Carbon Nanotubes for Photovoltaic Applications. Fernando Langa. Univ. of Castilla-La Mancha Toledo, Spain

Similar documents
Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Light Energy Harvesting via Supramolecularly Functionalized Semi-Conductive SWCNTs with Sensitizers

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You

Mesoporous titanium dioxide electrolyte bulk heterojunction

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Plastic Electronics. Joaquim Puigdollers.

Supporting Information

FINNISH-JAPANESE WORKSHOP ON FUNCTIONAL MATERIALS Espoo-Helsinki May, 2009

Supporting Information

Supporting Information

Charge separation in molecular donor acceptor heterojunctions

Novel device Substrates and Materials for Organic based Photovoltaics

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

SUPPORTING INFORMATION

Electron transfer optimisation in organic solar cells

American Physical Society Meeting Baltimore, MD, March Advanced Materials for Solar Energy Utilization

What will it take for organic solar cells to be competitive?

E L E C T R O P H O S P H O R E S C E N C E

Supporting Information

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene

Towards a deeper understanding of polymer solar cells

Organic Electronic Devices

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Photovoltage phenomena in nanoscaled materials. Thomas Dittrich Hahn-Meitner-Institute Berlin

How to burn water with sunlight: insights from computational chemistry

Supporting Information

Metal-Containing Functional Materials for OLEDs and Solar Cells

The Current Status of Perovskite Solar Cell Research at UCLA

Perovskite solar cells

Organic Electronic Devices

Fluoropolymer 2014, Oct 14. Shinsuke Inagi. Department of Electronic Chemistry Tokyo Institute of Technology, Japan.

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

4. CV curve of GQD on platinum electrode S9

Transport Properties of Novel Carbon Nanotubes and Nanopeapods

TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass

Electronic Supporting Information. Harnessing Molecular Photon Upconversion at Sub-Solar Irradiance Using Dual Sensitized Self-Assembled Trilayers

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids

Nanostructured materials for solar energy

Solid State Dye Solar Cells: Development of Photoanode Architecture for Conversion Efficiency Improvement

Dry Plasma Reduction to Supported Platinum Nanoparticles for Flexible Dye-sensitized. Solar Cells. Yuseong-Gu, Daejeon , Korea

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Axial anchoring designed silicon-porphyrin sensitizers for efficient

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Supporting Information

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Supporting Information

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

Organic LEDs part 8. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002).

Supplementary information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Semiconductor quantum dots

Supporting information. Supramolecular Halogen Bond Passivation of Organometal-Halide Perovskite Solar Cells

Recent Advances in Photoinduced Electron Transfer Processes of Fullerene-Based Molecular Assemblies and Nanocomposites

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Nanoscience galore: hybrid and nanoscale photonics

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Power Conversion Efficiency of a Dye-Sensitized Solar Cell

Basic Limitations to Third generation PV performance

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

Electronic Supplementary Information

Supporting Information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

Nanomaterials & Organic Electronics Group TEI of Crete

Photostability of a dyad of magnesium porphyrin and fullerene and its application to photocurrent conversion

SUPPLEMENTARY INFORMATION

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Lecture 5 Junction characterisation

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle

Light Extraction in OLED with Corrugated Substrates Franky So

The following molecules are related:

Nucleophilic Substitutions. Ionic liquids

Self-assembly of molecules on surfaces. Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid

Triplet state diffusion in organometallic and organic semiconductors

Electronic Supporting Information

Supporting information

Block Copolymer Based Hybrid Nanostructured Materials As Key Elements In Green Nanotechnology

Supporting Information

The influence of materials work function on the open circuit voltage of plastic solar cells

th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods January 2011

Organic Solar Cells. Active material is much cheaper to produce than Si. Easily deposited as thin films over large (flexible) areas

Mini-project report. Organic Photovoltaics. Rob Raine

Supporting Information

Supporting Information

New trends in organic materials based solar cells

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa

Supporting Information for. Metallonaphthalocyanines as Triplet Sensitizers for Near-Infrared. Photon Upconversion beyond 850 nm

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Electronic Supplementary Information

Transcription:

Carbon anotubes for Photovoltaic Applications Fernando Langa Univ. of Castilla-La Mancha Toledo, pain MICI-JT Joint Workshop, Barcelona, March 10 th -12 th, 2010

Madrid Toledo

Outline: 1. Photoinduced Electron Transfer in ystems Based on Fullerenes 2. Organic Dyes for Graetzel olar Cells. 3. Functionalization of Carbon anoforms. 4. Carbon anotubes for Photovoltaic Applications.

Aviram-Ratner Concept Acceptor Donor e - Ari Aviram Aviram, A., Ratner, M.A., Chem. Phys. Lett., 29, 277-283 (1974).

Molecular electronics Molecular electronics can be defined as technology utilizing single molecules, small groups of molecules, carbon nanotubes or nanoscale metallic or semiconductor wires to perform electronic functions. Any device utilizing molecular properties is a molecular electronic device. Wires witches Transistors Molecular electronics Data storage OLEDs Photovoltaic devices

hν D * B A D + - B A ELECTRO DOOR (D) BRIDGE ACCEPTOR (A) YTEM

Pyrazolinofullerene derivatives These systems show better electron affinity than other fullerene derivatives and similar E 1 red to that of C 60 H 3 C O 2 E 1 red = - 0.96 V E 1 red = - 0.94 V J. Org. Chem. 2004, 69, 2661 Ar Ar CuTf 2 o-dcb, Reflux Org. Lett. 2008, 10, 3705 J. Org. Chem. 2008, 73, 3184 CH, 48 h. 1% MW, 12 h. 5%

organic solar cells CF 3 F 3 C O 2 O CH 3 η = 0.3 % O n F 3 C PCBM η = 0.17 % - + APFO GREE 1 F 3 C O 2 e - Al A D ITO glass light - + Appl. Phys. Lett. 2004, 85, 5081. Adv. Funct. Mater. 2005, 15, 1665. Organic Electronics 2006, 7, 195. η = 0.7 %

Fe Fe Fe CH 3 Fe Chem. A Eur. J. 2006, 12, 5149 J. Mat. Chem, 2002, 12, 2077 Chem. Eur. J. 2005, 11, 4405

Liquid crystaline sensor for acids Donor Acceptor Mesogenic unit Chem. Commun., 2008, 4590 10

Liquid crystaline sensor for acids Bu 2 h 380 nm h 380 nm ET HBu 2 E O Mesogen(Gn) O Mesogen(Gn) Bu 2 Bu 2 H TFA Et 3 485 nm (weak) no emission 485 nm (strong) 708 nm Chem. Commun., 2008, 4590 11

Porphyrins and fullerenes π-conjugated wire Donor Acceptor k ET ( ) ( R ee ) R k e β = 0 The rate of ET depends on the distance and the attenuation factor (β)

Attenuation factor (β) for π-conjugated wires β = 0.08 Å -1 J. Am. Chem. oc. 1997, 119, 10563 β = 0.10 Å -1 Angew. Chem. Int. Ed. Engl. 1995, 34, 1100 n β = 0.4 Å -1 J. Am. Chem. oc. 1992, 114, 6227 n β = 0.03 Å -1 J. Phys. Chem. A, 2006, 110, 319 β = 0.11 Å -1 aturated bridges β = 0.8-1.0 Å -1 J. Phys. Chem. B, 2004, 108, 10700 J. Am. Chem. oc. 1989, 93, 3258

OPVs as wires β = 0.04 Å -1 Wasielewski et al., ature, 1998, 396, 60 RO H 3 C OR n=1;3 β = 0.03 Å -1 Martín; Guldi et al., Chem. Eur. J., 2005, 11, 1267 β = 0.01 Å -1 Martín, Guldi et al., Chem. Eur. J., 2005, 11, 4819

Fc-nTV-C 60 triads Fe H 13 C 6 C 6 H 13 H 13 C 6 C 6 H 13 Lifetime of charge separated state: <6 ns k cs = 2,3 x 10 9 s -1 Φ = 0.63 HOMO C 60-2TV-Fc LUMO C 60-2TV-Fc Fe H 13 C 6 C 6 H 13 H 13 C 6 C 6 H 13 H 13 C 6 C 6 H 13 H 13 C 6 C 6 H 13 Lifetime of charge separated state: 12 ns k cs = 9,3 x 10 9 s -1 Φ = 0.93 Chemistry. A Eur. J. 2007, 13, 3924

ZnPorphyrin-nTV-C 60 triads CH 3 CH 3 C 6 H 13 C 6 H 13 H 3 C C 6 H 13 C 6 H 13 Zn CH 3 CH 3 H 3 C CH 3 H 3 C CH 3 ZnPor-2TV-C 60 H 3 C Chem. Commun. 2007, 4425

Zn-Porphyrin-nTV-C 60 triads H 3 C CH 3 H 3 C CH 3 H 3 C CH 3 C 6 H 13 C 6 H 13 Zn CH 3 CH 3 H 3 C C 6 H 13 C 6 H 13 C 6 H 13 C 6 H 13 CH 3 ZnPor-3TV-C 60

Zn-Porphyrin-nTV-C 60 triads CH 3 C 6 H 13 C 6 H 13 C 6 H 13 C 6 H 13 H 3 C C 6 H 13 C 6 H 13 C 6 H 13 C 6 H 13 Zn CH 3 CH 3 CH 3 H 3 C CH 3 H 3 C CH 3 ZnPor-4TV-C 60 H 3 C

Zn-Porphyrin-nTV-C 60 triads ZnPor-8TV-C 60 Distance Porphyrin-C 60 : 57.8 Å

Principal features of C process solvent k C Φ C k CR /s -1 τ RIP /μs ZnP-2TV-C 60 Toluene (1.84 10 10 ) (0.97) -- -- PhC 1.11 10 10 0.96 1.8 10 6 0.55 ZnP-4TV-C 60 Toluene 1.18 10 10 0.96 5.6 10 5 1.78 PhC 1.67 10 10 0.97 7.6 10 5 1.31 ZnP-8TV-C 60 Toluene 4.53 10 9 0.87 7.5 10 5 1.33 PhC 6.67 10 9 0.91 1.3 10 6 3.00 Lifetime of Charge separated state is in the order of μs!!

Minimal value for the attenuation factor 24.0 olvent: benzonitrile PhC ln(k C(P* - C) ) 23.5 23.0 k ET R = k 0 e ( ) ( βr ee ) β = 0.016 Å -1 22.5 22.0 1.0x10-9 2.0x10-9 3.0x10-9 4.0x10-9 5.0x10-9 6.0x10-9 7.0x10-9 8.0x10-9 R CC(P - C) / m Plot of ln(k C(P*-C) ) vs R CC(P-C) in PhC for ZnP-nTV-C 60.

Comparison of β values between OPV and OTV Ar CH 3 OC 6 H 13 n OC 6 H 13 n=1,2 n Zn Ar Ar β = 0.03 Å -1 Martín; Guldi et al., Chem. Eur. J., 2005, 11, 1267 Ar CH 3 C 6 H 13 C 6 H 13 Zn Ar β = 0.016 Å -1 C 6 H 13 C 6 H 13 n= 1, 2, 4 n Ar Chem. Commun. 2007, 4425

1. Photoinduced Electron Transfer in ystems Based on Fullerenes. 2. Organic Dyes for Graetzel olar Cells. 3. Functionalization of Carbon anoforms. 4. Carbon anotubes for Photovoltaic Applications.

DC (GRÄTZEL CELL) e - -0.5V e - e - e - TiO 2 b.c e - LUMO Dye* V oc e - 0.5V 0.7V e -- I 3- / I- Dye HOMO I 3 - I - e - e - Glass-FTO Glass-FTO/Pt e - hυ e -

Ru Dyes HOOC COOTBA C HOOC Ru C 719 Metal Free Dyes COOTBA

The perfect sensitizer Absorbs all the sunlight below 900 nm. Is endowed with groups (carboxylate or phosphonate) that anchor it firmly to the TiO 2 surface. hows a high quantum yield of electron injection. table under long term illumination and Tª. o aggregation phenomena. HOMO has to be more positive than the redox potential of iodine/iodide. LUMO has to be sufficiently more negative than the conduction band edge of the TiO 2

FL-4 Absorbance (a.u) 0.25 0.20 0.15 0.10 0.05 FL-4 3 719 0.00 400 500 600 700 800 Wavelength(nm) J. Phys. Chem. C, 2008, 112, 18623

15 J sc (ma/cm 2 ) 10 5 0-5 100%MBI 50%MBI 0%MBI Refer 719 IPCE= 58% J sc = 13.4 ma/cm 2 V oc =0.5 V FF= 0.57 η(%) = 3.84-0.8-0.6-0.4-0.2 0.0 Voltage (V) J. Phys. Chem. C, 2008, 112, 18623

R R R R C n COOH R = Hexyl n = 1-5 0-2 LUMO 0.7 0.6 n2tvacido n3tvacido n4tvacido n6tvacido -4 0.5 Energy -6-8 HOMO HOMO-1 Absorption 0.4 0.3 0.2 0.1-10 0.0 2 3 4 5 6 ntv -0.1 300 400 500 600 700 800 wavelength (nm) ChemPhysChem 2010, 11, 245

R R R R C n COOH 18 16 14 R = Hexyl 2tv 3tv 4tv 5tv 6tv n = 1-5 Dye Eficiency (%) 12 2TV 1.43 J(mA/cm 2 ) 10 8 6 3TV 2.67 4TV 3.84 4 5TV 2.44 2 0 0.0 0.1 0.2 0.3 0.4 0.5 6TV 1.80 V/V ChemPhysChem 2010, 11, 245, mall, 2010, 6, 221

ew Dyes FL-7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 300 400 500 600 700 800 900 dye J sc [macm -2 ] V oc FF η[%] FL-7 15.57 0.40 50.36 3.16 FL-4 13.66 0.42 45.31 2.62 ChemusChem 2009, 2, 344

1. Photoinduced Electron Transfer in ystems Based on Fullerenes 2. Organic Dyes for Graetzel olar Cells. 3. Functionalization of Carbon anoforms. 4. Carbon anotubes for Photovoltaic Applications.

Excellent Properties Low solubility Lack of response Applications limited WT Response to external stimuli -Chemical -Electrochemical -Photochemical - -oluble -Activity Chemical functionalization Applications improved

Purification of CTs by Oxidation Carbon HO 3 Reflux Catalist horter WT

Functionalization of WT

HOOC HOOC HOOC HOOC COOH COOH COOH COOH 0.100 0.080 (a) (a) Air atmosphere (b) Under 2 (c) Without ilumination 1) Cl 2 O, reflux, 24 h 2) n-c 5 H 11 OH, 80º, 72 h Intensity (na) 0.060 0.040 (b) (c) OOC OOC OOC OOC COO COO COO COO 200 300 400 500 Wavelength (nm) 0,3 0,2 0,1 0,0 0 40 80 120 Time (s) E-WT solution in CHCl 3 Chem. Phys. Letters, 2004, 386

A novel hybrid carbon material The field-emission characteristics of anobuds suggest that they may possess advantageous properties compared with singlewalled nanotubes or fullerenes alone. Kauppinen et al.ature anotechnology, 2007, 2, 156

The first conjugated WT-C 60 hybrid HR-TEM Carbon, 2007, 45, 2250

OOC OOC OOC O 2 n COO COO COO OOC COO Chem. Commun, 2004, 1734 J. Phys. Chem B., 2004, 108, 12691. J. Am. Chem. oc. 2006, 128, 6626 J. Mat. Chem. 2008, 18, 1592

CH-BAED PHOTOVOLTAIC CELL O C H H 3 + Cl - + Zn O O O O O O O O CH-sp-H 3 + Crown Zn-P O C H O O O H O H H O O O O Zn CH-sp-H 3 + ;CrownZn-P (submitted )

CH-BAED PHOTOVOLTAIC CELL supramolecular complex formation? 14 Absorbance / a.u. 0,20 0,15 0,10 0,05 Absorbance / a.u. 0,24 0,20 0,16 0,12 0,08 0,04 0,00 400 410 420 430 440 450 wavelenght / nm [ZnP crown ether] = 10-7 M [H ox -H 3 + Cl - ] = 0.5 mg / 100 ml DMF Intensity / a.u. 12 10 8 6 4 2 0 [ZnP crown ether] = 10-7 M [H ox -H 3 + Cl - ] = 0.5 mg / 100 ml DMF, λ exc : 560 nm quenching: 55% 600 650 700 750 wavelength / nm 0,00 350 400 450 500 550 600 650 λ / nm 0,0 0,2 0,4 0,6 0,8 1,0 Potential (V) vs Ag/AgO 3

CH-BAED PHOTOVOLTAIC CELL e - hυ e - no 2 hυ e - e - e - e - hυ I 3 - e - e - e - e - I - e - OTE IPCE of 9% Pt e - e - e -

Photocurrent action spectra of IPCE (a) OTE/nO 2 /CH-sp-H 3+ ;Crown-ZnP (b) OTE/nO 2 /CH-sp-H 3 + (c) OTE/nO 2 /Crown-ZnP Photocurrent generation responses of (a)ote/no 2 /CH-sp-H 3+ ;Crown-ZnP (b) OTE/nO 2 /CH-sp-H 3 +

Final Remarks everal examples of Fullerene-based donor acceptor systems are presented. ew Dyes for DC have been prepared and studied. Properties of Carbon anotubes can be tailored by chemical functionalization. A photovoltaic cell based on Carbon Horns is presented.

Thanks!! Collaborations CH: Prof.. Iijima Dr. M. Yudasaka Photophysics: Prof. O. Ito DC: Prof. J. Bisquert Prof. E. Palomares Organic cells Prof. Inganas