Modélisation particulaire du plasma magnétron impulsionnel haute puissance

Similar documents
The role of recycling in pulsed sputtering magnetrons

TIME RESOLVED TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY ON Al AND Ar M ATOMS IN HIGH POWER PULSED MAGNETRON SPUTTERING *

Increased ionization during magnetron sputtering and its influence on the energy balance at the substrate

Global modeling of HiPIMS systems: transition from homogeneous to self organized discharges

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS

Localized heating of electrons in ionization zones: Going beyond the Penning-Thornton

Ion energies in high power impulse magnetron sputtering with and without localized

arxiv: v1 [physics.plasm-ph] 23 May 2013

Plasma diagnostics of pulsed sputtering discharge

June 5, 2012: Did you miss it? No Problem. Next chance in Venus in Front of the Sun and there is more: plasma imaging!

Propagation direction reversal of ionization zones in the transition between high and low current

Linköping University Post Print. Cross-field ion transport during high power impulse magnetron sputtering

Hysteresis-free reactive high power impulse magnetron sputtering

On the Impact of Electron Temperature in Magnetron Sputtering Benchmarked with Energy Flux Measurements

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

Beams and magnetized plasmas

SPUTTER-WIND HEATING IN IONIZED METAL PVD+

In search for the limits of

This is an author produced version of a paper presented at 2nd PATCMC, June 6th-8th 2011 Plzeň, Czech Republic.

Beam-plasma interaction in the ITER NBI

On the film density using high power impulse magnetron sputtering


One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

arxiv: v1 [physics.plasm-ph] 30 May 2013

Modélisation de sources plasma froid magnétisé

P. Diomede, D. J. Economou and V. M. Donnelly Plasma Processing Laboratory, University of Houston

Hiden EQP Applications

Electron Temperature Modification in Gas Discharge Plasma

Ionized physical vapor deposition (IPVD): A review of technology and applications

Effect of sputter heating in ionized metal physical vapor deposition reactors

Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma

A strategy for increased carbon ionization in magnetron sputtering discharges

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations

Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a)

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

Study of plasma dynamics in a modulated pulsed power magnetron discharge using a time-resolved Langmuir probe

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

Repetition: Practical Aspects

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

PIC-MCC simulations for complex plasmas

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

Large Plasma Device (LAPD)

Plasma parameter evolution in a periodically pulsed ICP

Measurement of electron energy distribution function in an argon/copper plasma for ionized physical vapor deposition

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL

Influence of the nitrogen admixture to argon on the ion energy distribution in reactive high

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

3D simulation of the rotating spoke in a Hall thruster

High Power Impulse Magnetron Sputtering for Industrial Applications: Deposition of Chromium Films on Inclined Surfaces

Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge

4 Modeling of a capacitive RF discharge

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

High power impulse plasmas for thin film deposition

IR emission from the target during plasma magnetron sputter deposition

Composition and dynamics of high power impulse magnetron discharge at W-Mo-C target in argon atmosphere

Investigation of rotating spoke instabilities in a wall-less Hall thruster. Part II: Simulation.

Some more equations describing reactive magnetron sputtering.

Study of DC Cylindrical Magnetron by Langmuir Probe

Theory of Gas Discharge

AIAA MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows

Contents. Bibliografische Informationen digitalisiert durch

Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters -

Influence of water vapour on acetaldehyde removal efficiency by DBD

The Role of Secondary Electrons in Low Pressure RF Glow Discharge

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection

Monte Carlo Collisions in Particle in Cell simulations

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center

Kinetic simulation of the stationary HEMP thruster including the near field plume region

Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence

Physics of Hall-Effect Discharge by Particle

3 A NEW FRENCH FACILITY FOR ION PROPULSION RESEARCH

Trench filling by ionized metal physical vapor deposition

ENHANCED IMPLANTATION AND DEPOSITION OF METAL IONS BY IMMERSION IN SYNCHRONOUS MODULATED RF DRIVEN PLASMA

Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT

Current sheath formation in the plasma focus

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE

Simulations of the plasma dynamics in high-current ion diodes

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

ion flows and temperatures in a helicon plasma source

Quasi-periodic nanostructures grown by oblique angle deposition

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

An introduction to thin film processing using high-power impulse magnetron sputtering

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Steady state HiPIMS discharge optimization through the control of the magnetic field

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, USA

Effects of the Gas Pressure on Low Frequency Oscillations in E B Discharges

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen

Relationship between production and extraction of D - /H - negative ions in a volume negative ion source

FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS

Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

Transcription:

Modélisation particulaire du plasma magnétron impulsionnel haute puissance Tiberiu MINEA Laboratoire de Physique des Gaz et Plasmas LPGP UMR 8578 CNRS, Université Paris-Sud, 91405 Orsay Cedex, France tiberiu.minea@u-psud.fr

Plasma deposition process Film growth Gas dynamics Particle transport Ionization Sputtering D.J. Christie, J V S T A 23, 330 (2005) D Lundin et al., P S S T 18, 045008 (2009) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 2

Conventional magnetron discharge Metal sputtering wind from the target Energetic Ar backscattering Temperature increases Water cooling Power Magnet Pump Target Local gas rarefaction in the high and dense plasma region due to the wind effect Quartz window r B + + + r B + + Ar Ground shield Rossnagel S M (1988) J. Vac. Sci. Technol. A 6 19 Gas Injection Quartz window Gauge MKS T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 3

High Power Impulse Magnetron Sputtering HiPIMS First Pulsed generator concept V. Kouznetsov, U. S. Patent No. 6,296, 742 B 1 (2001) Pulsed power supply: 0.1 1 khz, 200 A, 1 kv Pulse width: 50 to 200 µs Average pulse power: 50 kw Typical mean power: 500 W DC CMS SINEX 3 power supply by PlasmAdvance HiPIMS T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 4

Outline 1. Dimensional modelling of HiPIMS magnetron plasma (OHIPIC) 2. 2D Charged Species and Sheath evolution 3. a posteriori Monte Carlo 4. Metal Transport (3D I OMEGA) 5. Spokes Modelling ITC LPGP ICARE 6. Conclusions T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 5

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Magnetron target 2D configuration Debye length n e = 10 13 cm 3 = 10 19 m 3 λ e 10 µm (T e = 4eV) Tiberiu MINEA & Claudiu COSTIN Geometry (x, z) Simulation volume: 2 x 2.5 cm 2 Grids: 201 x 512 401 x 2048 Cell dimensions: x, z = 10 µm!!! 6 million simulation particles Control parameters Time step: t= 5 x 10 12 s 5 x 10 13 s Simulated real time: 3.5 µs!!! T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 6

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Numerical stability criteria Stability criteria: a < λ De CFL : v e x t< a (Courant, Friedrichs, Lewy) N particle/cell ~ 50 Fluctuation of the net charge density (Rho) Adrien REVEL & Tiberiu MINEA a T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 7

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling HiPIMS Simulation parameters z (mm) symmetry axis Magnetic field structure 25 20 15 10 5 anode 0 0 5 10 15 20 cathode x (mm) free boundary Ionization region Cathode voltage (V) Plasma (e, Ar + ) parameters: Ar gas + Cu target p = 5 mtorr T Ar = 400 K 0-200 -400 Short pulse Pre ionization A (75 ns) A (75 ns) C (3.0 µs) C (3 µs) -600 B (2 µs) B (2.0 µs) 0 1 2 3 4 5 6 t (µs) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 8

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Fast HiPIMS with pre ionization SHORT & FAST Pulsed Power Supply concept [*] which uses preionization to guarantee the fast rise time of the current, fast fall time of the discharge voltage at the switch off Average Power 80 W Pulse width: ~10 µs Repetition rate: 50 500 Hz U max ~ 1kV I Max : 10 100 A * Ganciu et al, World Patent No. WO 2005/090632. 0 2 4 6 8 10 Pulse time [µs] T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 9

HiPIMS current OHIPIC: Orsay HIgh density plasma Particle In Cell model Experiment OHIPIC simulated discharge current 0 Current 300 0 2 4 6 8 10 Pulse time [µs] 0 1 2 3 4 5 6 Pulse time [µs] 600 T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 10

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling 2D maps of charged particles by OHIPIC A (75 ns); n e = 8 x 10 16 m 3 B (2 µs); n e = 8 x 10 17 m 3 C (3 µs); n e = 5 x 10 18 m 3 25 20 25 25 1.0E6 1.7E10 3.4E10 5.1E10 6.8E10 8.5E10 1.0E6 1.6E11 3.3E11 4.9E11 6.6E11 8.2E11 1.0E6 9.4E11 1.9E12 2.8E12 3.8E12 4.7E12 Ar + density (cm -3 e - density (cm -3 20 ) ) Ar + density (cm -3 ) e - density (cm -3 ) 20 Ar + density (cm -3 ) e - density (cm -3 ) z (mm) 15 10 z (mm) 15 10 z (mm) 15 10 5 5 5 0 20 15 10 5 0 5 10 15 20 x (mm) 0 20 15 10 5 0 5 10 15 20 x (mm) 0 20 15 10 5 0 5 10 15 20 x (mm) Electron density increases x 100 in 3 µs!!! Much localized high density Larger dense plasma=> larger race track To take home! T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 11

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Axial profile evolution of charged particles by OHIPIC Electron density (cm -3 ) 10 12 10 11 10 10 IR Ionization Region DR Diffusion Region 75 ns 0.5 µs 1.0 µs 1.5 µs 2.0 µs 2.5 µs 3.0 µs Ar + density (cm -3 ) 10 12 10 11 10 10 IR Ionization Region DR Diffusion Region 75 ns 0.5 µs 1.0 µs 1.5 µs 2.0 µs 2.5 µs 3.0 µs 10 9 0 5 10 15 20 25 z (mm) 10 9 0 5 10 15 20 25 z (mm) Highest local density = 2 x n e in Ionization Region (IR) n e in IR = 10 x n e in Diffusion Region (DR) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 12

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Plasma potential evolution by OHIPIC 0 0 Potential (V) -150-300 -450-600 IR Ionization Region -300 Very high electric field in the sheath 75 ns 0.5 µs 1.0 µs 1.5 µs 2.0 µs 2.5 µs 3.0 µs Potential (V) -150-450 Constant but twice higher field in IR -600 in HiPIMS compared 0.0 0.5 1.0 to 1.5 DC 2.0 z (mm) Very low field in DR DR Diffusion Region 0 5 10 15 20 25 z (mm) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 13

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling eedf evolution in HiPIMS by OHIPIC EEDF (ev -3/2 ) 10-2 10-3 10-4 0 100 200 300 Energy (ev) 75 ns 0.5 µs 1.0 µs 1.5 µs 2.0 µs 2.5 µs 3.0 µs eepf (ev -3/2 ) 10-2 10-3 10-4 10-5 Total volume z < 7.5 mm z > 7.5 mm 0 50 100 150 200 250 300 Energy (ev) 10 cm from target eepf (ev -3/2 ) 10-2 10-3 Total volume z < 7.5 mm z > 7.5 mm P Poolcharuansin and J W Bradley, PSST (2010) 10-4 0 5 10 15 20 25 30 Energy (ev) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 14

Outline 1. Dimensional modelling of HiPIMS magnetron plasma (OHIPIC) 2. 2D Charged Species and Sheath evolution 3. a posteriori Monte Carlo 4. Metal Transport (3D I OMEGA) 5. Spokes Modelling 6. Conclusions T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 15

2D HiPIMS modelling a posteriori MC 3D Metal modelling a posteriori Monte Carlo Spokes Modelling Critical point of Monte Carlo simulations prior knowledge ( guess!!! ) of the force field (interaction potential) Self consistent 2D maps of plasma parameters by OHIPIC simulation z (mm) 10 8 6 4 2 0 Initial condition for test particles 0 5 10 15 20 x (mm) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 16

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Electron transverse diffusion in HiPIMS On the pulse voltage plateau Drift velocity Transverse Diffusion Race track d 1 d w x = x D ( z z ) 2 dt zz = Electron deconfinement 2in dt HiPIMS?? C. Costin, T. Minea, G. Popa, P S S T (submitted) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 17

Outline 1. Dimensional modelling of HiPIMS magnetron plasma (OHIPIC) 2. 2D Charged Species and Sheath evolution 3. a posteriori Monte Carlo 4. Metal Transport (3D I OMEGA) 5. Spokes Modelling 6. Conclusions T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 18

2D HiPIMS modelling a posteriori MC 3D Metal modelling Monte Carlo code OMEGA Spokes Modelling OMEGA: Orsay MEtal transport in GAses model 1. Define a domain (sputter chamber) 2. Generate sputtered particles one by one randomly from a probability distribution (SED + SAD) 3. DCMS: Particle collision with process gas 4. Analyze the particle s velocity, direction, OMEGA summary 3D treatment of elastic collisions Ti/Ar DCMS discharge No Ti Ti collisions No gas rarefaction See also: K. Van Aeken et al., J. Phys. D 41, 205307 (2008) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 19

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling OMEGA Results & Benchmarking DC 2D LIF measurements of Ti sputtered vdf z= 5 cm, p = 3 mtorr p z= 5 cm, p = 30 mtorr LIF box z= 1 cm, p = 3 mtorr z= 1 cm, p = 30 mtorr z D. Lundin et al., J. Phys. D 46, 175201 (2013) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 20

2D HiPIMS modelling a posteriori MC 3D Metal modelling Ionized OMEGA code Spokes Modelling Assumptions I OMEGA 3D treatment of elastic collisions as in OMEGA Inelastic electron impact ionization 1,2 No Ti-Ti collisions, since n Ti /n Ar < 0.2 No gas rarefaction External input of n e and T e maps 25 1.0E6 9.4E11 1.9E12 2.8E12 3.8E12 4.7E12 20 Ar + density (cm -3 ) e - density (cm -3 ) How do we test the accuracy of I OMEGA? z (mm) 15 10 5 [1] P.L. Bartlett and A.T. Stelbovics, At. Data Nucl. Data Tables 86, 235 (2004) [2] H. Deutsch, K. Becker, and T. Märk, Int. J. Mass Spectrom. 271, 58 (2008) 0 20 15 10 5 0 5 10 15 20 x (mm) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 21

2D HiPIMS modelling a posteriori MC 3D Metal modelling I OMEGA: Parametric study Spokes Modelling Ti D. Lundin et al. ICMCTF 2013 Ionized flux fraction Al Cu C Electron density, n e [ 10 17 m -3 ] HiPIMS: D. Lundin and K. Sarakinos, J. Mater. Res. 27, 780 (2012) Ionization model: J.A. Hopwood, Thin Films: Ionized Physical Vapor Deposition, Academic Press, San Diego (2000) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 22

2D HiPIMS modelling a posteriori MC 3D Metal modelling I OMEGA for HiPIMS: Degree of METAL Ionization Spokes Modelling HiPIMS simulated by OHIPIC code Density maps for the three representative instants of the pulse Cathode voltage (V) 0-200 -400-600 Short pulse Pre ionization A (75 ns) A (75 ns) B (2.0 µs) C (3.0 µs) B (2 µs) 0 1 2 3 4 5 6 t (µs) T. Minea et al. S C T (submitted) C (3 µs) Fraction of ionized titanium (A) T e = 5 ev T e = 4 ev T e = 3 ev Ionized flux fraction (Hopwood) a posteriori MC very useful and powerful Fast estimation of the ionization fraction of sputtered vapour and metal ion back attraction (B) Electron density (m -3 ) (C) To take home! T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 23

Outline 1. Dimensional modelling of HiPIMS magnetron plasma (OHIPIC) 2. 2D Charged Species and Sheath evolution 3. a posteriori Monte Carlo 4. Metal Transport (3D I OMEGA) 5. Spokes Modelling 6. Conclusions T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 24

2D HiPIMS modelling a posteriori MC 3D Metal modelling Spokes Modelling Electron burst vs Spokes top view a posteriori MC Fast camera Azimuthal position (mm) 100 80 20 60 40 ns 10 20 Anders et al., J. Appl. Phys. 111, 053304 (2012) N. Brenning et al., J. Phys. D:Appl. Phys, 46, 084005 (2013) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 25

Electron burst side view a posteriori MC Fast camera Anders, Ni, and Rauch 1 2 4 9 19 40 PRELIMINARY y (mm) 100 ns 5 10 z (mm) C. Costin & T. Minea T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 26

Pseudo 3D PIC: Azimuthal PIC MCC 2D (x,z) PIC MCC A. Revel, C. Costin,T. Minea (in preparation) 2D (y,z) PIC MCC with frozen (x,z) field map T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 27

Race track e emission by Pseudo 3D PIC Case 1: Secondary electrons released mainly from the race track (γ = 0.1) Case 2: Secondary electrons localized over emission by 10% Spokes formation!!! T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 28

Pseudo 3D PIC Side view of spokes flares Fast camera Anders, Ni, and Rauch PIC MCC A. Revel, C. Costin,T. Minea (in preparation) T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 29

Pseudo 3D PIC : time average density Instantaneous Electron density integrated over 1 µs Fast camera NO spokes signature at µs time scale! Anders, Ni, and Rauch T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 30

Spokes origin Anders et al. ion impact on the target (dependency with the gas mass and target sublimation energy) Brenning et al. critical ionization velocity (CIV) when plasma moves with respect to background gas Pflug et al. plasma instabilities eus2 M Costin & Minea Burst of electron released from the cathode surface, close to the race track v = iit. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 31

Conclusions Particle simulations bring microscopic information in space and time on plasmas species (densities, potential, eedf, etc.) This knowledge of plasma can be exploited further to deduce transport parameter (electron diffusion across the magnetic field), instabilities, metal transport and ionization, kinetic channels, etc. Reactivity in HiPIMS is only initiated in the high power pulse phase, but it continues in the afterglow, by different reaction channels, namely negative ions T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 32

Contributors France Lise CAILLAULT Catalin VITELARU Daniel LUNDIN Adrien REVEL Sweden Nils BRENING Daniel LUNDIN Romania Claudiu COSTIN Catalin VITELARU Mihai GANCIU Thanks you all for your attention! T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 33

THANKS to all of you!!! Interuniversity Attraction Poles (IAP) Phase VII P7/34 T. Minea Journées Plasmas Froids 2013 / Oct. 17, 2013 34/35