COMPOSITIO MATHEMATICA

Similar documents
COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Séminaire de Théorie spectrale et géométrie

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

Séminaire Équations aux dérivées partielles École Polytechnique

Séminaire d analyse fonctionnelle École Polytechnique

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION B

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION B

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

COMPOSITIO MATHEMATICA

A note on the generic solvability of the Navier-Stokes equations

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

Groupe de travail d analyse ultramétrique

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION A

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

Groupe de travail d analyse ultramétrique

ANNALES DE L I. H. P., SECTION C

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

COMPOSITIO MATHEMATICA

ANNALES DE L INSTITUT FOURIER

ANNALES DE L I. H. P., SECTION C

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION A

Existence and uniqueness of maps into affine homogeneous spaces

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

INFORMATIQUE THÉORIQUE ET APPLICATIONS

ANNALES MATHÉMATIQUES BLAISE PASCAL

ANNALES DE L I. H. P., SECTION A

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION A

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

ANNALES DE L INSTITUT FOURIER

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

REVUE FRANÇAISE D INFORMATIQUE ET DE

RAIRO INFORMATIQUE THÉORIQUE

COMPOSITIO MATHEMATICA

A maximum principle for optimally controlled systems of conservation laws

Séminaire Dubreil. Algèbre et théorie des nombres

COMPOSITIO MATHEMATICA

BULLETIN DE LA S. M. F.

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALESDEL INSTITUTFOURIER

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

COMPOSITIO MATHEMATICA

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

RAIRO ANALYSE NUMÉRIQUE

RAIRO MODÉLISATION MATHÉMATIQUE

The stochastic logistic equation : stationary solutions and their stability

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L I. H. P., SECTION A

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Série Mathématiques. C. RADHAKRISHNA RAO First and second order asymptotic efficiencies of estimators

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION C

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

Transcription:

COMPOSITIO MATHEMATICA HERWIG HAUSER GERD MÜLLER Analytic curves in power series rings Compositio Mathematica, tome 76, n o 1-2 (1990), p. 197-201. <http://www.numdam.org/item?idcm_1990 76_1-2_197_0> Foundation Compositio Mathematica, 1990, tous droits réservés. L accès aux archives de la revue «Compositio Mathematica» (http: //http://www.compositio.nl/) implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Compositio Mathematica 76: 197-201, 1990. 1990 Kluwer Academic Publishers. Printed in the Netherlands. Analytic curves in power series rings HERWIG HAUSER1 & GERD MÜLLER2 1 Institut für Mathematik, Universitât Innsbruck, 6020 Innsbruck, Austria; 2Fachbereich Mathematik, Universitiit Mainz, 6500 Mainz, FRG Received 3 December 1988; accepted 20 July 1989 Let us state a standard result on algebraic group actions: PROPOSITION. For an analytic map germ y: S ~ (V, v), S a reduced analytic space germ and (V, v) the germ in v of a finite dimensional complex vector space V, together with an algebraic subgroup G of GL(Y) the following holds: (i) T he germ T of points t in S for which y(t) lies in the orbit G. v of G through v is analytic. (ii) T here is an analytic map germ ~: T ~ (G, 1) such that y(t) ~(t) v for all t in T. Indeed, the orbit G. v is a locally closed submanifold of V, isomorphic to the homogeneous manifold G/Gv via the orbit map G/Gv ~ G.v, and the natural map G ~ G/Gv admits local sections. The second part of the Proposition asserts that every analytic curve in a G-orbit is locally induced from an analytic curve in G. The object of the present article is to establish this statement in the case where V (Opn is a finite free module over the C-algebra (9n of convergent power series in n variables and G K GLp((On) x Aut (9n is the contact group acting naturally on Opn. Recall that the orbits of K through f in Opn just correspond to the isomorphism classes of the analytic space germs in (Cn, 0) defined by f. Thus we shall obtain analytic trivializations of local families of space germs whose members lie in the same isomorphism class. DEFINITION. Let S always dénote a reduced analytic space germ. A map germ y : S ~ E with values in some subset E of Opn is called analytic if there is an analytic map germ G : (C",0) x S ~ CP such that 03B3(s)(x) G(x, s).

198 Choosing coordinates on (C", 0), the group Aut (9 n can be considered as a subset of (9:. The analyticity of a map germ with values in Aut (9n does not depend on this choice (cf. [M, sec. 6]) and thus analytic map germs with values in K are defined. We then have: THEOREM 1. Let y : S ~ Opn be an analytic map germ, S reduced. (i) The germ T of points t in S for which y(t) lies in the orbit Jf y(0) is analytic. (ii) There is an analytic map germ ~: T ~ K with ~(0)1 such that y(t) ~(t) 03B3(0) for all t in T. Proof. For mn ~ On the maximal ideal and k ~ N consider Ak On/mk+1n and the algebraic group :ttk GLp(Ak) Aut Ak acting rationally on the finite dimensional vector space Yk Ai. The composition 03B3k: S ~ (Vk, 03B3k(0)) of y with the natural map Opn ~ Yk is analytic. By the Proposition the germ Tk of points t in S with 03B3k(t) ~ Kk 03B3k(0) is analytic. Clearly Tk+1 c Tk. As Os is Noetherian the sequence becomes stationary, say Tk T* for k» 0. The Proposition gives analytic 4Jk: T* ~ (Kk, 1) such that yk(t) ~k(t) 03B3k(0) for t~ T*. By Theorem 2 below there is an analytic ~: T* ~ Jf with ~(0) 1 such that y(t) ~(t) 03B3(0) for all t ~ T*. This implies T* c T. Obviously T c T* and Theorem 1 is proved. THEOREM 2. For two analytic map germs 03B3, ~ : S ~ Opn, S reduced, the following conditions are equivalent: (i) T here exists an analytic 4J: S - K with ~(0) 1 such that y(s) ~(s) ~(s) for all s E S. (ii) For any k ~ N there exist analytic 4Jk: S -+ Kk with ~k(0) 1 such that 03B3k(s) ~k(s) ~k(s) for all SES. Proof. Embed S in (cm, 0) and choose G, H:(Cn+m, 0)~Cp such that one has y(s)(x) G(x, s) and ~(s)(x) H(x, s). We have to find u(x, s) ~ GLp(CLp(On+m) and y(x, s) ~ Onn+m such that: and where I(S) is the ideal of (9 m defining S in (cm, 0). By condition (ii) this system of equations can be solved up to order k. A generalization of Artin s Approximation Theorem by Pfister and Popescu [P-P, Thm. 2.5] and Wavrik [W, Thm. 1] yields the solutions u(x, s) and y(x, s). Let us now indicate some applications of Theorem 1. We first determine the tangent spaces to the orbits of the contact group MT in (9P: DEFINITION. (a) The tangent vector in y(0) of an analytic curve y : (C, 0) ~ (9 np

199 given by G: (C" x C,0) ~ CP is defined as: (b) The tangent map at 0 of an analytic map germ y : (cm, O)~Opn given by G:(Cn x Cm,0) ~ Cp is defined as where (c) For a subset E of Opn and g E E let COROLLARY. Let g E (9P with K -orbit K g. (i) Tg(K g) I (g) Opn + m" J(g) where I(g) is the ideal of (9n generated by the components of g and J(g) is the On-submodule of (9P generated by the partial derivatives of g. (ii) Let y : (cm, 0) ~ Opn be analytic, y(o) g, restricting to ~ S : S ~ f - g for some reduced S c (Cm, 0). Then Toy(ToS) c Tg(%.g). Proof. (i) If G(x, s) u(x, s) - g(y(x, s)) with u(x, 0) 1, y(x, 0) x, then Theorem 1 therefore implies " c ". The other inclusion is obvious. (ii) Since any analytic S - 5i can be extended to an analytic (Cm, 0) ~ 5i, Theorem 1 gives an analytic map germ b : (Cm, 0) ~ (9P, b(o) g, such that b(s) ~ K g for s e (Cm, 0) and b(s) y(s) for s c- S. Clearly Tob(C ) c Tg(K g) and T003B4(v) T0~(v) for v ~ To S. Next, let us interpret Theorem 1 geometrically. For an analytic y : S - (9P given by G: (C", 0) x S ~ CP consider the space germ X defined in (C", 0) x S by G. For fixed s ~ S the vector y(s) E (9P defines the germ

200 in a(s) (0, s) of the fiber of 03C0 prix: X ~ S over s. Conversely, a morphism n : X-S of space germs with section 03C3 : 8-+X has an embedding X ~ (Cn, 0) x S over S with a(s) 0 x S, see [F, 0.35]. Moreover an analytic (D: S ~ Aut (9,, given by 03A6(s)(x) y(x, s) induces an automorphism 0 of (Cn, 0) x S over S mapping 0 x S onto itself: 0(x, s) (y(x, s), s). Combining these remarks we get: THEOREM l. For a morphism of analytic space germs 03C0: X ~ S, S reduced, with section 6: S ~ X denote by Xt, t E S, the germ in u(t) of the fiber of n over t. (i) The germ T of points t in S with Xt ~ X0 is analytic. (ii) For any base change a: S - S with S reduced the induced morphism n : X X x s S ~ S is trivial along the induced section 03C3 : S ~ X if and only if ce maps into T. (We say that n is trivial along 0" if there is an isomorphism X ~ Xo x S over S mapping 0" (8 ) onto 0 x S.) The universal property of (ü) applies in particular to the base change T c S and then reads as follows: A local analytic family of analytic space germs with isomorphic members is trivial. This is a local analogon of a result of Fischer and Grauert [F-G] and Schuster [Sch, Satz 4.9]: A flat analytic family of compact analytic spaces with isomorphic members is locally trivial. Theorem l can be extended to the case where does not come with a section 0": THEOREM 3. For a morphism of analytic space germs denote by X(a), a E X, the germ in a of the fiber of n through a. (i) The germ Y of points a in X with X(a) ~ X(O) is analytic. (ii) The restriction ny : Y- S is a mersion (i.e., has smooth special fiber Y(O) and there is a germ T c S such that ny maps into T and Y ~ Y(O) x T over T). (iii) For any base change a: S - S with S reduced the induced morphism n : X X x s S - S is trivial if and only if a maps into T. (iv) There is a germ Z with X(0) ~ Y(O) x Z. Proof. Choose embeddings X c (cn, 0) x S over S and S c (Cm, 0) and let F:(Cn x Cm, 0) ~ Cp define X. Let y: (C" x Cm, 0) ~ (Opn be given by 03B3(a)(x) F(x + al, a2). For fixed a E X the germ y(a) E (9 n defines X(a). Hence Theorem 1 yields the analyticity of Y. Let Y(a) be the germ in a of the fiber of 03C0Y n : X ~ S with S reduced through a. For a E Y fixed its reduction red Y(a) is the germ of those points b E X(a) with X(b) ~ X(a). As X(a) and X(0) are isomorphic, red Y(a) and red Y(0) are isomorphic. In particular, dim Y(a) dim Y(0) for all a E Y. By the Corollary we have for g y(0) E Un and v E To Y(0) To Yn (Cn x 0):

201 As g defines X(O) in (C", 0) this signifies that there are d dim To Y(O) vectorfields 03BE1,..., 03BEd on X(O) with 03BE1(0),..., 03BEd(0) linearly independent. A Theorem of Rossi [F, 2.12] implies X(0) ~ (Cd, 0) x Z for some Z. Hence, by definition, Y(0) must have dimension at least d and therefore Y(0) ~ (Cd, 0). This gives (iv). Moreover ny is a mersion by [F, 2.19, Cor. 2]. The universal property of (iii) is then a consequence of Theorem 1. We conclude by some remarks: In the absolute case S 0 we have recovered a result of Ephraim [E, Thm. 0.2]. Another Corollary is Teissier s economy of the semi-universal deformation: In the semi-universal deformation of an isolated singularity X(O) there are no fibers isomorphic to X(O), [T, Thm. 4.8.4]. Finally, it is possible to provide the germs Y and T of Theorem 3 with canonical non-reduced analytic structures. The universal property then holds for arbitrary base changes. A detailed exposition of this non-reduced case is given in [H-M]. We also refer to results of Flenner and Kosarew [F-K] and Greuel and Karras [G-K]. Using deformation theory and Banach-analytic methods they treat the case of flat morphisms. Acknowledgements We would like to thank G.-M. Greuel and H. Flenner for stimulating discussions and suggestions. References [E] Ephraim, R.: Isosingular loci and the cartesian product structure of complex analytic singularities. Trans. Am. Math. Soc. 241 (1978) 357-371. [F] Fischer, G.: Complex analytic geometry. Springer Lect. Notes 538, 1976. [F-G] Fischer, W., Grauert, H.: Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II 6 (1965) 89-94. [F-K] Flenner, H., Kosarew, S.: On locally trivial deformations. Publ. Res. Inst. Math. Sci. 23 (1987) 627-665. [G-K] Greuel, G.-M., Karras, U.: Families of varieties with prescribed singularities. Compos. Math. 69 (1989). [H-M] Hauser, H., Müller, G.: The trivial locus of an analytic map germ. To appear. [M] Müller, G.: Deformations of reductive group actions. Math. Proc. Camb. Philos. Soc. 106 [P-P] [Sch] [T] [W] (1989) 77-88. Pfister, G., Popescu, D.: Die strenge Approximationseigenschaft lokaler Ringe. Invent. Math. 30 (1975) 145-174. Schuster, H.W.: Zur Theorie der Deformationen kompakter komplexer Räume. Invent. Math. 9 (1970) 284-294. Teissier, B.: The hunting of invariants in the geometry of discriminants. In: Real and complex singularities, Oslo 1976, 565-677. Holm, P., (ed.) Sijthoff & Noordhoff 1977. Wavrik, J.J.: A theorem on solutions of analytic equations with applications to deformations of complex structures. Math. Ann. 216 (1975) 127-142.