for the PIBETA Collaboration University of Virginia 4th International Workshop on CHIRAL DYNAMICS 2003 Theory and Experiment

Similar documents
STUDY OF THE π + e + νγ DECAY ANOMALY

New results on muon radiative decay

Precise Measurement of the π + e + ν Branching Ratio

New Results in Rare Pion and Muon Decays

A survey of the rare pion and muon decays.

Rare decay studies in the PEN experiment

Rare Pion and Muon Decays: Summary of Results and Prospects

Investigating Lepton Universality via a Measurement of the Positronic Pion Decay Branching Ratio

arxiv: v1 [nucl-ex] 28 Mar 2014

Precise Measurement of the π + e + ν Branching Ratio

arxiv: v1 [hep-ex] 30 Nov 2018

Results and opportunities in pion and muon decays

Fundamental physics in rare pion and muon decays

Precision low energy searches for new physics

Rare allowed pion and muon decays

the role of atom and ion traps

Electroweak Theory: 2

arxiv: v1 [nucl-ex] 31 Dec 2015

Standard Model Theory of Neutron Beta Decay

Radiative Corrections in Free Neutron Decays

PoS(KAON)052. π eν. Prospects for Measurements of the Branching Ratio. Douglas Bryman

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

V ud, V us, THE CABIBBO ANGLE, AND CKM UNITARITY Updated March 2012 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL)

Weidong Li Mudanjiang, China. B.S., Jilin University, 1992 M.S., Jilin University, 1997

Physics with stopped beams at TRIP-TRAP Facility. P.D. Shidling Cyclotron Institute, Texas A&M University

PoS(CKM2016)028. V ud from Nuclear Beta Decays. J.C. Hardy and I.S. Towner

Superallowed Fermi Beta Decay

Light pseudoscalar masses and decay constants with a mixed action

Measuring V ub From Exclusive Semileptonic Decays

Electroweak Theory: 5

Electroweak Physics: Lecture V

The weak interaction Part II

Searches for Leptonic Decays of the B-meson at BaBar

Lecture 12 Weak Decays of Hadrons

Measurements of the phase φ s at LHCb

CKM Matrix and CP Violation in Standard Model

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

Parity violation. no left-handed ν$ are produced

Recent CP violation measurements

The Mystery of Vus from Tau decays. Swagato Banerjee

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Status of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

Low Energy Precision Tests of Supersymmetry

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions

Hyperon physics in NA48

Search for heavy neutrinos in kaon decays

The PIENU Experiment a sensitive probe in the search for new physics

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

CP Violation at the LHC - workshop 2017

KArlsruhe TRI:um Neutrino (KATRIN) neutrino experiment hup:// T1/2=12.32 y

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Lecture 11. Weak interactions

Search for Lepton Number Violation at LHCb

Antonio Pich. IFIC, CSIC Univ. Valencia.

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

arxiv:hep-ph/ v1 19 Sep 2002

Advances in Open Charm Physics at CLEO-c

The Radiative Pion Decays.

CKM unitarity normalization tests, present and future

Physics with Hadron Beams at COMPASS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Measurements of CP violating phases in B decays at LHCb

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012

Weak Decays, CKM, Anders Ryd Cornell University

Long distance weak annihilation contribution to

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli

Fundamental interactions experiments with polarized trapped nuclei

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy

Flavour physics Lecture 1

Recent results from rare decays

CLEO-c: Recent Results

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Fundamental Symmetries - 2

CKM Unitary tests with Tau decays

Review of Standard Tau Decays from B Factories

arxiv:hep-ph/ v4 18 Nov 1999

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

Lecture 10: Weak Interaction. 1

Kaon Decays in the Standard Model

Weak Decays: theoretical overview

Charm Decays. Karl M. Ecklund

Top Quark Physics at the LHC

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

Particle Physics: Problem Sheet 5

CP Violation Beyond the Standard Model

Measurement of t-channel single top quark production in pp collisions

Current knowledge tells us that matter is made of fundamental particle called fermions,

Beyond Standard Model Effects in Flavour Physics: p.1

Recent V ub results from CLEO

Standard Model of Particle Physics SS 2013

Lecture 14 Mixing and CP Violation

The PIENU Experiment

Precision measurement of

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Lepton Universality Tests with Kaons

Physics at Hadron Colliders

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

12 Best Reasons to Like CP Violation

Transcription:

Pion beta decay,v ud and π lνγ Emil Frlež for the PIBETA Collaboration University of Virginia 4th International Workshop on CHIRAL DYNAMICS 2003 Theory and Experiment Bonn, GERMANY 8 13 September, 2003

The PIBETA Collaboration: M. Bychkov, E. Frlež, W. Li, R.C. Minehart, D. Počanić, L.C. Smith, W.A. Stephens, B.A. Vandevender, Y. Wang, K.O.H. Ziock University of Virginia, Charlottesville, VA 22904, USA W. Bertl, J. Crawford, Ch. Brönnimann, M. Daum, R. Horisberger, S. Ritt, R. Schnyder, H.-P. Wirtz Paul Scherrer Institut, CH-5232 Villigen, Switzerland T. Kozlowski Institute for Nuclear Studies, PL-05-400 Swierk, Poland B. G. Ritchie Arizona State University, Tempe, AZ 85287, USA V.V. Karpukhin, N.V. Khomutov, A.S. Korenchenko, S.M. Korenchenko, N.P. Kravchuk, N.A. Kuchinsky Joint Institute for Nuclear Research, Dubna, Russia D. Mzhavia, Z. Tsamalaidze Instit. for High Energy Physics, Tbilisi St. Univ., Georgia I. Supek Rudjer Bošković Institute, Zagreb, Croatia

The PIBETA Experiment: MOTIVATION Provide precision tests of Standard Model and QCD predictions: π + π 0 e + ν e main goal SM tests from CKM unitarity π + e + ν e γ(ee) F A /F V, π polarizability (χpt prediction) tensor coupling besides V A µ + e + ν e ν µ γ(ee) departures from V A in L weak π + e + ν e 2nd phase e-µ universality pseudoscalar coupling besides V A massive neutrino, Majoran,...

Pion Beta (πβ) Decay: Theory

Quark-Lepton Universality The basic weak-int. V -A form (e.g., µ decay): e l α ν e ū e γ α (1 γ 5 )u ν is preserved in hadronic weak decays p h α n ū p γ α (G V G A γ 5 )u n with G i 1. Departure from G V = 1 (plain CVC) comes from weak quark mixing (Cabibbo 1963): G V = G µ cos θ C (= G µ V ud ) cos θ C 0.97 which with 3 q generations is generalized in the Cabibbo-Kobayashi-Masakawa matrix (1973): V ud V us V ub V cd V cs V cb V td V ts V tb CKM unitarity cond.: V ud 2 + V us 2 + V ub 2? = 1, provides a means of testing the limits of the SM.

Status of CKM Unitarity V us 0.2196 ± 0.0026 from K e3 decays. V ub 0.0036 ± 0.0007 from B decays. (a) Superallowed Fermi nuclear β decays 1990 Hardy reconciled discrepancies between Ormand & Brown and Towner et al. ft values: V ud 2 + V us 2 + V ub 2 = 0.9962 ± 0.0016, (b) Neutron β decay or 1 2.4σ. 3 V ui 2 = 1.0096 ± 0.0044, or 1 + 2.3σ, i=1 [after Erozolimskiĭ et al. (1990)] 3 V ui 2 = 0.9917 ± 0.0028, or 1 3.0σ. i=1 (c) Pion β decay this work [Abele et al, PRL, May 2002]

Pion Beta Decay: π ± π 0 e ± ν BR 1 10 8 Pure vector transition: 0 0 Theoretical decay rate at tree level: 1 = G2 F V ud 2 ( τ 0 30π 3 1 ) 3 5 f(ɛ, ) 2M + = 0.40692 (22) V ud 2 (s 1 ). With radiative and loop corrections we get: 1 τ = 1 τ 0 (1 + δ), so that the branching ratio is BR(πβ) = τ + τ 0 (1 + δ) = 1.0593 (6) 10 8 (1 + δ) V ud 2.

Recent calculations of pion beta decay radiative corrections (1) In the light-front quark model W. Jaus, Phys. Rev. D 63 (2001) 053009. total RC for pion beta decay: δ = (3.230 ± 0.002) 10 2. (2) In chiral perturbation theory V. Cirigliano, M. Knecht, H. Neufeld and H. Pichl, hep-ph/0209226 χpt with e-m terms up to Oe 2 p 2 theoretical uncertainty of 5 10 4 in extracting V ud from BR ( π e3(γ) ).

Pion Beta (πβ) Decay: Experimental Method

PIBETA Experiment: stopped π + beam segmented active tgt. 240-elem. CsI(p) calo. central tracking digitized PMT readout cosmic µ antihouse stable temp./humidity pure CsI PV π + beam AC1 AD AT MWPC1 BC AC2 MWPC2 10 cm

PIBETA Detector Assembly (1998)

Experimental Method: Summary Detect π + decays at rest (during a delayed 180 ns gate). -30 0 150 ns π stop π gate beam veto Use π + e + ν prescaled for normalization. Accept every πβ trigger unbiased (γγ coincidences above Michel endpoint) 1 τ πβ = 1 τ π + BR eνf presc BR π0 γγ Aeν A πβ Nπβ N eν A πβ, A eν are acceptances for the decay modes, respectively.

Online πβ Energy Spectrum: True πβ events buried deep under overwhelming background!

πβ Signal-to-Background Ratio

πβ Timing and Angular Distributions

πβ: Normalization to π eν Yield

!#"%$ &'$(*),+.-/+.0213$54 6078($+.- 9:(*;" )<7>=? 9 @ A BDC EGFH C%BDC CJI H C%BDC CK LMA*CONQP PRELIMINARY R ;S7T1U7>BWV R ;S4%;S7>BWV X Y[Z 13$)\1]0 (^([7:1J)B`_badcUe ftgih'jlk%gnm oqpsr t u=? 9 @ A vdcgw]x:h C%vDC E yzl A*C NQP { X & $(*} + Y 78+,~G0 _badm` O *ƒsƒu u=? 9 A vdc E F A vdcji  L A*C NQP R y C Š#BŒ BWV _Žo> ƒsƒuẗ o> ƒsƒ r# o ƒg O j8 G T šgg œ>ž gn lÿs TgDu &' w]c CGw= U C%vDyKJEJI R FV & 6? ª «$( ),+.- = U C%vDyKJEK R ICVqB

! "#%$'&( )+*,"-&."!/10 2435276.8."-24$:9 ;=<?>4>$'&@# A &."!/ BDCFE BDCFE $HG#I$J>I&."!/ 35&@#I$J>I&."!/ 63K):& /K3K*L$M#I35NO$ P?QRP?S'T P?QRP?S'T UWV BX Y Z\[.E P?QR]+] ^ P?_5S\` UWV BXbacY dedfe P?QRP+]:g P?QRP+]:g h BiXkj,E4l h BmZ\[.E P?QRn o P?_R] prq Bsdut ZvE P?QRP+] P?QRP+] w #x8 >$'28 )+/5( o P?_5S o P?_5S 2y#z"#I352y#I35;'"!/{9 P?Q} ^ P?_R] #I)!#z"!/{9 ^ P?_R~ P?_

Radiative Pion Decay (π eνγ): Theory

Anything beside V A in RPD?

= u ` S = u S N v f "! # $ % & ' (*) + -,./ 0132 ) 4 5 4 687 9 4 :<; 9 4 = 4 = 5 >?A@CB D E FHG I JLK MON P = R Q SAT KUN VCW > XZYZ[ R NZ\ l ]_^a`cb S f ]1g_]ih 5 j ^a`cb S monqpsr Ned Ik 9 ` Pt u v v x V W 9 X [ 9 V W > X [ I w ` v y z { v y z ~} u 9 P t u x V W 9 X [ w ` y e 9 V W > X [ { y e } 9 ` P u v 9 ` o P u v X 5 w ` S ƒ w ` ƒ v ˆ P t PŠ

REVIEW OF PARTICLE PROPERTIES Particle Data Group π ± l ± νγ AND K ± l ± νγ FORM FACTORS Written by H. S. Pruys (Zürich University) The electroweak decays of the pseudoscalar mesons are investigated to learn something about the unknown hadronic structure of these mesons, assuming a standard V A structure of the weak leptonic current. The experiments are quite difficult, and it is not meaningful to analyse the results using parameters for both the hadronic structure (decay constants, form factors) and the leptonic weak current (e.g., to add pseudoscalar or tensor couplings to the V A coupling).

LAMPF: L. E. Piilonen et al., Phys. Rev. Lett. 57, 1402-1405 (1986) π eνγ Signal

LAMPF: L. E. Piilonen et al., Phys. Rev. Lett. 57, 1402-1405 (1986) π eνγ Analysis

π eνγ Signal-to-Background Ratios

π eνγ Invariant Masses

π eνγ Timing Distributions

π eνγ Axial-to-Vector Form Factor Ratio

π + e + ν e γ Exp vs Theoretical Branching Ratios: Glimpse at Pion Weak Form Factors Fit Fixed Fitted χ 2 Parameters Parameters F V = 0.0170(80) PGP F A = 0.0116(16) None 2751 F T = 0 SM/ F V = 0.0259(5) F A = 0.0123(4) 275.0 CVC F T = 0 γ = 0.475(18) CVC F V = 0.0259(5) F A = 0.0141(5) 1.0 F T = 0.0022(4)

H H I M M M ( ( ( 2 2 k O k O O / / / O I f 3 I M ( O O O c H 3 I I O O O O f H Z H 3 H H O O O O b H - 3 Z / H \ c H - f Q S Q Q Q H S H H \ Z - S π + e + ν e γ Exp vs The Branching Ratios:! "#%$ &&%$ ')( 2 *&+,.-0/ 1 9#:<;!=6>?=@ A>?B ;=0>?=0@C&>?B DE')( 2 F,.-0/ 1 ')( 2 *&+,43/ 1 DG')( 2 F,.-6/ 1 ')( 2 *5+,.-6/ 1 DG')( 2 F,43/ 1 78 36I ; JLKGMNPO ; JLKGMhgiO HUT /RQ /#36S fvh /#Q /#33 9V WYXO[Z HUT Q /\ I]3/#^`_ WYjO 30Q SS 3%I]3/#^`_ W<XaO W<jO Z0b H c 30Q 36Q \ I!]3/R^ed 3%I!]3/R^ed W<XO T -RQ W<jiO.Z 36S0I]3/#^ed Z H 36I!]3/R^ed crf : S \Ilk MNPO /RQ /\b H -I MhgiO Z H c /RQ /#3%\ WYXO WYjO T H \Q S S0I]3/ ^`_ T#H \RQ S3 3%I]3/#^`_ W<XaO W<jO Z H c 30Q \ I!]3/ ^ed crf0tvh 36Q 3%I!]3/R^ed W<XO TVH Q / 3%\I]3/ ^ed W<jiO.Z b c 36I!]3/R^ed crf : b H Z M N M g b H /RQ /V3 \I b H /RQ /#3 \I W X W j T H \Q - \RQ S6\#3 S0I]3/ ^`_ 3%I]3/ ^`_ W X W j Z H c 30Q \ I!]3/ ^ed c Z 36Q 3%I!]3/ ^ed W X O c Q /S 3%\I]3/ ^ed W j O.Z bz f#h 36I!]3/ ^ed : S H c Ilk M N /RQ /\b H -I M g /RQ /#3 -I O4m Hnc /#Q //\\ W X W j \Q S0- \RQ S S0I]3/ ^`_ 3%I]3/ ^`_ W X W j Z 30Q 36Q H c I!]3/ ^ed fvh 3%I!]3/ ^ed W X W j O[Z T0fVH Q 33%I]3/ ^ed / O.Z T b 36I!]3/ ^ed : 36S o

π + e + ν e γ: λ Distribution

PIBETA EXPERIMENT: PROGRESS SUMMARY π + π 0 e + ν Branching Ratio Current PIBETA Statistical Uncertainty 0.4 %, Systematic Uncertainty 0.7 % Extracted Branching Ratio in Agreement with CVC Hypothesis and Radiative Corrections π + e + νγ Decay Extracted Axial-to-Vector Form Factor Ratio in Agreement with Chiral Prediction, γ EXP = 0.475 ± 0.018 vs γ CHIRAL = 0.463 (B. R. Holstein 1986) Limit on Phenomenological Tensor Term F T 3 10 3 at 95 % CL