4 CT 173

Enclosure 1: Photographs of eroded surface (continued) TOPOGRAPHY OF THE ERODED SURFACE 10 mm 10 mm Erosion zones no.1 and 3 10 mm 10 mm Erosion zones no.2 and 4 CT 174

Enclosure 2&3: Microsection photographs Results of hardness and microhardness measurement Test specimen with indicated erosion zones, sites of hardness measurement and planes of microhardness tests 1 µm 1 µm Microsection taken from specimen section (a-a) in the zone of intense erosion with the average value and sites of HV 25g microhardness measurement indicated Microsection taken from specimen section (b-b) in the zone of intense erosion showing local values of HV 25g microhardness at the surface and the average values at lower layers CT 175

Enclosure 3: Results of hardness and microhardness measurement (continued) HARDNESS (according to Vickers) Loading force: 5 kg (HV 5 ) Units applied: kg/m 2 Measurement point 1 2 3 4 5 6 7 8 9 10 11 Specimen no.1 54,8 55,2 55,7 56,8 56,8 58,3 61,6 64,6 65,8 64,3 63,9 Specimen no.2 56,4 57,0 56.8 57,0 58,1 59,2 62,3 65,6 63,2 65,2 64,2 Specimen no.3 57.2 56,1 56,1 56,3 56,3 58.7 59,8 62,7 67,0 62.3 65,1 Measurement point 12 13 14 15 16 17 18 19 20 21 Specimen no.1 66.7 67,2 65,7 64,0 65,1 62,0 62,3 62,0 62,3 62,3 Specimen no.2 63,3 62,9 61,6 61,6 62,7 61,3 61,7 61,4 61,2 60,9 Specimen no.3 65,7 65,5 63,6 61,9 64,9 60,8 60.1 60,2 60,0 60,1 Measurement point 22 23 24 25 26 27 28 29 30 31 Specimen no.1 58,7 59,3 66,2 67,1 66,5 66,9 67,2 66,6 59,1 58,9 Specimen no.2 58,3 58,1 67,0 66,3 65,1 65,5 66,1 67,7 58,3 58,0 Specimen no.3 58,0 58,6 66,2 64,2 63,6 63,8 64,1 66,0 58,8 58,1 Enclosure 4: Eroded area curves 300 ERODED AREA [mm 2 ] 250 200 150 ERODED AREA CURVES material : PA 2 aluminium laboratory : IWP BASci Al. PA 2 - Sp. No.1 Al. PA 2 - Sp. No.2 Al. PA 2 - Sp. No.3 100 0 500 1000 1500 2000 CT 176

POLISH ACADEMY OF SCIENCES INSTITUTE OF FLUID-FLOW MACHINERY Laboratory Results Summarisation Laboratory: Facility: INSTITUTE OF WATER PROBLEMS OF THE BULGARIAN ACADEMY OF SCIENCES SOFIA, Bulgaria CAVITATION TUNNEL cavitator: cylindrical bolt pressure: 1260,00 kpa specimen: rectangular plate flow velocity: 22,50 m/s impinged area: 242.43 mm 2 working liquid: tap water, ph = 7.5, dissolved oxygen content: 5.8 mg/dm 3 temperature: 15 17 0 C chlorides - 32,77 mg/dm 3, sulphates - 43,88 mg/dm 3 iron - 5,80 mg/dm 3 turbidity - 14,00 mg/dm 3 Material: M63 brass specimen test duration mass loss volume loss eroded area Mean&Max Depth of Penetration Incubation period τ0.2 τinc MDPRmax no. min g mm 3 mm 2 µm µm min min µm/min 4. 12000 0.34535 40.97 100.9 406.01-960 2850 0.0567 Enclosure Eroded area curve Instytut Maszyn Przepływowych PAN ul. Gen.J.Fiszera 14, 80-952 GDAŃSK, P.O.Box 621, Poland phone: (+4858) 341 12 71, fax: (+4858) 341 61 44, e-mail: steller@imp.gda.pl CT 177

CT 178 80 60 TOTAL VOLUME LOSS CURVES material : M63 single phase brass laboratory : IWP BASci VOLUME LOSS [mm 3 ] 40 20 0 0 4000 8000 12000 16000 CT 178

400 MEAN DEPTH OF PENETRATION CURVES material : M63 single phase brass laboratory : IWP BASci. MEAN DEPTH OF PENETRATION [µm] 300 200 100 0 0 4000 8000 12000 16000 MEAN DEPTH OF PENETRATION RATE [µm/min] 0.08 0.06 0.04 0.02 0 0 4000 8000 12000 16000 CT 179

Enclosure: Eroded area curve 120 ERODED AREA [mm 2 ] 100 80 60 ERODED AREA CURVES material : M63 single phase brass laboratory : IWP BASci 40 0 4000 8000 12000 16000 CT 180

POLISH ACADEMY OF SCIENCES INSTITUTE OF FLUID-FLOW MACHINERY Laboratory Results Summarisation Laboratory: Facility: INSTITUTE OF WATER PROBLEMS OF THE BULGARIAN ACADEMY OF SCIENCES SOFIA, Bulgaria CAVITATION TUNNEL cavitator: cylindrical bolt pressure: 1260,00 kpa specimen: rectangular plate flow velocity: 22,50 m/s impinged area: 242.43 mm 2 working liquid: tap water, ph = 7.5, dissolved oxygen content: 5.8 mg/dm 3 temperature: 15 17 0 C chlorides - 32,77 mg/dm 3, sulphates - 43,88 mg/dm 3 iron - 5,80 mg/dm 3 turbidity - 14,00 mg/dm 3 Material: E04 Armco iron specimen test duration mass loss volume loss eroded area Mean&Max Depth of Penetration Incubation period τ0.2 τinc MDPRmax no. min g mm 3 mm 2 µm µm min min µm/min 5. 24000 0.16630 21.18 52.9 400.31-2500 6660 0.0325 Instytut Maszyn Przepływowych PAN ul. Gen.J.Fiszera 14, 80-952 GDAŃSK, P.O.Box 621, Poland phone: (+4858) 341 12 71, fax: (+4858) 341 61 44, e-mail: steller@imp.gda.pl CT 181

CT 182 40 TOTAL VOLUME LOSS CURVES material : E04 Armco iron laboratory : IWP BASci. 30 VOLUME LOSS [mm 3 ] 20 10 0 0 10000 20000 30000 40000 CT 182

400 MEAN DEPTH OF PENETRATION [µm] 300 200 100 MEAN DEPTH OF PENETRATION CURVES material : E04 Armco iron laboratory : IWP BASci. 0 0.04 0 10000 20000 30000 40000 MEAN DEPTH OF PENETRATION RATE [µm/min] 0.03 0.02 0.01 0 0 10000 20000 30000 40000 CT 183

Enclosure: Eroded area curve 60 ERODED AREA [mm 2 ] 50 40 30 ERODED AREA CURVES material : E04 Armco iron laboratory : IWP BASci 20 0 10000 20000 30000 40000 CT 184

POLISH ACADEMY OF SCIENCES INSTITUTE OF FLUID-FLOW MACHINERY Laboratory Results Summarisation Laboratory: Facility: INSTITUTE OF WATER PROBLEMS OF THE BULGARIAN ACADEMY OF SCIENCES SOFIA, Bulgaria CAVITATION TUNNEL cavitator: cylindrical bolt pressure: 1260,00 kpa specimen: rectangular plate flow velocity: 22,50 m/s impinged area: 242.43 mm 2 working liquid: tap water, ph = 7.5, dissolved oxygen content: 5.8 mg/dm 3 temperature: 15 17 0 C chlorides - 32,77 mg/dm 3, sulphates - 43,88 mg/dm 3 iron - 5,80 mg/dm 3 turbidity - 14,00 mg/dm 3 Material: 45 carbon steel specimen test duration mass loss volume loss eroded area Mean&Max Depth of Penetration Incubation period τ0.2 τinc MDPRmax no. min g mm 3 mm 2 µm µm min min µm/min 6. 30 000 0.12985 16.50 50.1 329.41-3120 8460 0.0222 Enclosures Eroded area curve Instytut Maszyn Przepływowych PAN ul. Gen.J.Fiszera 14, 80-952 GDAŃSK, P.O.Box 621, Poland phone: (+4858) 341 12 71, fax: (+4858) 341 61 44, e-mail: steller@imp.gda.pl CT 185

CT 186 20 15 TOTAL VOLUME LOSS CURVES material : 45 carbon steel laboratory : IWP BASci. VOLUME LOSS [mm 3 ] 10 5 0 0 10000 20000 30000 40000 CT 186

400 MEAN DEPTH OF PENETRATION [µm] 300 200 100 MEAN DEPTH OF PENETRATION CURVES material : 45 carbon steel laboratory : IWP BASci 0 0 10000 20000 30000 40000 0.04 MEAN DEPTH OF PENETRATION RATE [µm/min] 0.03 0.02 0.01 0.00 0 10000 20000 30000 40000 CT 187

Enclosure: Eroded area curve ERODED AREA [mm 2 ] 60 50 40 30 ERODED AREA CURVES material : 45 carbon steel laboratory : IWP BASci 20 0 10000 20000 30000 40000 CT 188

POLISH ACADEMY OF SCIENCES INSTITUTE OF FLUID-FLOW MACHINERY Laboratory Results Summarisation Laboratory: Facility: INSTITUTE OF WATER PROBLEMS OF THE BULGARIAN ACADEMY OF SCIENCES SOFIA, Bulgaria CAVITATION TUNNEL cavitator: cylindrical bolt pressure: 1260,00 kpa specimen: rectangular plate flow velocity: 22,50 m/s impinged area: 242.43 mm 2 working liquid: tap water, ph = 7.5, dissolved oxygen content: 5.8 mg/dm 3 temperature: 15 17 0 C chlorides - 32,77 mg/dm 3, sulphates - 43,88 mg/dm 3 iron - 5,80 mg/dm 3 turbidity - 14,00 mg/dm 3 Material: 1H18N9T acid resistant steel specimen test duration mass loss volume loss eroded area Mean&Max Depth of Penetration Incubation period τ0.2 τinc MDPRmax no. min g mm 3 mm 2 µm µm min min µm/min 7. 36000 0.10695 13.56 47.2 287.3-5100 11800 0.016 Enclosures Eroded area curve CT 189

CT 190 16 12 TOTAL VOLUME LOSS CURVES material : 1H18N9T chromium steel laboratory : IWP BASci VOLUME LOSS [mm 3 ] 8 4 0 0 10000 20000 30000 40000 CT 190

MEAN DEPTH OF PENETRATION [µm] 400 300 200 100 MEAN DEPTH OF PENETRATION CURVES material : 1H18N9T chronium steel laboratory : IWP BASci 0 0 10000 20000 30000 40000 0.020 MEAN DEPTH OF PENETRATION RATE [µm/min] 0.015 0.010 0.005 0.000 0 10000 20000 30000 40000 CT 191

Enclosure: Eroded area curve ERODED AREA [mm 2 ] 60 50 40 30 ERODED AREA CURVES material : 1H18N9T chromium steel laboratory : IWP BASci 20 0 10000 20000 30000 40000 CT 192