Super-Kamiokande ~The Status of n Oscillation ~

Similar documents
Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

Recent results from Super-Kamiokande

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande

GADZOOKS! project at Super-Kamiokande

SK Atmospheric neutrino. Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Recent results from Super-Kamiokande

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Solar and atmospheric ν s

The Hyper-Kamiokande project

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

UNO: Underground Nucleon Decay and Neutrino Observatory

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar Neutrino Road Map. Carlos Pena Garay IAS

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

PoS(NEUTEL2015)009. Recent Results from Super-Kamiokande. Masayuki Nakahata for the Super-Kamiokande collaboration

Test of Non-Standard Interactions at Super-K

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

(a) (c)

Neutrino oscillation experiments: Recent results and implications

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

Neutrino Oscillations

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

1. Neutrino Oscillations

Outline. (1) Physics motivations. (2) Project status

Astrophysical Neutrino at HK

arxiv:hep-ex/ v1 1 Oct 1998

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Super-Kamiokande. Roger Wendell, Duke University NNN 2010 Toyama, Japan

arxiv: v1 [hep-ex] 30 Nov 2009

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Recent Discoveries in Neutrino Physics

Radio-chemical method

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Neutrino Oscillations and the Matter Effect

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Neutrino Oscillation and CP violation

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

Neutrino Oscillations

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

T2K neutrino oscillation results

The Hyper-Kamiodande Project A New Adventure in n Physics

Neutrino Physics: Lecture 1

1 Introduction. 2 Nucleon Decay Searches

Neutrino oscillation physics potential of Hyper-Kamiokande

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Analyzing Data. PHY310: Lecture 16. Road Map

Upward Showering Muons in Super-Kamiokande

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Status of Solar Neutrino Oscillations

Recent Results from T2K and Future Prospects

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

Neutrino Oscillations

Li in a WbLS Detector

THE SUPER-KAMIOKANDE SOLAR ANALYSIS χ 2

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

KamLAND. Studying Neutrinos from Reactor

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

K2K and T2K experiments

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

AN EXPERIMENTAL OVERVIEW OF NEUTRINO PHYSICS. Kate Scholberg, Duke University TASI 2008, Boulder, CO

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Today: Part I: Neutrino oscillations: beam experiments. Part II: Next tutorials: making distributions with histograms and ntuples

Damping signatures in future neutrino oscillation experiments

Lessons from Neutrinos in the IceCube Deep Core Array

Neutrino Mass How can something so small be so important? Greg Sullivan University of Maryland April 1999

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Super-Kamiokande: The Road to Neutrino Oscillations

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

Solar Neutrino Oscillations

Tsuyoshi Nakaya (Kyoto Univ.)

Dear Radioactive Ladies and Gentlemen,

Gadolinium Doped Water Cherenkov Detectors

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Long Baseline Neutrinos

The future of neutrino physics (at accelerators)

PHYSICS AND ASTRONOMY WITH SHOWERING UPWARD MUONS IN SUPER-KAMIOKANDE. SHANTANU DESAI Ph.D Final Oral Examination December 3 rd 2003

Scintillator phase of the SNO+ experiment

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

SNO: Predictions for ten measurable quantities

Atmospheric Neutrinos MINOS MINOS Far Detector Type of Atmospheric Neutrinos at MINOS Two MINOS Atmospheric Analyses.

Supernova neutrinos and their implications for supernova physics

Review of Neutrino Oscillation Experiments

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Solar Neutrinos in Large Liquid Scintillator Detectors

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Transcription:

May 26, 2006 Vulcano Workshop 2006 Super-Kamiokande ~The Status of n Oscillation ~ Yoshihisa OBAYASHI (ICRR, Univ. of Tokyo) for Super-Kamiokande Collaboration May 26, 2006 Y.Obayashi @ Vulcano 2006 1

News: SK is Fully Reconstructed! Apr. 2006 All PMTs are mounted with acrylic/frp covers and start water filling May 14: Celebration for SK 10 th anniversary and Commissioning of SK-III PMT with cover Many T2K collaborators took reconstruction shifts Now: Half of tank is filled with water End of Jun. 2006: Filled with water and restart observation May 26, 2006 Y.Obayashi @ Vulcano 2006 2

42 m Super-Kamiokande 50kton pure water (22.5kt fid.vol.) 11200 (Inner detector) + 1800 (Outer detector) PMTs 1000m underground 2700m wat. eq. 39.3 m May 26, 2006 Y.Obayashi @ Vulcano 2006 3

4 History 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Start SK-I SK-II SK-III # of PMT (Photo Coverage) 11,146 (40%) Accident Partial Reconstruction Full Reconstruction 5,182 (19%) 11,129 (40%) Energy Threshold (Solar n) 5 MeV 7 MeV 4 MeV(plan) Major Physics Outputs Atm. n Oscilaltion Phys. Rev. Lett. 81,1562(1998) Solar n Oscilaltion Phys. Rev. Lett. 86,5651(2001) Atm. n L/E Phys. Rev. Lett. 93, 101801(2004) K2K Final Result

Overview Atmospheric Neutrinos nm disappearance analysis nm nt or other modes? Solar Neutrinos SK-I results SK-II update Improvement for SK-III Supernovae Neutrinos Summary May 26, 2006 Y.Obayashi @ Vulcano 2006 5

6 Atmospheric Neutrinos p, He Zenith angle Q Downward (L=10~100 km) Event Classification p ±, K ± m ± Fully Contained (FC) (E n ~1GeV) n m e ± Partially Contained (PC) (E n ~10GeV) n m n e Upward (L=up to 13000 km) Stopping m (E n ~10GeV) Through-going m (E n ~100GeV) Particle ID (Fully Contained) e- like mu- like

7 Zenith Angle Distribution SK-I : 1489 days SK-II : 804 days n m n t oscillation (best fit) null oscillation FC FC < < FC FC FC > FC > FC FC

8 Oscillation Analysis m/e double ratio allowed region (n m n t ) Update from Phys. Rev. D 72, 052007 (2005) (SK-I results) Sub-GeV SK-II : SK-I : ( m / e) ( m / e) DATA MC 0.656 0.022 0.033 0.658 0.016 0.035 Best Fit: Dm 2 = 2.5 x 10-3 ev 2 sin 2 2q = 1.00 c 2 = 839.7 / 755 dof (18%) Multi-GeV (FC+PC) ( m / e) DATA 0.047 SK-II : 0.746 0.044 0. 055 ( m / e) MC SK-I : 0.702 0.032 0.030 0.101 1.9 x 10-3 ev 2 < Dm 2 < 3.1 x 10-3 ev 2 sin 2 2q > 0.93 at 90% CL

L/E analysis Update from Phys. Rev. Lett. 93,101801(2004) Select good L/E resolution (<70%) events Perform oscillation analysis with L/E binning May 26, 2006 Y.Obayashi @ Vulcano 2006 9

10 L/E Analysis result Zenith angle binning Oscillation Decay Decoherence c 2 osc c 2 dcy c 2 dec = 83.9/d.o.f = 107.1/d.o.f, Dc 2 = 23.2(4.8σ) = 112.5/d.o.f, Dc 2 = 27.6(5.3σ)

11 3 Flavor Oscillation Submitted to Phys. Rev. D, see hep-ex/0604011 In the case q 13 0: ne excess may be seen Matter effect enhance n e appearance vacuum matter nm ne oscillation probability, Dm 2 =2.5x10-3 ev 2, sin 2 q 23 =0.5, sin 2 q 13 =0.04

3 Flavor Analysis Result Excess of up-going ne? SK-I data shows no excess yet Allowed region Consistent with pure nm nt SK-I 1489days Best fit (Dm 2 =2.5 x10-3 ev 2, sin 2 q 23 =0.5, sin 2 q 13 =0.0) Expected excess (Dm 2 =2.5x10-3 ev 2, sin 2 q 23 =0.5, sin 2 q 13 =0.04) May 26, 2006 Y.Obayashi @ Vulcano 2006 12

Tau Appearance Search Tau Enrich Sample: Evis>1.33GeV (Multi-GeV) Most energetic ring is e-like Likelihood selection Visible Energy Sphericity Distance between n interaction and decay-e Zenith angle fit with tau signal and nm background May 26, 2006 Y.Obayashi @ Vulcano 2006 13

14 n m n t or n sterile? Admixture model: Consistent of 0% of n s, Arrow ~25% of sterile at 90% CL

15 Other than Oscillation? LIV S.Coleman & S.L. Glashow PRD 59(116008),1999 V.Barger et. al., PRL 85(24),2000 2 2 2 Dm P OSC sin 2q sin 1.27 2Db L E Best fit: c2(377dof)=399, (a=0.053,sin2q v =0.093) a<~10-24 Best fit: c2(377dof)=399, (a=0.06,sin2q v =0.0) a<~10-24 Db<~10-23

16 Solar Neutrinos 8 B neutrino electron scattering n + e - n + e - SSM Expectation Typical Solar n event 5.94(1+/-0.01)x10 10 /cm 2 /s (BP04 SSM) 5.79(1+/-0.23)x10 6 /cm 2 /s 8 B Ee = 9.1MeV cosqsun = 0.95

Solar n Data of SK-I May 31, 1996 July 13, 2001 (1496 days ) n + e - n + e - 22400 230 solar n events (14.5 events/day) 8 B flux : 2.35 0.02 0.08 [x 10 6 /cm 2 /sec] Data SSM(BP2004) = 0.406 0.004 +0.014-0.013 May 26, 2006 Y.Obayashi @ Vulcano 2006 17

18 n e and n m +n t Fluxes(SK and SNO Results) SK SNO ES = 2.35 0.09 [x10 6 /cm 2 /s] CC = 1.72 0.08 ES = e +0.15 m,t CC = e SNO NC = 4.98 0.35 NC = e + m + t (cf. SSM(BS2005) = 5.69±0.93) Obtained total flux: exp = 5.2±0.3 SK SNO CC SNO NC ± (BS2005)

19 Energy spectrum of SK-I (tan 2 q, Dm 2 ) Energy correlated systematic error

20 Solar n results from SK-I Region represents allowed values of neutrino properties

21 SK-II Solar n data (Preliminary)

Energy Spectrum May 26, 2006 Y.Obayashi @ Vulcano 2006 22

23

24

P(n e n e ) E May 26, 2006 n (MeV) Y.Obayashi @ Vulcano 2006 25 Solar n @ SK-III n e survival probability Recoil electron spectrum To see ~10% spectrum distortion, Lower energy threshold Minimize statistic error Minimize systematic error sys. error sin 2 (q) 0.35 0.28 0.28 0.28 0.22 Dm 2 (ev 2 ) 6.3 x 10-5 4.8 x 10-5 7.2 x 10-5 10.0 x 10-5 7.2 x 10-5

26 Background from Radon @ SK-I Y.Takeuchi et al., PLB452(1999)418

Improvement May 26, 2006 Y.Obayashi @ Vulcano 2006 27

28 Supernova Neutrino Bursts No candidate was found in SK-I and SK-II 2.3 T < 0.39 SN/yr (90%CL) Upper limit of galactic SN rate < Efficiency vs. Distance T: measurement time

29 Supernovae Relic Neutrinos Reactor n Solar 8 B Solar hep Expectations Population synthesis (Totani et al., 1996) Constant SN rate (Totani et al., 1996) Cosmic gas infall (Malaney, 1997) Cosmic chemical evolution (Hartmann et al., 1997) Heavy metal abundance (Kaplinghat et al., 2000) LMA n oscillation (Ando et al., 2002) Atmospheric n Phys. Rev. Lett. 90, 061101(2003) SK-I Total background Atmospheric n m invisible m decay e 90% CL limit of SRN Atmospheric n e

Atmospheric Neutrinos Summary Oscillation analysis result based on SK-1 (1489d) +SK- 2(890d) is presented Further analysis based on SK-I(1489d) Consistent with nm nt oscillation. Some non-tau modes: unlikely Solar Neutrinos Oscillation analysis based on SK-I(1469d) is presented SK-II data also analyzed though energy threshold is 7MeV Improvements for SK-III is going on Upper limits for SN and SRN rate obtained May 26, 2006 Y.Obayashi @ Vulcano 2006 30

Supplements May 26, 2006 Y.Obayashi @ Vulcano 2006 31

Tau Appearance Search May 26, 2006 Y.Obayashi @ Vulcano 2006 32

33 Zenith Angle Distributions (SK-I bins) n m n t oscillation (best fit) null oscillation

34 Zenith Angle Distributions (SK-II bins) n m n t oscillation (best fit) null oscillation

SK-I + SK-II combined analysis (data binning) P lep Sub-GeV Multi-GeV FC 1ring e-like CC n e FC mring e-like CC n m FC 1ring m-like FC mring m-like PC stop PC thru UP stop UP through showering UP through non-showering 38 event type and momentum bins x 10 zenith bins 380 bins Since various detector related systematic errors are different, we do not combine the SK-I and SK-II bins. 380 bins for SK-I + 380 bins for SK-II 760 bins in total

SK-I + SK-II combined analysis (systematic errors) neutrino flux (14) neutrino interaction (12) Identical for SK-I and SK-II solar activity (1) event selection and reconstruction (21) Regarded as independent between SK-I and SK-II The total number of systematic errors is : Flux (14) + Interaction (12) + SK-I (22) + SK-II (22) = 70

Result from SK-I + SK-II data SK-I : 1489 days SK-II : 804 days Best Fit: Dm 2 = 2.5 x 10-3 ev 2 sin 2 2q = 1.00 c 2 = 839.7 / 755 dof (18%) 1.9 x 10-3 ev 2 < Dm 2 < 3.1 x 10-3 ev 2 sin 2 2q > 0.93 at 90% CL

SK+ K2K Combined Results K2K K2K Combine Combine SK SK Combined result sin 2 2q Dm 2 [ev 2 ] Best fit point 1.03 2.49 10-3 Best in phys. 1.00 2.51 10-3 Arrowed region of Dm 2 @ sin 2 2q 1 2.29(-9%) ~ 2.84(+13%) [ev 2 ] (68%) 2.17(-14%) ~ 3.03(+21%) [ev 2 ] (90%) May 26, 2006 Y.Obayashi @ Vulcano 2006 38