Particle-, Nuclear- and Atomic-Physics Aspects of Rare Weak Decays of Nuclei

Similar documents
Nuclear Matrix Elements for Rare Decays

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

Two Neutrino Double Beta (2νββ) Decays into Excited States

Excited State Transitions in Double Beta Decay: A brief Review

Neutrinoless Double Beta Decay for Particle Physicists

DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW

Electron Capture branching ratio measurements at TITAN-TRIUMF

D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

K. Zuber, TU Dresden INT, Double beta decay experiments

Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration. Jenni Kotila

Neutrino Masses and Mixing

-> to worldwide experiments searching for neutrinoless double beta decay

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

1 Neutrinos. 1.1 Introduction

K. Zuber, Techn. Univ. Dresden Erlangen, 4. June Status and perspectives of the COBRA double beta decay experiment

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Neutrinoless Double-Beta Decay

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

Sensitivity and Discovery Prospects for 0νββ-decay

arxiv:nucl-th/ v1 16 Dec 2004

Neutron Activation of 76Ge

Various aspects and results on beta decay, DBD, COBRA and LFV

Contents. General Introduction Low background activities Pixel activities Summary and Outlook. Kai Zuber

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay

Erice, September, 2017,

Search for Majorana neutrinos and double beta decay experiments

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

K. Zuber, Techn. Univ. Dresden Dresden, 17. Feb Double beta decay searches

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

Neutrinoless Double Beta Decay within the Interacting Shell Model

Double Beta Decay matrix elements, remarks and perspectives

RECENT RESULTS IN DOUBLE BETA DECAY

Status and Perspectives of the COBRA-Experiment

Double beta decay Newest results and perspectives (personal questions)

The Majorana Neutrinoless Double-Beta Decay Experiment

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Status of Cuore experiment and last results from Cuoricino

Neutrinos in Nuclear Physics

New half-live results on very long-living nuclei

Double beta decay, neutrino and Majorana theory

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

The importance of being Neutrino. The birth of the neutrino

a step forward exploring the inverted hierarchy region of the neutrino mass

NEMO-3 latest results

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

New half-live results on very long-living nuclei

arxiv: v1 [nucl-th] 16 May 2017

Precision mass measurements of radioactive nuclei at JYFLTRAP

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010

Finding an Upper Bound on Neutrinos Mass

Finding Neutrinos Mass Upper Bound

K. Zuber, University of Sussex TU Dresden, 15. Oct Double beta decay

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states

How can we search for double beta decay? Carter Hall University of Maryland

The Nature and Magnitude of Neutrino Mass

MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic

arxiv: v1 [physics.ins-det] 1 Feb 2016

FISSION YIELD MEASUREMENTS WITH JYFLTRAP

MEASUREMENTS FOR THE R PROCESS AT IGISOL. Anu Kankainen University of Jyväskylä

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Matrix elements for processes that could compete in double beta decay

K. Zuber, Uni. Sussex NNR 05, Osaka Status of COBRA

Double Beta Present Activities in Europe

PoS(EMC2006)007. Neutrino: Dirac or Majorana? Ettore Fiorini 1

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture

Is the Neutrino its Own Antiparticle?

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

The Effect of Cancellation in Neutrinoless Double Beta Decay

arxiv: v1 [nucl-ex] 20 Dec 2008

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

X N 1. + e X N+1. + e +

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Double Beta Decay and Neutrino Mass

arxiv:nucl-th/ v1 23 Apr 1999

From JYFLTRAP to MATS

PROJECT STATUS AND PERSPECTIVES

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott

Sean W. Finch. Department of Physics Duke University. Date: Approved: Werner Tornow, Supervisor. Calvin Howell. Kate Scholberg.

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha

Institute for Nuclear Research, MSP Kyiv, Ukraine. Dipartimento di Fisica, Università di Roma Tor Vergata, I Rome, Italy

Neutrinoless Double Beta Decay. Abstract

Review of Neutrino Mass Measurements

DOUBLE BETA DECAY. Technical problems and particularly the reduction of the background (at the lowest value with respect to any other experiment)

Experiments for double beta decay and dark matter

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

Nuclear Physics Questions, Directions, Applications

LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers

with realistic NN forces

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Considerations for future neutrinoless double beta decay experiments

Status of the CUORE experiment at Gran Sasso

Search for Neutrinoless Double- Beta Decay with CUORE

Transcription:

Particle-, Nuclear- and Atomic-Physics Aspects of Rare Weak Decays of Nuclei Jouni Suhonen Department of Physics University of Jyväskylä NCNP2011 - XII th NordicConference onnuclear Physics, Stockholm, Sweden, 13-17 June, 2011 Contents: Intro: 0νββ Decays Resonant 0νECEC Decays Rare Beta Decays Jouni Suhonen (JYFL, Finland) NCNP 2011 1/ 27

INTRO: Neutrino Properties from Experiments Neutrino Properties from Oscillation Experiments: From solar, atmospheric, accelerator and reactor-neutrino data (SuperKamiokande, SNO, KamLAND, etc.): Squaredmass differences m 2 of neutrinos Matrix elements of the neutrino mixing matrix flavor eigenstates in terms ofmass eigenstates: ν e ν i ν µ ν j ν e ν k ν µ Complementary Experiments: Tritium beta decay(absolute neutrino mass), KATRIN Double beta decay(nature, absolute mass and hierarchy of neutrinos) Jouni Suhonen (JYFL, Finland) NCNP 2011 2/ 27

DoubleBeta Decay(Isobars A = 76) -60.0 Zn A=75-60.0 Zn A=76 Mass excess [MeV] -65.0-70.0 Ga Br Kr Mass excess [MeV] -65.0-70.0 Ga Br Kr Ge As Se Ge As -75.0-75.0 Se 30 31 32 33 34 35 36 Z 30 31 32 33 34 35 36 Z Jouni Suhonen (JYFL, Finland) NCNP 2011 3/ 27

Two-Neutrino Double Beta Decay Nucleus half-life (years) experiments 48 Ca 4.2 10 19 laboratory 76 Ge 1.42 10 21 laboratory 82 Se 9 10 19 laboratory,geochemical 96 Zr 2.1 10 19 laboratory,geochemical 100 Mo 8.0 10 18 laboratory 116 Cd 3.3 10 19 laboratory 128 Te 2.5 10 24 geochemical 130 Te 9 10 20 geochemical 150 Nd 7.0 10 18 laboratory 238 U 2.0 10 21 radio-chemical e 1 - FINAL NUCLEUS p p (Z,N-2) - e 2 2 INTERMEDIATE STATES 1 10 20 years = 10000000000 age of the UNIVERSE n n (Z,N-2) INITIAL NUCLEUS Jouni Suhonen (JYFL, Finland) NCNP 2011 4/ 27

Two-Neutrino DoubleBetaDecay of 76 Ge Virtual (3 - ) (4 - ) (1 + )? (3 - )? (1 - ) (1 + ) (1 + ) (1 + ) transition The decay goes through1 + virtual states 2-0 + 2 - - 76 Ge 76 As 76 Se 0 + Jouni Suhonen (JYFL, Finland) NCNP 2011 5/ 27

Neutrinoless Double Beta Decay 0νββ Decay isable to: Reveal if the neutrino is a Majorana particle Probe the neutrino effective mass m ν = P j=light λcp j U ej 2 m j Probe the degenerate or inverted mass hierarchies(next-generation experiments!) Probe possibly the CP phases (nuclear matrix elements are critical!) (ν τ ) ν 3 } m 2 atm (ν µ ) ν 2 } m 2 (ν e ) ν 1 Normal hierarchy ν 2 ν 1 } ν 3 Inverted hierarchy m 2 = 7.67 +0.16 0.19 10 5 ev 2 m 2 atm = 2.39+0.11 0.08 10 3 ev 2 [Global 3ν oscillation analysis (2008)] } m 2 m 2 atm e 1 - MASS MODE: T 1/2 m ν 2 p n FINAL NUCLEUS p (Z,N-2) e 2 - helicities L=2 m =0 INTERMEDIATE STATES helicities n INITIAL NUCLEUS (Z,N-2) Jouni Suhonen (JYFL, Finland) NCNP 2011 6/ 27

Neutrinoless DoubleBeta Decayof 76 Ge Virtual (3 - ) (4 - ) (1 + )? (3 - )? (1 - ) (1 + ) (1 + ) (1 + ) transition The decay goes throughall J π virtual states 2-0 + 0 - - 76 Ge 76 As 76 Se 0 + Jouni Suhonen (JYFL, Finland) NCNP 2011 7/ 27

About Experiments UNDERGROUND LABORATORIES protect from COSMIC RAYS and their secondary particles Canfranc (Spain) Kamioka (Japan) Boulby(England) Gran Sasso(Italy) Pyhäsalmi (Finland) Baksan(Ukraine) Modane(France-Italy) Sudbury(Canada) Jouni Suhonen (JYFL, Finland) NCNP 2011 8/ 27

Experiments Searching for 0νββ Decays: Major Running Experiments: Heidelberg Moscow( 76 Ge)(ceased,claim of detectionbutresult still controversial) NEMO3( 76 Ge 82 Se 96 Zr 100 Mo 116 Cd...) runningin Modane Cuoricino ( 128,130 Te) running in Gran Sasso Future Experiments: SUPERNEMO ( 82 Se 100 Mo...), GERDA ( 76 Ge), MAJORANA ( 76 Ge), CAMEOII,III ( 116 Cd), CUORE ( 128,130 Te), MOON ( 100 Mo), EXO ( 136 Xe), COBRA ( 70 Zn 106,114,116 Cd 128,130 Te),ZORRO( 96 Zr) Theseare in 100 1000kg scale andcostabout 100000000 EURO/$ each! Jouni Suhonen (JYFL, Finland) NCNP 2011 9/ 27

Topic I Resonant 0νECEC Decays Jouni Suhonen (JYFL, Finland) NCNP 2011 10/ 27

Two-Neutrino Double Electron Capture Final nucleus (Z 2, N + 2) n (Z 2, N) n H H ν e ν e e bound p (Z 2, N) p e bound Initial nucleus (Z, N) Jouni Suhonen (JYFL, Finland) NCNP 2011 11/ 27

Neutrinoless Double Electron Capture Radiative 0νECEC Final nucleus (Z 2, N + 2) n (Z 2, N) n H H Resonant 0νECEC Final nucleus (Z 2, N + 2) n (Z 2, N) n H H γ ν e = ν e ν e = ν e e bound p (Z 2, N) p e bound e bound p (Z 2, N) p e bound Initial nucleus (Z, N) Initial nucleus (Z, N) Jouni Suhonen (JYFL, Finland) NCNP 2011 12/ 27

Resonant0νECECDecayof 106 Cd X K X K 0 + 2766.26 kev 1 + 1 106 47 Ag 59 0 + 1 R0νECEC Qβ = 202 kev 106 48 Cd 58 4 + 1229.2 kev 0 + 1133.7 kev 2 + 1 1128.0 kev 2 0νβ + EC Q = 2770(7) kev 2 + 1 511.86 kev 0 + gs 106 46 Pd 60 0νβ + β +,0νβ + EC Jouni Suhonen (JYFL, Finland) NCNP 2011 13/ 27

Half-lifeEstimatefor 106 Cd Decay widthof thetwo-hole state: Γ = 10.24eV 10 31 mν = 0.05 ev Half-life (yr) 10 30 10 29 10 28 10 27 mν = 0.3 ev mν = 1.0 ev 10 26 10 25 10 24 10 0 10 1 10 2 10 3 x (ev) (x/γ) 2 +1/4 T 1/2 = ln2g ECEC [M ECEC ] 2 m ν Γ, x = Q E (degeneracyparameter) 2 Jouni Suhonen (JYFL, Finland) NCNP 2011 14/ 27

Resonant0νECECDecayof 112 Sn X K X K 1 + 1 112 49 In 63 Q β = 658 kev 0 + 4 1924.3 kev 0νECEC 0 + 1 112 50 Sn 62 Q = 1919.82(16) kev 2 + 1 617.516 kev 0 + 1 112 48 Cd 64 Jouni Suhonen (JYFL, Finland) NCNP 2011 15/ 27

Half-LifeEstimatefor 112 Sn Γ =few tensof ev ; M ECEC 0ν = 4.76 (unitless NME) Q value measured in JYFLTRAP (S Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen, C. Weber, and J. Äystö, Phys. Rev. Lett. 103 (2009) 042501) Hence: Q E = 4.5 kev for KK capture = 18.2 kev for KL capture = 40.9 kev for LL capture T 1/2 > 5.9 1029 ( m ν [ev]) 2 years Conclusion: Decay rate much suppressed by the rather large degeneracy parameter Q E Jouni Suhonen (JYFL, Finland) NCNP 2011 16/ 27

Resonant0νECECDecayof 74 Se 2 1 74 33As 41 Q β = 1353.1 kev X L X L 2 + 2 1204.31 kev 0νECEC 0 + 1 74 34 Se 40 2 + 1 595.88 kev Q = 1209.171(49) kev 0 + 1 74 32Ge 42 Jouni Suhonen (JYFL, Finland) NCNP 2011 17/ 27

Half-LifeEstimatefor 74 Se Γ = fewtensofev ; M ECEC 0ν < 0.0160 (unitless NME) Q value measured in JYFLTRAP(V.S. Kolhinen, V.-V. Elomaa, T. Eronen, J. Hakala, A.Jokinen,M.Kortelainen, J.Suhonen and J.Äystö,Phys. Lett. B684 (2010) 17) Hence: Q E = 2.23keV forllcapture (mostfavorable) T 1/2 5 1043 ( m ν [ev]) 2 years Conclusion: Decay rate much suppressed both by the rather large degeneracyparameterq E andtheverysmall NME forthe2 + f final state. Thesame occurs forthe 2νβ β decay (seem.aunola and J.Suhonen, Nucl. Phys. A602(1996)133) Jouni Suhonen (JYFL, Finland) NCNP 2011 18/ 27

Resonant0νECECDecayof 136 Ce 0 + 4 X K X K 1 + 1 2390.20 kev 136 57 La 79 0νECEC 0 + 1 Q β = 460 kev 136 58 Ce 78 2 + 1 818.50 kev Q = 2378.53(27) kev 0 + 1 136 56 Ba 80 Jouni Suhonen (JYFL, Finland) NCNP 2011 19/ 27

Half-LifeEstimatefor 136 Ce Γ = 13.81eV ; M ECEC = 0.250 (unitlessnme) Q value measured in JYFLTRAP(V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen and J. Äystö, Phys. Lett. B 697 (2011) 116) Hence: Q E = 11.67 kev for KK capture = 19.78 kev for KL capture = 51.24 kev for LL capture T 1/2 > 2.26 1033 ( m ν [ev]) 2 years Conclusion: Decay rate much suppressed by the rather large degeneracyparameterq E andtherathersmall NME Jouni Suhonen (JYFL, Finland) NCNP 2011 20/ 27

Topic II 115 In: Beta decay withanultra-low Q value Jouni Suhonen (JYFL, Finland) NCNP 2011 21/ 27

115 In: Beta DecaywithanUltra-Low Q Value First discovered by Cattadori et al. (Nucl. Phys. A 748 (2005) 333) 1/2 4.5 h 0.336 9/2 + 0.000 3/2 + 11 ps 0.497 115 49 In T 1/2 = 4.4 10 14 a 1/2 + 0.000 115 50 Sn stable Suggested as a possible independent experiment to look for the neutrino mass Jouni Suhonen (JYFL, Finland) NCNP 2011 22/ 27

Experimental Results LNGS(C.M. Cattadori et al.) first observation b = 1.18(31) 10 6 HADES JYFLTRAP T partial 1/2 = 3.73(98) 10 20 a b = 1.07(17) 10 6 T partial 1/2 = 4.1(6) 10 20 a Q β = 0.35(17) kev J.S.E.Wieslander,J.Suhonen, T.Eronen,M.Hult, V.-V.Elomaa, A.Jokinen,G. Marissens, M. Misiaszek, M.T. Mustonen, S. Rahaman, C. Weber and J. Äystö, Phys. Rev. Lett. 103 (2009) 122501. Lowest Q value recorded so far! Previousrecord: 187 ReQ β = 2.469(4) kev 1 1 M.S.Basunia, Nucl. Data Sheets 110(2009) 999. Jouni Suhonen (JYFL, Finland) NCNP 2011 23/ 27

Theory 2nd-forbiddenunique 115 In(9/2 + ) 115 Sn(3/2 + )decay dependent on only one nuclear matrix element(nme) M T 1/2 = 1 M 2 f K (w 0,Z f,r) wave functions from the proton-neutron microscopic quasiparticle-phonon model(pnmqpm) pnmqpm was previously successfully applied to the 4th-forbiddennon-unique 115 In(9/2 + ) 115 Sn(1/2 + )g.s.-to-g.s. decay(logft, half-life, electronspectrum) 2 2 M.T.Mustonenand J.Suhonen, Phys. Lett. B 657(2007) 38. Jouni Suhonen (JYFL, Finland) NCNP 2011 24/ 27

Experiments Meet Theory 10 Beta decay of 115 In g.s. to the lowest excited state of 115 Sn BJM JYFLTRAP Half-life (10 20 y) 1 0.1 0.01 100 200 300 400 500 Q-value (ev) BJM=B.J.Mount, M.Redshaw and E.G.Myers,Phys. Rev. Lett. 103(2009) 122502 Jouni Suhonen (JYFL, Finland) NCNP 2011 25/ 27

Possible Sources of Discrepancy Nuclear wave functions? MQPM andpnmqpm takealso intoaccount the3-qp degreesof freedom Relevant states still dominantly 1-qp states Toexplain thediscrepancy,thenmeshouldbewrongby afactor of5ormore! Maybe the problem lies in the lepton wave functions... Atomic effects for ultra-low Q values electron screening(not estimated for forbidden decays) atomic overlap (previous approximations break down) exchange effects(contradictory results for low Q values) final-state interactions (estimates only for tritium beta decay) Jouni Suhonen (JYFL, Finland) NCNP 2011 26/ 27

Conclusions and Outlook Conclusions: The0νECECdecaysof 112 Snand 136 CeareNOT OBSERVABLEdueto badly fulfilled resonance condition The0νECECdecayof 74 Seis NOT OBSERVABLEduetobadlyfulfilled resonance condition and tiny NME 115 Indecaysby anultra-low Q value ATOMICeffectsimportant Outlook: Other resonant 0νECEC decays should be studied for their Q values using the atomtraptechniques, e.g. 106 Cd Muchwork neededto chartthe magnitudes ofthe atomic effectsinbeta decayswithultra-low Qvalues. Only thenthe hunt forthe elusive neutrino mass in these decays is possible. Jouni Suhonen (JYFL, Finland) NCNP 2011 27/ 27