2SJ182(L), 2SJ182(S)

Similar documents
2SJ332(L), 2SJ332(S)

2SJ280(L), 2SJ280(S)

2SJ172. Silicon P-Channel MOS FET

2SJ174. Silicon P-Channel MOS FET

2SK1254(L), 2SK1254(S)

2SK1169, 2SK1170. Silicon N-Channel MOS FET. Application. Features. Outline. High speed power switching

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII) 2SK3236

TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U MOSIII) 2SJ668

500V N-Channel MOSFET

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS ) TK15J60U

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3567

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK6A50D

OptiMOS 2 Power-Transistor

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3667

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3767

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538

SIPMOS Small-Signal-Transistor

OptiMOS 3 Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅣ) 2SK4013

IXTT440N04T4HV V DSS

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiv) 2SK3565

OptiMOS 3 Power-MOSFET

SIPMOS Small-Signal-Transistor

OptiMOS 3 Power-Transistor

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

OptiMOS 2 Power-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS TM Power-MOSFET

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π-mos VI) 2SK4108. JEDEC Repetitive avalanche energy (Note 3) E AR 15 mj

TPCF8402 F6B TPCF8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C)

OptiMOS 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS (TM) 3 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 3 Power-Transistor

IXTH80N65X2 V DSS. X2-Class Power MOSFET = 650V I D25. = 80A 38m. R DS(on) N-Channel Enhancement Mode Avalanche Rated TO-247 G D S

TSP10N60M / TSF10N60M

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS) TK40J60T

OptiMOS TM Power-MOSFET

OptiMOS TM Power-MOSFET

OptiMOS 2 Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

µtrenchmos standard level FET Low on-state resistance in a small surface mount package. DC-to-DC primary side switching.

OptiMOS -5 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS P2 Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

SIPMOS Power-Transistor

N-channel TrenchMOS logic level FET

OptiMOS TM Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK12A50D

OptiMOS Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS -P2 Power-Transistor

OptiMOS TM P3 Power-Transistor

OptiMOS TM Power-MOSFET

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS -5 Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSⅢ) TK30A06J3


OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

OptiMOS 3 Power-Transistor

Product Summary: BVDSS 30V RDSON (MAX.) 50mΩ 4.5A I D. Pb Free Lead Plating & Halogen Free EMB50P03J

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

OptiMOS -T2 Power-Transistor

OptiMOS TM 3 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS -P Small-Signal-Transistor

N- & P-Channel Enhancement Mode Field Effect Transistor

OptiMOS -T2 Power-Transistor Product Summary

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

OptiMOS TM -T2 Power-Transistor

STD5N20L N-CHANNEL 200V Ω - 5A DPAK STripFET MOSFET

PSMN006-20K. N-channel TrenchMOS SiliconMAX ultra low level FET

OptiMOS -T Power-Transistor

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS -T Power-Transistor Product Summary

N-Channel Enhancement-Mode Vertical DMOS FET

OptiMOS TM -T2 Power-Transistor

OptiMOS -P2 Power-Transistor Product Summary

OptiMOS -5 Power-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS Small-Signal-Transistor

OptiMOS -P2 Power-Transistor Product Summary

OptiMOS -T2 Power-Transistor

Transcription:

Silicon P-Channel MOS FET November 1996 Application High speed power switching Features Low on-resistance High speed switching Low drive current 4 V gate drive device Can be driven from V source Suitable for motor drive, DC-DC converter, power switch and solenoid drive Outline DPAK-1 4 4 1 2 3 1 2 3 D G 1. Gate 2. Drain 3. Source 4. Drain S

Absolute Maximum Ratings (Ta = 2 C) Item Symbol Ratings Unit Drain to source voltage V DSS 6 V Gate to source voltage V GSS ±2 V Drain current I D 3 A Drain peak current I D(pulse) * 1 2 A Body to drain diode reverse drain current I DR 3 A Channel dissipation Pch* 2 2 W Channel temperature Tch 1 C Storage temperature Tstg to +1 C Notes 1. PW 1 µs, duty cycle 1% 2. Value at T C = 2 C 2

Electrical Characteristics (Ta = 2 C) Item Symbol Min Typ Max Unit Test conditions Drain to source breakdown V (BR)DSS 6 V I D = ma, V GS = voltage Gate to source breakdown voltage V (BR)GSS ±2 V I G = ±1 µa, V DS = Gate to source leak current I GSS ±1 µa V GS = ±16 V, V DS = Zero gate voltage drain current I DSS µa V DS = V, V GS = Gate to source cutoff voltage V GS(off).. V I D = ma, V DS = V Static drain to source on state resistance R DS(on).28.4 Ω I D = A, V GS = V* 1.4. I D = A, V GS = 4 V* 1 Forward transfer admittance y fs 1.6 2.7 S I D = A, V DS = V* 1 Input capacitance Ciss 42 pf V DS = V, V GS =, f = 1 MHz Output capacitance Coss 22 pf Reverse transfer capacitance Crss 6 pf Turn-on delay time t d(on) ns I D = A, V GS = V, R L = 1 Ω Rise time t r 3 ns Turn-off delay time t d(off) 16 ns Fall time t f 8 ns Body to drain diode forward voltage Body to drain diode reverse recovery time Note 1. Pulse test V DF. V I F = 3 A, V GS = t rr 14 ns I F = 3 A, V GS =, di F /dt = A/µs 3

3 Power vs. Temperature Derating Channel Dissipation Pch (W) 2 1 1 1 Case Temperature T C ( C) Maximum Safe Operation Area..2.1 Operation in this Area is Limited by R DS (on) Ta = 2 C 1 µs 1 µs PW = 1 ms (1 Shot) 1 ms DC Operation (T C = 2 C)..1.3 3 3 Drain to Source Voltage V DS (V) 4 3 Typical Output Characteristics V V 4 V 3. V 3. V. V V GS =. V 4 6 8 Drain to Source Voltage V DS (V) 4 3 Typical Transfer Characteristics C T C = 2 C 7 C V DS = V 3 4 Gate to Source Voltage V GS (V) 4

Drain to Source Saturation Voltage V DS (on) (V)... Drain to Source Saturation Voltage vs. Gate to Source Voltage A A I D = A 4 6 8 Gate to Source Voltage V GS (V) Static Drain to Source on State Resistance R DS (on) (Ω) 2 1...2.1..2 Static Drain to Source on State Resistance vs. Drain Current V GS = 4 V V. Static Drain to Source on State Resistance R DS (on) (Ω) 1..8.6.4.2 4 Static Drain to Source on State Resistance vs. Temperature I D =, A A V GS = 4 V V GS = V A A A 4 8 12 16 Case Temperature T C ( C) Forward Transfer Admittance yfs (S) 1 2 1..2.1. Forward Transfer Admittance vs. Drain Current V DS = V C T C = 2 C 7 C.1.2.

Body to Drain Diode Reverse Recovery Time Reverse Recovery Time t rr (ns) 2 1 2 di/dt = A/µs, V GS = 1 Ta = 2 C.1.2. Reverse Drain Current I DR (A) 1, Typical Capacitance vs. Drain to Source Voltage Ciss Capacitance C (pf) 1 1 V GS = f = 1 MHz Coss Crss 3 4 Drain to Source Voltage V DS (V) Drain to Source Voltage V DS (V) 4 6 8 V DS Dynamic Input Characteristics V I D = 3 A V DD = V V GS V V DD = V V V 8 16 24 32 4 Gate Charge Qg (nc) 4 8 2 6 Gate to Source Voltage V GS (V) Switching Characteristics Switching Time t (ns) 2 t d (off) 1 t f V GS = V PW = 2 µs, duty < 1% 2 t r 1 t d (on).1.2. 6

Reverse Drain Current I DR (A) 4 3 Reverse Drain Current vs. Source to Drain Voltage V V V GS =, V.4.8.2.6. Source to Drain Voltage V SD (V) Normalized Transient Thermal Impedance γ S (t) 3 1..3.1.3.1 1 µ D = 1 T C = 2 C..2.1..2.1 1 Shot Pulse Normalized Transient Thermal Impedance vs. Pulse Width θch c (t) = γ S (t) θch c θch c = 6.2 C/W, T C = 2 C P DM T PW D = PW T 1 µ 1 m 1 m 1 m 1 1 Pulse Width PW (s) Switching Time Test Circuit Vin Monitor D.U.T Vout Monitor Vin V Ω R L V DD =.. 3 V Vin 1% Waveforms 9% 9% 9% Vout 1% 1% t d (on) t r t d (off) t f 7

When using this document, keep the following in mind: 1. This document may, wholly or partially, be subject to change without notice. 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi s permission. 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user s unit according to this document. 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi s semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd. 6. MEDICAL APPLICATIONS: Hitachi s products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi s products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS. 8