Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/2011

Similar documents
O V E R V I E W. This study suggests grouping of numbers that do not divide the number

1.3. OPERAŢII CU NUMERE NEZECIMALE

COMPARATIVE DISCUSSION ABOUT THE DETERMINING METHODS OF THE STRESSES IN PLANE SLABS

UNITATEA DE ÎNVĂȚARE 3 Analiza algoritmilor

ON THE QUATERNARY QUADRATIC DIOPHANTINE EQUATIONS (II) NICOLAE BRATU 1 ADINA CRETAN 2

Teorema Reziduurilor şi Bucuria Integralelor Reale Prezentare de Alexandru Negrescu

Cristalul cu N atomi = un sistem de N oscilatori de amplitudini mici;

Reactoare chimice cu curgere piston (ideala) cu amestecare completa de tip batch (autoclava)

Soluţii juniori., unde 1, 2

Sisteme cu logica fuzzy

ASPECTS REGARDING NUMERICAL MODELING OF INDUCTIVE HEATING PROCESS FOR LOW VOLTAGE ELECTRICAL CABLES

THE METROLOGY OF OPTICAL FIBRE LOSSES

Modelling the Steady State Characteristic of ph Neutralization Process: a Neuro-Fuzzy Approach

ANOVA IN THE EDUCATIONAL PROCESS

AN APPROACH TO THE NONLINEAR LOCAL PROBLEMS IN MECHANICAL STRUCTURES

THE BEHAVIOUR OF ELASTOMERIC BEARINGS UNDER LOAD COMBINATIONS

FINITE ELEMENT ANALYSIS OF FRICTIONAL CONTACTS

Habilitation Thesis. Periodic solutions of differential systems: existence, stability and bifurcations

SOI prin smart-cut. Caracterizarea TEM-HRTEM a defectelor structuale induse in Si prin hidrogenare in plasma.

Gradul de comutativitate al grupurilor finite 1

SIMULAREA DECIZIEI FINANCIARE

POLAR CHARACTERISTIC OF ENERGETIC INTENSITY EMITTED BY AN ANISOTROPIC THERMAL SOURCE IRREGULARLY SHAPED

2D AND 3D PROCESSING OF THE INTERDEPENDENCE BETWEEN THE COMFORT MAIN INDICATORS

Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur

FINDING THE TRACES OF A GIVEN PLANE: ANALYTICALLY AND THROUGH GRAPHICAL CONSTRUCTIONS

STUDIU PRIVIND VARIABILITATEA PROPRIETĂŢILOR CHIMICE ALE SOLULUI ÎN ROMÂNIA STUDY ON VARIABILITY OF SOIL CHEMICAL PROPERTIES IN ROMANIA

THERMAL STRESS WIRELESS MONITORING DEVICES FOR ELECTRICAL EQUIPMENT

Barem de notare clasa a V-a

APLICAŢII ALE FORMULELOR LUI NEWTON PENTRU POLINOAME SIMETRICE

OPENPH - NUMERICAL PHYSICS LIBRARY

CALCULUS OF SHAFT LINE FROM SHIPS USING FEM METHOD

GIDD PENTRU CALCULUL CONSUMULUI DE CA.LOURA AL CONSTRUCTIILOR DOTATE CU ' A SISTEME PASIVE DE INCALZIRE SO LARA INDICATIV GP

"IIITO-TEC 'NIKI" & EQUIPME

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare (II)

EURO3. Without EGR. NOx reduction. particulate filter. Trade-off. Euro V (2008) denox system B US2007 US

Legi de distribuţie (principalele distribuţii de probabilitate) Tudor Drugan

THERMAL CONDUCTIVITY MEASUREMENT OF CONSTRUCTION MATERIALS USING THE THERMAL PROBE METHOD

Utilizarea limbajului SQL pentru cereri OLAP. Mihaela Muntean 2015

LIGHTNING MVP System

ACTA TECHNICA NAPOCENSIS

Figura 1. Schema bloc de reglare a turației motorului de curent alternativ Figure 1. Block diagram of the system for regulating the speed of AC motor

A GENERALIZATION OF A CLASSICAL MONTE CARLO ALGORITHM TO ESTIMATE π

4/68. Mini-comutatoare cu came. Prezentare generalã a sistemului. Întreruptoare Pornit-Oprit TM. Comutatoare de comandã TM.

STRUCTURAL INTENSITY METHOD APPLIED TO STUDY OF VIBRATIONS DAMPING / METODA INTENSIMETRIEI STUCTURALE APLICATĂ LA STUDIUL AMORTIZĂRII VIBRAŢIILOR

STRUCTURAL PARASITIC CAPACITANCE REDUCTION TECHNIQUES IN PLANAR MAGNETIC INTEGRATED STRUCTURES

SURFACE RESISTIVITY MEASUREMENTS OF ELECTROSTATIC DISCHARGE PROTECTIVE MATERIALS FOR DIFFERENT RELATIVE HUMIDITY LEVELS

Universitatea Politehnica Bucureşti Facultatea de Automatică şi Calculatoare Departamentul de Automatică şi Ingineria Sistemelor

Divizibilitate în mulțimea numerelor naturale/întregi

ELECTRONIC TECHNIQUES IN TIMING MEASUREMENTS FOR NUCLEAR STRUCTURE

Pentru clasa a X-a Ştiinţele naturii-sem II

Programarea Dinamica. (si alte chestii adiacente) Andrei Olariu

A PHENOMENOLOGICAL UNIVERSALITIES APPROACH TO THE ANALYSIS OF PERINATAL GROWTH DATA

Dynamic Response of Beams on Elastic Foundation with Axial Load

DEZVOLTAREA REGIONALĂ PRIN TURISM

THE ENERGETIC ANALYSIS OF THE DRIVE SYSTEM WITH INDUCTION MOTOR CONSIDERING IRON LOSSES: PART 1 SINUSOIDAL VOLTAGE SUPPLY

ACTA TECHNICA NAPOCENSIS

Nonlinear Vibrations of Elastic Beams

THE INFLUENCE OF SOME CHARACTERISTICS OF RANITIDINE HYDROCHLORIDE ON THE FORMING AND PREPARATION OF THE TABLETS

Aplicaţie SCADA. Simularea procesului de incalzire a unei pompe de caldura

THE OPERATIONAL FIABILITY IN THERMAL SYSTEMS THE WEIBULL DISTRIBUTION MODEL

Inteligenta Artificiala

Reactoare chimice cu curgere piston (ideala) (Plug Flow Reactor PFR) cu amestecare completa (Mixed Flow Reactor MFR) de tip batch (autoclava)

Manual Limba Germana

SYNCHRONIZATION AND CONTROL IN THE DYNAMICS OF DOUBLE LAYER CHARGE STRUCTURES. AUTONOMOUS STOCHASTIC RESONANCE

COMPARATIVE STUDY ON DETERMINING THE INTERNAL FRICTION ANGLE FOR SAND

TWO BOUNDARY ELEMENT APPROACHES FOR THE COMPRESSIBLE FLUID FLOW AROUND A NON-LIFTING BODY

INEGALITĂŢI DE TIP HARNACK ŞI SOLUŢII POZITIVE MULTIPLE PENTRU PROBLEME NELINIARE

A MODALITY OF USING DIRECT TORQUE CONTROL FOR IMPROVING THE EFFICIENCY OF THE POWER PRESSES

FAULT DIAGNOSIS IN ANALOG CIRCUITS BASED ON PARAMETRIC DEVIATION OF COMPONENTS COMPUTATION

PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN OPTIMIZATION

FORMULELE LUI STIRLING, WALLIS, GAUSS ŞI APLICAŢII

OPTIMAL OBSERVABILITY OF PMU'S USING ANALYTIC HIERARCHY PROCESS (AHP) METHOD

Agricultural Engineering

BOOST CIRCUIT CONTROL IN TRANSIENT CONDITIONS

Definiţie. Pr(X a) - probabilitatea ca X să ia valoarea a ; Pr(a X b) - probabilitatea ca X să ia o valoare în intervalul a,b.

On a Representation of Mean Residual Life

GENERATOARE DE SEMNAL DIGITALE

ACTUALITĂŢI ŞI PERSPECTIVE ÎN DOMENIUL MAŞINILOR ELECTRICE

Hydropower Preventive Monitoring Action Plan

Fig.1. Single-line diagram of the faulty

Utilizarea claselor de echivalenta in analiza asistata de calculator a sistemelor cu evenimente discrete

$IfNot ParametricTable= P_ratio_gas. P ratio,gas = 14; Raport comprimare compresor aer - Pressure ratio for gas compressor (2) $EndIf

ATTENUATION OF THE ACOUSTIC SCREENS IN CLOSED SPACES

Self-Small Abelian Groups and Related Problems. (Abstract)

CRITICAL ANALYSIS OF VIBRATION SOURCES OF HYDRO AGGREGATES IN OPERATING REGIME

CALITATEA VIEŢII ÎN ORAŞELE ROMÂNEŞTI ÎN CONTEXTUL REFORMEI STATULUI

VINDECAREA BOLILOR INCURABILE PRIN METODE NATURALE BY MIKHAIL TOMBAK

P-Q THEORY AND APPARENT T POWER CALCULATION FOR ACTIVE FILTERING

Ecuatii si inecuatii de gradul al doilea si reductibile la gradul al doilea. Ecuatii de gradul al doilea

UNDERWATER LIBS INVESTIGATIONS SETUP FOR METALS IDENTIFICATION

OPTIMAL CONTROL CONFIGURATION OF HEATING AND HUMIDIFICATION PROCESSES part I

ERRORS IN CONCRETE SHEAR WALL ELASTIC STRUCTURAL MODELING

MULTIPHYSICS FINITE ELEMENT MODEL OF A CONTINUOUS THIN METALLIC SHEETS HEATER WITH ROTATING PERMANENT MAGNETS SYSTEM

COMPARATIVE STUDY OF RELATIVE HUMIDITY IN THE SHALLOW SUBTERRANEAN HABITATS (LIMESTONE AND SHALE SUBSTRATUM)

ACCURACY LIMITS OF HIGH PRESSURE NATURAL GAS DENSITY MEASUREMENT EXACTITĂŢI DE MĂSURARE A DENSITĂŢII GAZULUI NATURAL LA PRESIUNE ÎNALTĂ

PERFORMANCE EVALUATION OF BRIDGES IN IAŞI SEISMIC AREA

C.A.D. OF LINEAR TRANSVERSE FLUX MOTORS

IDENTIFICATION AND OPTIMAL CONTROL OF BLOWING SYSTEM

Equations P $UnitSystem K kpa. F luid$ = Air (1) Input data for fluid. $If Fluid$= Air. C P = [kj/kg K] ; k = 1.

Infrared thermography as a tool to elaborate procedures for predictive maintenance of ball mills equipment

Transcription:

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 MONITORIZAREA SI DIAGNOZA COMPORTAMENTULUI DIVERSELOR TIPURI DE MOTOARE ELECTRICE DE UZ INDUSTRIAL FOLOSIND ANALIZA IMAGINILOR TERMOGRAFICE Alina DINCA, Vasile COZMA, Marian IONESCU Universitatea Constantin Brancusi din Targu-Jiu, ROMANIA REZUMAT: In aceasta lucrare autoarea prezinta rezultatele experimentale ale monitorizarii si diagnozei comportamentului diverselor tipuri de motoare de uz industrial folosind analiza imaginilor termografie. Scopul experimentului a fost sa se determine daca comportamentele din timpul functionarii diferitelor motoare electrice in diverse situatii monitorizate cu o camera de termoviziune ofera suficiente date de diagnoza care ar putea ulterior sa fie folosite la diagnosticarea oricarui alt motor de uz industrial in timpul functionarii lui. CUVINTE CHEIE: monitorizare termica, diagnoza, motoare electrice, analiza imagini termografice. 1. INTRODUCERE Ideea de baza a acestei lucrari a pornit de la dorinta de a gasi o metoda care sa realizeze o mentenanta predictiva a motoarelor de uz industrial prin monitorizarea functionarii acestora in diverse situatii, pentru a putea prezice un defect inainte de aparitia acestuia si mai ales a cauzelor ce pot surveni in urma aparitiei lui. Un defect [1] face ca MONITORING AND DIAGNOSIS OF THE BEHAVIOR OF VARIOUS TYPES OF INDUSTRIAL USE ELECTRIC ENGINES USING THERMOGRAPHIC IMAGE ANALYSIS Alina DINCA, Vasile COZMA, Marian IONESCU Constantin Brancusi University of Targu-Jiu, ROMANIA ABSTRACT: In this paper, the author presents the experimental results for monitoring and diagnosis of the behavior of various types of industrial use electric engines using thermographic image analysis. The purpose of the experiment was to find out if behaviors of different running electric engines and in various situations monitored with a thermovision camera offer enough diagnosis data that could further be used to diagnose any other industrial use electric engine while functioning. KEY WORDS: thermal monitoring, diagnosis, electric engines, thermographic image analysis. 1. INTRODUCTION The basic idea of this paper came out of the desire to find a method that would offer predictive maintenance to all industrial use electric engines through their monitoring in various situations in order to be able to predict a fault before it appears and mostly before causes appear. A fault [1] makes that the equipment, in our case electric engines to work in unacceptable parameters. After a while called fault development period, the fault leads to failure which stops the electric Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 127

Masuratori Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 echipamentul, in cazul de fata motorul, sa functioneze la parametri inacceptabili. Dupa un anumit interval de timp numit perioada de dezvoltare a defectului, defectul duce la avarie sau la pana, adica la oprirea functionarii motorului si implicit a ansamblului in care este montat. Teoretic, pentru a putea prezice aparitia defectului sau a avariei, se pot urma primele doua nivele (nivelul 1 format din 1. si 2., iar nivelul 2 din a., b. si c.) ale taxonomiei de metode de predictie [2] de mai jos, restul nivelelor fiind ocupate de metode particularizate pentru fiecare echipament monitorizat: Predictia avariei: 1. nu evaluam starea curenta aici metoda se bazeaza pe fiabilitate 2. evaluam starea corecta a. aparitia de avarii b. efectele secundare ale aparitiei defectelor c. modul de manifestare al defectelor Dupa cum se poate observa in figura 1, prezicerea avariei poate declansa o actiune preventiva pentru a evita avaria sau poate pregati pentru actiunea de reparare (dupa avarie) [2]. engine and also the assembly it is in. In theory, to predict the fault or failure, one can follow the first two levels (level 1 of 1. and 2. and level 2 of a., b., and c.) of the prediction methods taxonomy [2] below, the rest of the levels being kept for the particular methods used for equipment that is being monitored: Fault prediction: 1. not evaluating current state metohd based on reliability 2. evaluating current state a. occurence of failures b. side-effects of faults c. manifestation of faults. As can be seen in figure 1, predicting the fault can trigger a preventive action in order to avoid the failure or can prepare for reparing action (after failure takes place) [2]. Motor care functioneaza Evitarea avariei Pregatire pentru Model predicti Prezicerea avariei Figura 1. Managementul proactiv al defectelor Figura 1. Proactive fault management De asemenea, s-a dorit a se gasi un raspuns la intrebarea: Rezultatele oferite de diagnosticarea unui tip de motor ar putea Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 128 Also, an answer to the question Could the results offered by the diagnosis of an electric engine type contribute to predictive

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 contribui la mentenanta predictiva a oricarui motor de uz industrial?. Raspunsul a fost cautat mai intai in rezultatele oferite de monitorizarea catorva tipuri de motoare si in diverse situatii cu o camera de termoviziune. 2. MONITORIZAREA FUNCTIONARII MOTOARELOR Am stabilit mai sus ca se poate prezice deteriorarea unui echipament electric sau energetic pentru a se putea remedia cauza inaintea aparitiei efectului (in cele mai multe cazuri, aparitia unei probleme este precedata de fenomenul de incalzire locala, mult peste valoarea normala inscrisa in datele tehnice ale echipamentului) [3]. Tocmai din acest considerent am ales ca echipament de monitorizare pentru acest experiment o camera de termoviziune sau termografica Flir Systems, model T0, ca in figura 2. De asemenea, se stie din [4] ca monitorizarea cu camera de termoviziune este o tehnica de monitorizare neinvaziva si nedistructiva. maintenance of any other industrial use electrical engine? was desired to be found. The answer was first searched in the results offered by the monitoring of some types of electric engines and in different situations with a thermovision camera. 2. MONITORING RUNNING ELECTRIC ENGINES There is established above that deterioration of an electric or energetic equipment can be predicted in order to remedy the cause before effect appears (in most cases, when a problem appears it is followed by a local heating phenomenon, much over the normal value that is written in equipment s data sheet) [3]. Because of that we chose as monitoring equipment a thermovision camera Flir Systems T0, as in Figure 2. Also, it is known from [4] that monitoring with a thermovision camera is a noninvasive and nondestructive technique. Figura 2. Camera de termoviziune Flir T0 Figure 2. Thermovision camera Flir Systems T0 O camera de termoviziune absoarbe energia termica sau infrarosie (invizibila ochiului uman) emisa de suprafata unui obiect monitorizat si o transforma intr-o imagine termica sau termograma. Ce apare in imaginea termica colorat de la galben la rosu spre alb reprezinta temperaturi ridicate, alb fiind maxima, iar negru albastru reprezinta temperaturi joase, negru fiind minima [5]. A thermovision camera absorbs thermal or infrared energy (invisible to the human eye) that is emmited by the surface of a monitored object and transformes it into a thermal image or a thermogram. What appears in the thermal image from yellow to red and white represent high temperatures, white being the maximum, and black-blue represent low temperatures, black being the Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 129

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 Imaginile termice sunt o modalitate simpla de a identifica diferente de temperatura aparenta in echipamentele industriale (motoare, in cazul de fata) monitorizate, comparandu-le cu conditiile lor normale de functionare. Cu camera de termoviziune observam carcasa (suprafata exterioara) motorului. Stim din [6] ca pentru fiecare motor exista o temperatura de functionare normala, care de obicei e insemnata in datele lui tehnice, sau pe o placuta inscriptionata si atasata carcasei. Temperatura aparenta normala este intre 49 60 0 C si depinde foarte mult de conditiile de mediu. Cand cresterea temperaturii depaseste valoarea de 60 0 C, inseamna ca acel motor se confrunta cu o problema. Din moment ce majoritatea motoarelor de aceeasi dimensiune functioneaza sub aceeasi sarcina, devine foarte simplu sa identifici comparativ motoare fierbinti si sa iei masuri corectoare. Problemele la motoare sunt identificate de obicei comparand temperatura la suprafata motoarelor similare, lucrand in aceleasi conditii. Supraincalzirea apare ca puncte calde intr-o imagine termica si sunt de obicei gasite prin comparatie cu echipamente similare. In continuare se vor analiza atat echipamente similare supuse unor conditii diferite de functionare, cat si echipamente diferite in conditii diferite de functionare. Cazul 1. Monitorizarea functionarii unui motor asincron (carcasa acestuia) Incercare in gol pana cand se atinge echilibrul termic, adica egalitatea dintre cantitatea de caldura dezvoltata de curent in masina si cantitatea de caldura evacuata in mediul ambiant. In acest regim, suprafata exterioara a carcasei are temperaturi stabilizate. Motorul are datele tehnice: - putere P=4kW, minimum [5]. Thermal images are a simple way to identify apparent temperature differences in the monitored industrial equipments (electric engines), comparing them to the normal functioning conditions. With the thermovision camera we observe the housing (exterior surface) of the electric engine. We know from [6] that for every electric engine there is a normal functioning temperature, which is written in its technical data sheet or on a board attached to the housing. Normal apparent temperature is between 49 60 0 C and depends a lot of the environmental conditions. When the temperature rises over 60 0 C, it means that the electric engine has a problem. Since most electric engines of the same dimensions work under the same load, it becomes very simple to compare hot engines and to take proper measures. Problems at engines are usually identified comparing the surface of similar engines, working in the same conditions. Overheating appears as hot spots into a thermal image and are usually found by comparison with similar equipments. Further on will be analyzed similar equipments under different conditions, but also different equipments in different functioning conditions. Case 1. Monitoring the functioning of an asynchronous electric engine (its housing) Empty attempt until thermal equilibrium is reached, meaning heat quantity developed by the current inside to be equal to the heat quantity released to the environment. In this regime, the exterior surface of the housing has stabilized temperatures. The electric engine has the characteristics: - power P=4kW, - nominal voltage U n =380V, - current in stator circuit I s =10A and Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 1

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 - tensiune nominala U n =380V, - curentul in circuitul statoric I s =10A si in circuitul rotorici r = A, - turatia n=00 rotatii/min. La aceasta incercare, pe camera am setat parametrii astfel: temperatura ambianta: 19,6 0 C, distanta fata de obiect: 2m, umiditate 50%, emisivitate material: 0.96. In figura 3. de mai jos este imaginea termica a motorului la temperatura mediului ambiant, care contine informatii termice (ex.:temp medie a ariei 19,1 0 C), cat si imaginea sa in vizibil: in rotor circuit I r = A, - speed n=00 rotations/min. At this attempt, on the camera I set the parameters: environmental temperature: 19,6 0 C, distance to object: 2m, humidity 50%, emissivity: 0.96. In figure 3 below is the thermal image of the electric engine at environmental temperature which contains thermal information (e.g. average temperature of the area: 19,1 0 C), and also it image in visible: 23.5 C M otor asincron 22 18 16.4 Figura 3.a. Motor in infrarosu la temperatura mediului; b.motorul in vizibil Figure 3.a. Electric engine in infrared environmental. temp; b.electric engineul in visible Am alimentat motorul la o tensiune de 380V printr-un reostat cu pornire in trepte. Am preluat 18 valori si 8 poze (ex. figurile 4, 5, 6) la intervale de timp diferite, cu ajutorul carora am trasat curba de pornire, anume temperatura maxima de pe suprafata carcasei motorului in functie de timp (figura 17). Se poate observa din termograme cum in aria definita se mareste zona alba, ceea ce indica cresterea temperaturii pe suprafata delimitata. I powered the engine to 380V through a rheostat which starts in steps. I took 18 values and 8 images (e.g. figures 4, 5, 6) at different time moments, with the help of which I drawn the starting or heating curve, meaning maximum temperature on the housing s surface function of time (figure 17). Thermograms show that in the defined surface, white area increases, meaning that temperature increases. 32.8 C 45.6 C 48.5 C 25 17.2 18.5 19.1 Figura 4. Figura 5. Figura 6. Figure 4. Figure 5. Figure 6 Cazul 2. Monitorizarea functionarii Case 2. Monitoring the same engine as Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 131

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 aceluiasi motor asincron Incercare in gol fara racire La aceasta incercare, pe camera am setat urmatorii parametri: temperatura ambianta: 19,5 0 C, distanta fata de obiect: 2m, umiditate 50%, emisivitate material: 0,96. In figura 7. de mai jos este imaginea termica a motorului la temperatura mediului ambiant, care contine informatii termice (ex.:temp medie a ariei 19 0 C), cat si imaginea sa in vizibil: above Empty attempt without cooling In this attempt, I set the following parameters: environmental temperature: 19,5 0 C, distance to object: 2m, humidity 50%, emissivity: 0.96. In figure 7. below is the thermal image of the electric engine at environmental temperature, which contains thermal information (e.g. average temperature in area of 19 0 C), as its visible: M otor asincron 21.8 C 18 16 15.7 Figura 7.a. Motor in infrarosu la temperatura mediului; b.motorul in vizibil Figure 7.a. Electric engine in infrared environmental. temp; b.electric engineul in visible Am alimentat motorul la o tensiune de 380V printr-un reostat cu pornire in trepte, insa de data aceasta am detasat elicea de la sistemul de ventilatie al motorului pentru a simula o defectare a sistemului de ventilare. Am preluat 41 de poze (ex. figurile 8,9,10 si 11) la intervale de timp diferite cu ajutorul carora am trastat curba de pornire din figura 17, anume temperatura maxima de pe suprafata carcasei motorului in functie de timp. I powered the engine to 380V through a rheostat which starts in steps, but this time I detached the propeller from the ventilation system of the electric engine to simulate a fault in the ventilation system. I took 41 images (e.g. figures 8,9,10 and 11) at different time moments with the help of which I drawn the starting curve in figure 17, namely maximum temperature of the housing s surface function of time. 26.9 C 26 24 22 29.9 C 25 34.0 C 25 64.2 C 60 50 18 16.2 16.3 16.4 17.4 Figura 8. Figura 9. Figura 10. Figura 11. Figure 8. Figure 9. Figure 10. Figure 11. Cazul 3 Monitorizarea functionarii a doua motoare identice (carcasa acestora) cu urmatoarele date tehnice: - putere P=0,87kW, Case 3 Monitoring the functioning of two identical engines (their housing) with the characteristics: - power P=0,87kW, Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 132

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 - tensiune nominala U n =2V, - turatia n=1500 rotatii/min. Unul din ele este in sarcina, iar celalalt are sarcina decuplata, si am monitorizat timp de 15 minute pornirea (evolutia temperaturii pe aceasta perioada), dupa care am oprit alimentarea. In figura 12 se pot observa cele doua motoare. - nominal voltage U n =2V, - speed n=1500 rotations/min. One of them is in load, and the other one has the load decoupled and I monitored for 15 minutes the start (evolution of its temperature over this period) and then I stopped the supply. In figure 12 the two engines can be seen. Motor care functioneaza normal Motor care se supraincalzeste (defect) Figura 12. Figure 12. In figura 13 si figura 14 sunt termogramele celor doua motoare inainte de a le porni, la temperatura mediului ambiant de 16 0 C: In figures 13 and 14 are the thermograms of the two engines before running, at environmental temperature of 16 0 C: 17.6 C 16 17.0 C 16 14 14 13.5 12.9 Figura 13 Motor inainte de a fi alimentat Figura 14 Motor defect inainte de a fi Alimentat Figure 13 Electric engine before running Figure 14 Faulty electric engine before running In continuare vor fi prezentate cateva termograme (figurile 15 si 16) ce reprezinta incalzirea, puse in paralel pentru cele doua motoare pentru a evidentia viteza de crestere a temperaturii pentru cel defect (figura 16) comparativ cu cel care functioneaza normal (figura 15), cel defect atingand un maxim de aproape 60 0 C in 15 minute, pe cand celalalt Further on will be some thermograms in parallel (figures 15 and 16) which represent the heating of the two engines in order to point out the speed of temperature rise for the faulty engine (figure 16), compared to the one that functions normally (Figure 15), the faulty one reaching a maximum of almost 60 0 C in 15 minutes, when the other Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 133

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 de doar 27,4 0 C in acelasi timp. Si pentru acest caz s-a trasat curba de pornire in figura 18. of only 27,4 0 C in the same time. For this case also a starting curve was drawn in figure 18..9 C 22.9 C 22 27.4 C 25 18 18 16.0 16.5 16.9 Figura 15. Termograme reprezentand incalzirea motorului ce functioneaza normal Figure 15. Thermograms representing heating of the normal functioning engine 31.8 C 44.7 C 58.3 C 25 15.8 16.4 16.8 Figura 16. Termograme reprezentand incalzirea motorului defect Figure 16. Thermograms representing heating of the faulty electric engine 3. DIAGNOZA Studiind cele 3 cazuri prezentate anterior, putem realiza o diagnoza in felul urmator: Cazul 1 Motorul ajunge in 96 minute de la temperatura mediului in care se regasea de 19,5 0 C la temperatura de 49 0 C, ceea ce demonstreaza o functionare in limite normale. Cazul 2 Pornind acelasi motor din Cazul 1care are initial temperatura de 19,5 0 C, va ajunge dupa 96 minute (aproximativ o ora si jumatate) la temperatura de 65,5 0 C. Aceasta depaseste cu mult temperatura nominala de functionare, care este intre -50 0 C. Acest lucru se datoreaza lipsei ventilatiei cu care a fost prevazut. Cazul 3 Doua motoare identice, aflate in conditii identice sunt pornite in acelasi timp. In 15 minute de observatie, unuia ii creste temperatura cu 0 C mai mult decat celuilalt sarcina decuplata. 3. DIAGNOSIS Studying the 3 cases presented above, we can make a diagnosis as follows: Case 1 Electric engine goes in 96 minutes from environmental temperature of 19,5 0 C to 49 0 C, which proves a functioning in normal limits. Case 2 When we run the same electrical engine in Case 1 with initial temperature of 19,5 0 C, in 96 minutes (almost an hour and a half) it will reach 65,5 0 C. This exceeds a lot its nominal functioning temperature which is between and 50 0 C. This happens because of lack of ventilation. Case 3 Two identical engines, being in the same conditions, are started in the same. In 15 minutes of observation, one will be with 0 C hotter than the other because its decoupled load. For cases 1 and 2 we have the starting Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 134

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 Pentru cazurile 1 si 2 avem curbele de pornire trasate in figura 17, iar pentru cazul 3, curbele de incalzire sunt trasate in figura 18. curves in figure 17, and for case 3, the starting curves are drawn in figure 18. 80 60 0 0 3 5 7 Curba de pornire fără elice 11 16 19 23 27 34 Curba de pornire cu elice 43 48 51 55 63 71 80 87 96 Figura 17. Figure 17. Temperatura ( o C) 80 60 0 Curba de pornire pentru motor defect Curba de pornire pentru motorul normal în funcţionare 0 2 4 5 5 6 7 7 8 10 11 12 13 14 14 Figura 18. Figura 18. Figure 18. Timp (minute) 4. CONCLUZII Imaginile termice sunt o modalitate simpla de a identifica diferente de temperatura aparenta in procesele/sistemele industriale, comparandu-le cu conditiile lor normale de functionare. Din cele 4 grafice situate in figurile 17 si 18 rezultate din cele 3 cazuri, deduc: - doua situatii in care motoarele par sa functioneze in conditii normale (in 96 minute motorul din Cazul 1 ajunge de la temperatura de la 19,5 0 C la 49 0 C, iar in 15 minute motorul care nu e defect din Cazul 3 ajunge de la 16,7 0 C la 27,4 0 C) si - doua situatii in care temperatura normala de functionare a unui motor e depasita (in Cazul 2 motorul fara ventilatie ajunge de la 19,5 0 C la 65,5 0 C in 96 min si in Cazul 3 motorul cu sarcina decuplata ajunge de la 4. CONCLUSIONS Thermal images are a simple way to identify apparent temperature differences in the industrial processes/systems, comparing them with their normal functioning conditions. From the 4 curves in figures 17 and 18 that are resulted from the 3 cases, I deduce: - two situations in which engines seem to work in normal conditions (in 96 minutes engine in Case 1 reaches from 19,5 0 C to 49 0 C, and in 15 minutes engine not faulty in Case 3 reaches from 16,7 0 C to 27,4 0 C ) and - two situations in which normal functioning temperature of an electric engine is exceeded (in Case 2 engine with no ventilation reaches from 19,5 0 C to 65,5 0 C in 96 minutes and in Case 3 engine with uncoupled load reaches from 15,9 0 C to Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 135

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 15,9 0 C la 58,3 0 C in 15 min). In aceste ultime doua situatii, vazand doar graficele nu pot sti cauza care duce la cresterea temperaturii. Pot concluziona doar ca temperatura imi creste peste limitele normale. Aceasta concluzie conduce la ipoteza ca diagnosticul unui motor in stare anormala de functionare (defect) nu-mi poate indica si defectul, deci scopul experimentului, anume acela de a determina daca comportamentele din timpul functionarii diferitelor motoare monitorizate cu o camera de termoviziune ofera suficiente date de diagnoza care ar putea ulterior sa fie folosite si la diagnosticarea oricarui alt motor in timpul functionarii lui a fost atins, si anume datele oferite de diagnosticarea unui motor nu sunt suficiente pentru a face o generalizare, si in niciun caz la determinarea cauzei defectarii, deoarece doua cauze diferite pot duce prin analiza termografica la acelasi grafic. Stim ca e defect, dar nu stim de ce. 58,3 0 C in 15 minutes). In the last two situations, seeing only the graphics I cannot know the cause that leads to temperature increase. I can only conclude that temperature increases over normal limits. This leads to the hypothesis that the diagnosis of an electric engine in abnormal state of functioning (faulty) cannot show the fault, so the purpose of the experiment, meaning that to determine weather behaviors during functioning of various electrical engines with a thermovision camera offers enough diagnosis data which could further be used to diagnose any other type of electric engine during functioning was reached, namely that the data offered by diagnosing an electric engine are not enough to generalize, and hey could not lead to determining the cause of failure, because two different causes may lead to the same graphic through thermographic. We know it s out of order, but we don t know why. BIBLIOGRAFIE [1] Curs IV MSI Dezvoltarea programelor de mentenanta; [2] Malek, M. Tutorial despre algoritmi predictivi si tehnologii pentru imbunatatirea disponibilitatii, International Service Availability Symposium (ISAS 08), Universitatea din Tokyo, Japonia, 19 mai 08; [3] Popescu C., Popescu L.G., Dinca A. Monitorizarea procesului de incalzire la motoarele electrice asincrone cu rotorul in scurtcircuit, Analele Universitatii Constantin Brancusi din Targu-Jiu, Seria Inginerie, nr. 1/10, pp. 7-14, ISSN 1842-4856; [4] Xavier P.V. Maldague - Teorie si practica a tehnologiei infrarosu pentru testarea nedistructiva, o publicatie a Wiley-Interscience, John Wiley & Sons, Inc., 01; [5] Flir Systems T0 Manualul REFERENCE [1] Documentation for MSI class Development of maintenance programes; [2] Malek, M. Tutorial on Predictive Algorithms and Technologies for Availability Enhancement, International Service Availability Symposium (ISAS 08), Tokyo University, Japan, May 19, 08; [3] Popescu C., Popescu L.G., Dinca A. Monitoring the Heating Process in Anynchronous Electric Engines with Short-Circuit Rotor, Annals of Constantin Brâncusi University of Târgu-Jiu, Engineering Series, no. 1/10, pp. 7-14, ISSN 1842-4856; [4] Xavier P.V. Maldague - Theory and Practice of Infrared Technology for Nondestructive testing, a Wiley- Interscience publication, John Wiley & Sons, Inc., 01; Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 136

Analele Universităţii Constantin Brâncuşi din Târgu Jiu, Seria Inginerie, Nr. 3/11 utilizatorului; [6] Cozma V., Popescu C., Orban M. D. Masini electrice, Masini asincrone, Editura Sitech Craiova, 05. [5] Flir Systems T0 User s Manual; [6] Cozma V., Popescu C., Orban M. D. Electric Engines, Asynchronous Engines, Sitech Printing House, Craiova, 05. Annals of the Constantin Brâncuşi University of Târgu Jiu, Engineering Series, Issue 3/11 137