NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS

Similar documents
Final Exam Applied Econometrics

Computational Fluid Dynamics CFD. Solving system of equations, Grid generation

CIVL 7/8111 Time-Dependent Problems - 1-D Diffusion Equation 1/21

NUMERICAL EVALUATION of DYNAMIC RESPONSE

The Linear Regression Of Weighted Segments

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Introduction to Mathematical Modeling and Computation

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

4. Runge-Kutta Formula For Differential Equations

Cyclone. Anti-cyclone

SOLUTION OF PARABOLA EQUATION BY USING REGULAR,BOUNDARY AND CORNER FUNCTIONS

The Poisson Process Properties of the Poisson Process

Suppose we have observed values t 1, t 2, t n of a random variable T.

Theory and application of the generalized integral representation method (GIRM) in advection diffusion problem

(1) Cov(, ) E[( E( ))( E( ))]

FORCED VIBRATION of MDOF SYSTEMS

An Exact Solution for the Differential Equation. Governing the Lateral Motion of Thin Plates. Subjected to Lateral and In-Plane Loadings

Key words: Fractional difference equation, oscillatory solutions,

Mathematical Formulation

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

Mixed Integral Equation of Contact Problem in Position and Time

14. Poisson Processes

Solution set Stat 471/Spring 06. Homework 2

by Lauren DeDieu Advisor: George Chen

A New Modified Approach for solving sevenorder Sawada-Kotara equations

Lecture 2: The Simple Regression Model

Artificial Neural Networks Approach for Solving Stokes Problem

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

Calculation of Effective Resonance Integrals

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

Chapter 5. Long Waves

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Density estimation III.

Midterm Exam. Tuesday, September hour, 15 minutes

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION

Second-Order Asymptotic Expansion for the Ruin Probability of the Sparre Andersen Risk Process with Reinsurance and Stronger Semiexponential Claims

Density estimation III. Linear regression.

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

Time-Domain Finite Element Method in Electromagnetics A Brief Review

Existence and Uniqueness of the Optimal Control in Hilbert Spaces for a Class of Linear Systems

Continuous Time Markov Chains

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Analytical modelling of extruded plates

Numerical Simulations of Unsteady Navier-Stokes Equations for Incompressible Newtonian Fluids using FreeFem++ based on Finite Element Method

Simulation of wave-body interactions in viscous flow based on explicit wave models

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

Numerical approximatons for solving partial differentıal equations with variable coefficients

Pattern Formation in Chemical Reactions

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

A New Iterative Method for Solving Initial Value Problems

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Numerical Analysis Formulae Booklet

Third handout: On the Gini Index

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

Mechanical Design Technology (Free-form Surface) April 28, /12

Chapter Simpson s 1/3 Rule of Integration. ( x)

1D Lagrangian Gas Dynamics. g t

Solving Parabolic Partial Delay Differential. Equations Using The Explicit Method And Higher. Order Differences

HYPOTHESIS TESTING. four steps

Partial Molar Properties of solutions

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

Differential Equation of Eigenvalues for Sturm Liouville Boundary Value Problem with Neumann Boundary Conditions

Correlation and Regression Analysis

Newton-Product Integration for a Stefan Problem with Kinetics

DISTURBANCE TERMS. is a scalar and x i

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya

Multiple Choice Test. Chapter Adequacy of Models for Regression

DESIGN OF OBSERVERS FOR A CLASS OF NONLINEAR SYSTEMS IN ASSOCIATIVE OBSERVER FORM

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

3/3/2014. CDS M Phil Econometrics. Heteroskedasticity is a problem where the error terms do not have a constant variance.

and regular solutions of a boundary value problem are established in a weighted Sobolev space.

General Method for Calculating Chemical Equilibrium Composition

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1

Efficient Estimators for Population Variance using Auxiliary Information

Integral Equations and their Relationship to Differential Equations with Initial Conditions

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

Practice Final Exam (corrected formulas, 12/10 11AM)

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

Imputation Based on Local Linear Regression for Nonmonotone Nonrespondents in Longitudinal Surveys

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

A Remark on Generalized Free Subgroups. of Generalized HNN Groups

4. THE DENSITY MATRIX

, t 1. Transitions - this one was easy, but in general the hardest part is choosing the which variables are state and control variables

ON TOTAL TIME ON TEST TRANSFORM ORDER ABSTRACT

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs

A L A BA M A L A W R E V IE W

International Journal of Theoretical and Applied Mathematics

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Transcription:

NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS If e eqao coas dervaves of a - order s sad o be a - order dffereal eqao. For eample a secod-order eqao descrbg e oscllao of a weg aced po b a sprg w ressace moo proporoal o e sqare of e veloc mg be d 4.6 d were s e dsplaceme ad s me. d d Te solo o a dffereal eqao s e fco a sasfes e dffereal eqao ad a also sasfes cera al codos o e fco. Te aalcal meods are lmed o a cera specal forms of e eqaos. Elemear corses ormall rea ol lear eqaos w cosa coeffces. 58 Prepared b Be M. Ce

Nmercal meods ave o sc lmaos o ol sadard forms. We oba e solo as a ablao of e vales of e fco a varos vales of e depede varable owever ad o as a fcoal relaosp. Or procedre wll be o eplore several meods of solvg frs-order eqaos ad e o sow ow ese same meods ca be appled o ssems of smlaeos frs-order eqaos ad o ger-order dffereal eqaos. We wll se e followg form d d f for or pcal frs-order eqao. 59 Prepared b Be M. Ce

THE TAYLOR-SERIES MENTOD Te Talor-seres meod serves as a rodco o e oer ecqes we wll sd alog o srcl a mercal meod. Cosder e eample problem d d Ts parclarl smple eample s cose o llsrae e meod so a o ca reall cec e compaoal wor. Te aalcal solo 3e s obaed mmedael b applcao of sadard meods ad wll be compared w or mercal resls o sow e error a a sep. 6 Prepared b Be M. Ce

Talor Seres Epaso: We develop e relao bewee ad b fdg e coeffces of e Talor seres epaded a " ' '' '! 3! If we le we ca wre e seres as Ierave Procedre: 3 " "' '! 3! L L Sce s or al codo e frs erm s ow from e al codo. We ge e coeffce of e secod erm b sbsg e eqao for e frs dervave d d 3 6 Prepared b Be M. Ce

Smlarl we ave d d d d d d 3 4 3 3 We e wre or seres solo for leg be e vale a wc we ws o deerme : 3..5.5.5 4 error erm Here sow s a case wose fco s so smple a e dervaves of dffere orders ca be obaed easl. However e dffereao of f cold be ver mess sa ose of /. 6 Prepared b Be M. Ce

EULER METHOD As sow prevosl e Talor-seres meod ma be awward o appl f e dervaves becomes complcaed ad s case e error s dffcl o deerme. I fac we ma ol eed a few erms of e Talor seres epaso for good accrac f we mae small eog. Te Eler meod follows s dea o e ereme for frs-order dffereal eqaos: ses ol e frs wo erms of e Talor seres! Ierave Procedre: Sppose a we ave cose small eog a we ma rcae afer e frs-dervave erm. Te were we ave wre e sal form of e error erm for e rcaed Talor-seres. " ζ ' 63 Prepared b Be M. Ce

Te Eler Meod Ierave Sceme s gve b f Eample: Usg Eler Meod w. fd solo o e followg o.d.e. d d f..9. 3 4. 9. 9. 9. 9 3.. 9.. 83.... 787.. 3. 7683.945.856.85.8 are re vales 64 Prepared b Be M. Ce

Eample co.: Le s coose...999..999.999.999.999.999...9983.9986 Qe accrae rg? Wa s e prce we pa for accrac? Cosder for. we eed o compe seps. For. we wll ave o calclae seps. No free lc as sal. 65 Prepared b Be M. Ce

3 3 66 Prepared b Be M. Ce

67 THE MODIFIED EULER METHOD I e Eler meod we se e slope a e begg of e erval ' o deerme e creme o e fco. Ts ecqe wold be correc ol f e fco were lear. Wa we eed sead s e correc average slope w e erval. Ts ca be appromaed b e mea of e slopes a bo eds of e erval. Modfed Eler Ierao: z z f z z f Te e dea s o fe-e ' b sg z Gve a o.d.e. Te modfed Eler erao s: f d d Prepared b Be M. Ce

Eample : ' z Sep : z ' ' z Sep : ' z ' z Sep 3 : ' z 3 3 Solve o.d.e. f f z ' f f f '..9..9.7 ' z.7..95 '. 95.. 75. 8435.. 95. 75.. 857. 457. 857.. 457. 84.945 z z. 4. 8435. 4435 ' ' z. 95. 5. 75. 4435.857 ' d d f 3z3 3 z3. 6. 84. 4 ' ' z3. 857. 5. 457. 4.837 w..856.85 68 Prepared b Be M. Ce

THE RUNGE-KUTTA METHODS Te wo mercal meods of e las wo seco og o ver mpressve serve as a good appromao o or e procedres. Wle we ca mprove e accrac of ose wo meods b ag smaller sep szes mc greaer accrac ca be obaed more effcel b a grop of meods amed afer wo Germa maemacas Rge ad Ka. Te developed algorms a solve a dffereal eqao effcel ad e are e eqvale of a appromag e eac solo b macg e frs erms of Te Talor-seres epaso. We wll cosder ol e for- ad fforder Rge-Ka meods eve og ere are ger-order meods. Acall e modfed Eler meod of e las seco s a secod-order Rge-Ka meod. 69 Prepared b Be M. Ce

7 For-Order Rge-Ka Meod: Problem: To solve dffereal eqao Algorm: f d d 3 4 3 4 3 6 f f f f w Proof: Read eboo or forge abo. Prepared b Be M. Ce

Eample: Solve e followg o.d.e. sg For-Order Rge-Ka Meod Sep : 3 4 f f f f d d 6.. 3.9455... 9453..85..85...85.8575...8575.745 3. 4 re vales Sep :.75.579 3.586 4.456.856. 8569 7 Prepared b Be M. Ce

7 Nmercal Solos o Paral Dffereal Eqaos Irodco Geeral paral dffereal eqaos PDE s ard o solve! We sall ol rea some specal pes of PDE s a are sefl ad easer o be solved. Classfcao of d order qas-lear PDE s Geeral form qas-lear lear ges order dervaves ow fcos o be solved. depede varable ad. F c b a Prepared b Be M. Ce

Some sadard oaos : : : : Tpes of eqaos Tpe Codo Eample ellpc b ac < Laplace eqao: { a b c } parabolc b ac Hea eqao: { a b c } perbolc b ac > A Wave eqao: { a A b c } Meods of solos depeded o e pe of eqaos. 73 Prepared b Be M. Ce

Geomercall R Tpe ma o be cosa over R becase abc ca var over R e.g ellpc oe par of R ad parabolc e oer par of R. Eample: s 443 a R : 3 3 [ s 3 3 ] a s b c b ac s < parabolc ellpc 74 Prepared b Be M. Ce

75 Geeral Approac o e Solos of PDEs Sep : Defe a grd o R w mes pos R mes po p Sep : Appromae dervaves a mes pos b ceral dfferece qoes Tese wll brg a PDE o a dfferece eqao relag o s egborg pos e grd. Prepared b Be M. Ce

76 For eample Sep 3: Arrage e reslg dfferece eqao o a ssem of lear eqaos M M L M O M M L L... Tag o cosderao of bodar codos ad solve for Sep 4: cage grd sze for a more accrae appromao. LL LL 4 4 Prepared b Be M. Ce

Solo o Ellpc Tpe s PDE Te geeral approac wll be followed o solve ese pes of problems b ag o acco varos ds of bodar codos form of e ssem of lear eqaos. We wll llsrae s sg e followg PDE: R f { 3 3 } Bodar codo log We follow e sep-b-sep procedre gve e prevos seco. 77 Prepared b Be M. Ce

Sep : Defe a grd alog w a order of mes-pos sde R. We ave o be clear abo R ad Frs le s sar w a crde grd 3/N for N3 > 3 3 3 4log 3 3 log 4 3 log ows: 3 3 3 3 ows: 78 Prepared b Be M. Ce

Sep : Appromae dervaves a mes-pos f f 3 4 3 A mes-po were s ow: @ : @ : 4.4.477 3 4.3.4 4 @ : 3.98.86 4 @ : 3 3 Bodar vales are ow 79 Prepared b Be M. Ce

8 Sep 3: Arrage e eqao o mar form Solve e eqaos for Sep 4: Refe e sep-sze b coosg smaller..68.3 3.74.4 4 4 4 4.875.483.336.756 Prepared b Be M. Ce

Parabolc ad Hperbolc Tpes Parabolc: Eample ea eqao D were D s ea dffso coeffce Hperbolc: Eample wave eqao C were C s wave propagao veloc Bodar codo: R L Bodar codo: L L al codo We wll se parabolc pe o llsrae e solo meod wc carres over o e perbolc pe as well! 8 Prepared b Be M. Ce

8 Noaos: Te To solve e eqao we sar w e s are gve as al codos ad ca be sed o solve for N L N L N L L D D N L Prepared b Be M. Ce

Rewre eqao as γ γ γ w γ D I geeral we ca solve for N f we ow e - row. bodar codo N N bodar codo N N N al codo 83 Prepared b Be M. Ce

Eample: Solve e followg bodar vale problem D L π al codo: s bodar codo: We coose N 3 ad ece /3 ad coose wo dffere :.5 a γ.45. a γ. 9 3..5.866..5.866.5.434.76..379.657..387.74..88.76.5.364.696.3.44.587..35.684.4.97.83.5.343.676.5.55.435.3.338.67.6.6.6.35.336.667.7.3.3.4.335.668.8.84.85.45.334.668.9.69.69.5.333.667..957 3.457 sable case 84 Prepared b Be M. Ce

A sor dscsso abo perbolc pe PDE: PDE: C Ial codos: f f Bodar codos: g g Followg e sal procedre we oba a appromao: γ γ γ w γ Noe a a we ave o deal w wc are o readl avalable. Ts we wll ave o compe ese erms frs. f f f C 85 Prepared b Be M. Ce

Te dfferece eqao ca e be solved b sg e drec meod e.g γ γ γ γ γ γ f γ f γ f γ f f L N For > we sll se γ γ γ Te res of compaoal procedre s eacl e same as a e parabolc case. 86 Prepared b Be M. Ce

Eample: Solve PDE : Ial codos : Bodar codos : Le s coose.5 so a γ f f s π g g s π Deerme o sar e solo or se formla o e prevos page π o compe 3 frs.e. f.5 [ s π ] 3.39.375.364 D.I.Y. o complee e solos p o. 87 Prepared b Be M. Ce