Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Similar documents
Product Specification

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

XENON SHORT ARC LAMPS キセノンショートアークランプ

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

京都 ATLAS meeting 田代. Friday, June 28, 13

SAFETY STANDARD APPROVED METALLIZED POLYPROPYLENE CAPACITOR 海外規格メタライズドポリプロピレンコンデンサ TYPE ECQUA

HWS150A RELIABILITY DATA 信頼性データ

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

SML-811x/812x/813x Series

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

The unification of gravity and electromagnetism.

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

NSPA510BS RoHS Compliant

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

NSPW500DS RoHS Compliant

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

October 7, Shinichiro Mori, Associate Professor

Illustrating SUSY breaking effects on various inflation models

Thermal Safety Software (TSS) series

NSPR546HS RoHS Compliant

NSPW315DS RoHS Compliant

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

NEPE510JS RoHS Compliant

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

高度バッテリ温度監視 デュアル入力リニアチャージャ Smart Power Selector

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Taking an advantage of innovations in science and technology to develop MHEWS

日本政府 ( 文部科学省 ) 奨学金留学生申請書

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

NSPA310S RoHS Compliant

高エネルギーニュートリノ : 理論的な理解 の現状

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

2011/12/25

Nichia STS-DA <Cat.No > SPECIFICATIONS FOR NICHIA LUMINOUS FLUX WHITE STANDARD LED MODEL : NLHW01S02 NICHIA CORPORATION

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

NSPWR70CSS-K1 Built-in ESD Protection Device RoHS Compliant

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Analysis of shale gas production performance by SGPE

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

GRASS 入門 Introduction to GRASS GIS

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

ATLAS 実験における荷電ヒッグス粒子の探索

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Yutaka Shikano. Visualizing a Quantum State

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

UTokyo OCW. Copyright 2015, The University of Tokyo / UTokyo OCW The Global Focus on Knowledge Lecture Series Copyright 2015, Taro Toyoizumi

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

Is the 2006 Yogyakarta Earthquake Related to the Triggering of the Sidoarjo, Indonesia Mud Volcano?

Digital Torque Meter ADT-C Series OPERATION MANUAL

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

757G-V2 Series. For General Lighting Application. NF2x757G-F1, NFSx757G COB Series. Ra 90. Ra 80 Cove Light. Surface Mount Type

9.Mistakes occur no matter ( ) careful you try to be. ( ア )how ( イ )what ( ウ )with ( エ )on

Title rays. Citation Advanced Materials Research, 409: 5. Issue Date Journal Article. Text version author.

IAEA,NEA ISOE 国際 シンポジューム出張報告

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

2018 年度推薦入学選考 (11 月 15 日実施 ) 英語分野問題 ( 1 ページ 8 ページ )

トンネルの切羽からの肌落ちによる 労働災害の調査分析と防止対策の提案

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

Deep moist atmospheric convection in a subkilometer

SPECIFICATION. Power Integrated Module. Device Name : Type Name : Spec. No. : Fuji Electric Co.,Ltd. Matsumoto Factory H MBR25UA120

SOLID STATE PHYSICAL CHEMISTRY

Transcription:

Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A Jun 2009 Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows. Test Signal Frequency Accuracy Frequency [Hz] Limits [Hz] Result 1 [Hz] Uncertainty [Hz] TAR 100 ±0.01 ± 0.00031 31.77 120 ±1.2 ± 0.00034 3550.50 1 k ±0.00010 k k ± 0.0000029 k 35.38 10 k ±0.0010 k k ± 0.000019 k 53.80 20 k ±0.0020 k k ± 0.000020 k 100.32 100 k ±0.010 k k ± 0.00019 k 53.78 Note 1: Result = Measurement Nominal Frequency Change 2 Add TAR in Test Signal Level Accuracy Test (Page 9-38) as follows. Test Signal Level Accuracy Signal Level [V] Frequency [HZ] Limits [V] Result 1 [V] Uncertainty [V] TAR 50 m 100 ±15.0 m m ± 0.90 m 16.70 50 m 20 k ±15.0 m m ± 0.078 m 193.62 50 m 100 k ±15.0 m m ± 0.18 m 86.62 250 m 100 ±35.0 m m ± 2.50 m 14.04 250 m 20 k ±35.0 m m ± 0.35 m 102.30 250 m 100 k ±35.0 m m ± 1.88 m 18.66 1 100 ±0.11 ± 0.00349 31.60 1 20 k ±0.11 ± 0.00147 74.91 1 100 k ±0.11 ± 0.00108 101.92 Note 1: Result = Measurement Nominal Level Change 3 Add TAR in DC Bias Level Accuracy Test (Page 9-39) as follows. DC Bias Level Accuracy DC Bias Level [V] Limits [V] Result1 [V] Uncertainty [V] TAR 0 ±0.002 ± 0.087 m 23.07 1.5 ±0.077 ± 0.44 m 175.51 2 ±0.102 ± 0.92 m 111.10 Note 1: Result = Measurement Nominal Level C Copyright 2009 Agilent Technologies

Change 4 Add TAR in 0 m Impedance Measurement Accuracy Test (Page 9-40 to 9-42) as follows. Impedance Measurement Accuracy Measurement: Capacitance Cable length: 0 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 10 pf 100 k Cp ±0.331 pf pf ± 0.0040 pf 83.58 10 pf 100 k D ±0.0331 ± 0.00043 78.09 100 pf 1 k Cp ±0.19 pf pf ± 0.0074 pf 25.79 100 pf 1 k D ±0.0019 ± 0.000063 30.57 100 pf 10 k Cp ±0.44 pf pf ± 0.017 pf 26.79 100 pf 10 k D ±0.0044 ± 0.00023 19.15 100 pf 20 k Cp ±1.10 pf pf ± 0.021 pf 53.34 100 pf 20 k D ±0.0110 ± 0.000091 121.51 100 pf 100 k Cp ±1.37 pf pf ± 0.019 pf 74.59 100 pf 100 k D ±0.0137 ± 0.00033 42.12 1 nf 100 Cp ±0.002 nf nf ± 0.000098 nf 20.11 1 nf 100 D ±0.0020 ± 0.000063 32.10 1 nf 1 k Cp ±0.0012 nf nf ± 0.000092 nf 12.67 1 nf 1 k D ±0.0012 ± 0.000064 19.02 1 nf 100 k Cp ±0.0128 nf nf ± 0.00012 nf 116.20 1 nf 100 k D ±0.0128 ± 0.00033 38.90 10 nf 100 Cp ± 0.018 nf nf ± 0.00065 nf 28.46 10 nf 100 D ±0.0018 ± 0.000022 84.00 10 nf 120 Cp ± 0.018 nf nf ± 0.00059 nf 16.38 10 nf 120 D ±0.0018 ± 0.000022 85.34 10 nf 1 k Cp ± 0.011 nf nf ± 0.00076 nf 14.17 10 nf 1 k D ±0.0011 ± 0.000021 53.05 10 nf 10 k Cp ± 0.018 nf nf ± 0.00067 nf 27.75 10 nf 10 k D ±0.0018 ± 0.000036 51.18 10 nf 100 k Cp ± 0.128 nf nf ± 0.00087 nf 148.58 10 nf 100 k D ±0.0128 ± 0.00022 60.42 100 nf 1 k Cp ± 0.11 nf nf ± 0.0068 nf 15.62 100 nf 1 k D ±0.0011 ± 0.000023 47.81 100 nf 100 k Cp ± 1.47 nf nf ± 0.015 nf 102.37 100 nf 100 k D ±0.0147 ± 0.00026 57.89 1 μf 100 Cp ±0.0018 μf μf ± 0.000074 μf 24.88 1 μf 100 D ±0.0018 ± 0.000047 38.90 1 μf 120 Cp ±0.0018 μf μf ± 0.000073 μf 24.49 1 μf 120 D ±0.0018 ± 0.000047 38.84 1 μf 1 k Cp ±0.0011 μf μf ± 0.000067 μf 15.89 1 μf 1 k D ±0.0011 ± 0.000032 34.29 1 μf 10 k Cp ±0.0026 μf μf ± 0.00014 μf 19.45 1 μf 10 k D ±0.0026 ± 0.000069 38.02 1 μf 100 k Cp ±0.0176 μf μf ± 0.00018 μf 102.72 C Copyright 2009 Agilent Technologies

1 μf 100 k D ±0.0176 ± 0.00032 55.73 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Capacitance Cable length: 0 m Measurement time: Med Test signal level: 50 mv Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 10 nf 100 Cp ± 0.063 nf nf ± 0.00070 nf 89.93 10 nf 100 D ±0.0063 ± 0.000043 146.37 10 nf 100 k Cp ± 0.271 nf nf ± 0.0023 nf 119.28 10 nf 100 k D ±0.0271 ± 0.00044 62.83 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Capacitance Cable length: 0 m Measurement time: Short Test signal level: 50 mv Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 10 nf 100 Cp ± 0.179 nf nf ± 0.011 nf 16.27 10 nf 100 D ±0.0179 ± 0.00072 25.02 10 nf 100 k Cp ± 0.287 nf nf ± 0.00081 nf 356.95 10 nf 100 k D ±0.0287 ± 0.00069 41.99 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Capacitance Cable length: 0 m Measurement time: Long Test signal level: 1 V DC bias: On Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 1 μf 1 k Cp ±0.0011 μf μf ± 0.000066 μf 16.28 1 μf 1 k D ±0.0011 ± 0.000033 34.30 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Resistance Cable length: 0 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 mω 100 R ±0.52 mω mω ± 0.030 mω 17.76 100 mω 1k R ±0.48 mω mω ± 0.030 mω 16.31 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Cable length: Resistance 0 m C Copyright 2009 Agilent Technologies

Measurement time: Med Test signal level: 500 mv Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 mω 100 R ±0.62 mω mω ± 0.033 mω 19.12 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Resistance Cable length: 0 m Measurement time: Short Test signal level: 500 mv Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 mω 100 R ±1.10 mω mω ± 0.13 mω 8.91 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status DC Resistance 0 m Long 1 V PASS Standard Parameter Limits Result 1 Uncertainty TAR ± 0.039 25.06 100 mω R ±0.97 mω mω mω 100 kω R ±0.87 kω mω ± 0.013 kω 67.56 Note 1: Result = Measurement Calibrated Value of Standard C Copyright 2009 Agilent Technologies

Change 5 Add TAR in 1 m Impedance Measurement Accuracy Test (Page 9-43) as follows. Measurement: Capacitance Cable length: 1 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 pf 1 k Cp ±0.19 pf pf ± 0.0077 pf 24.59 100 pf 1 k D ±0.0019 ± 0.000063 30.52 100 pf 10 k Cp ±0.48 pf pf ± 0.012 pf 40.75 100 pf 10 k D ±0.0048 ± 0.00013 37.17 100 pf 20 k Cp ±1.10 pf pf ± 0.024 pf 47.09 100 pf 20 k D ±0.0110 ± 0.000085 130.36 100 pf 100 k Cp ±1.37 pf pf ± 0.010 pf 136.75 100 pf 100 k D ±0.0137 ± 0.00016 87.72 1 nf 100 Cp ±0.002 nf nf ± 0.000091 nf 21.61 1 nf 100 D ±0.0020 ± 0.000063 32.10 1 μf 100 Cp ±0.0018 μf μf ± 0.000075 μf 24.28 1 μf 100 D ±0.0018 ± 0.000047 38.74 1 μf 1 k Cp ±0.0011 μf μf ± 0.000069 μf 15.58 1 μf 1 k D ±0.0011 ± 0.000033 33.55 1 μf 10 k Cp ±0.0026 μf μf ± 0.00014 μf 19.09 1 μf 10 k D ±0.0026 ± 0.000061 43.04 1 μf 100 k Cp ±0.0207 μf μf ± 0.00016 μf 132.97 1 μf 100 k D ±0.0207 ± 0.00029 73.20 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Resistance Cable length: 1 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 mω 100 R ±0.60 mω mω ± 0.030 mω 20.44 100 mω 1k R ±0.60 mω mω ± 0.031 mω 19.33 Note 1: Result = Measurement Calibrated Value of Standard Measurement: DC Resistance Cable length: 1 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Limits Result 1 Uncertainty TAR ± 0.030 100 mω R ±1.05 mω mω mω 35.88 100 kω R ±0.87 kω mω ± 0.014 kω 26.19 Note 1: Result = Measurement Calibrated Value of Standard C Copyright 2009 Agilent Technologies

Change 6 Add TAR in 2 m Impedance Measurement Accuracy Test (Page 9-44) as follows. Measurement: Capacitance Cable length: 2 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 pf 1 k Cp ±0.19 pf pf ± 0.011 pf 18.59 100 pf 1 k D ±0.0019 ± 0.000073 26.34 100 pf 10 k Cp ±0.51 pf pf ± 0.013 pf 41.04 100 pf 10 k D ±0.0051 ± 0.00014 37.14 100 pf 20 k Cp ±1.10 pf pf ± 0.022 pf 51.11 100 pf 20 k D ±0.0110 ± 0.000094 118.00 1 nf 100 Cp ±0.002 nf nf ± 0.000090 nf 21.86 1 nf 100 D ±0.0020 ± 0.000075 26.94 1 μf 100 Cp ±0.0018 μf μf ± 0.000077 μf 23.71 1 μf 100 D ±0.0018 ± 0.000047 38.79 1 μf 1 k Cp ±0.0011 μf μf ± 0.000069 μf 15.53 1 μf 1 k D ±0.0011 ± 0.000033 34.31 1 μf 10 k Cp ±0.0026 μf μf ± 0.00014μF 19.38 1 μf 10 k D ±0.0026 ± 0.000062 42.27 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Resistance Cable length: 2 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 mω 100 R ±0.68 mω mω ± 0.030 mω 22.95 100 mω 1k R ±0.72 mω mω ± 0.034 mω 21.35 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status DC Resistance 2 m Long 1 V PASS Standard Parameter Limits Result 1 Uncertainty TAR 100 mω R ±1.13 mω mω ± 0.030mΩ 38.28 100 kω R ±0.87 kω mω ± 0.014 kω 66.20 Note 1: Result = Measurement Calibrated Value of Standard C Copyright 2009 Agilent Technologies

Change 7 Add TAR in 4 m Impedance Measurement Accuracy Test (Page 9-45) as follows. Measurement: Capacitance Cable length: 4 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 pf 1 k Cp ±0.19 pf pf ± 0.0078 pf 25.29 100 pf 1 k D ±0.0019 ± 0.000065 29.32 1 nf 100 Cp ±0.002 nf nf ± 0.000089 nf 22.18 1 nf 100 D ±0.0020 ± 0.000062 32.72 1 μf 100 Cp ±0.0018 μf μf ± 0.000077 μf 23.73 1 μf 100 D ±0.0018 ± 0.000047 38.88 1 μf 1 k Cp ±0.0011 μf μf ± 0.000071 μf 15.08 1 μf 1 k D ±0.0011 ± 0.000033 33.34 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Resistance Cable length: 4 m Measurement time: Long Test signal level: 1 V Status PASS Standard Frequency [Hz] Parameter Limits Result 1 Uncertainty TAR 100 mω 100 R ±0.84 mω mω ± 0.030 mω 28.84 100 mω 1k R ±0.96 mω mω ± 0.030 mω 32.06 Note 1: Result = Measurement Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status DC Resistance 4 m Long 1 V PASS Standard Parameter Limits Result 1 Uncertainty TAR ± 0.030 43.74 100 mω R ±1.29 mω mω mω 100 kω R ±0.87 kω kω ± 0.013 kω 68.26 Note 1: Result = Measurement Calibrated Value of Standard C Copyright 2009 Agilent Technologies

Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A July 2008 Change 1 Change the Measurement Uncertainty value of Test Signal Frequency Accuracy Test (Page 9-38) to the following information. Test Signal Frequency Test Limits Test Result 1 Measurement Uncertainty 100 Hz ±0.010 Hz Hz ± 0.00031 Hz 120 Hz ±1.200 Hz Hz ± 0.00034 Hz 1 khz ±0.00010 khz khz ± 0.0000029 khz 10 khz ±0.0010 khz khz ± 0.000019 khz 20 khz ±0.0010 khz khz ± 0.000020 khz 100 khz ±0.010 khz khz ± 0.00019 khz Change 2 Change the Measurement Uncertainty value of Test Signal Level Accuracy Test (Page 9-38) to the following information. Test Signal Level Test Signal Frequency Test Limits Test Result 1 Measurement Uncertainty 50 mv 100 Hz ±15.0 mv ± 0.90 mv 50 mv 20 khz 2 ±15.0 mv ± 0.078 mv 50 mv 100 khz ±15.0 mv ± 0.18 mv 250 mv 100 Hz ±35.0 mv ± 2.50 mv 250 mv 20 khz ±35.0 mv ± 0.35 mv 250 mv 100 khz ±35.0 mv ± 1.88 mv 1 V 100 Hz ±0.11 V ± 0.00349 V 1 V 20 khz ±0.11 V ± 0.00148 V 1 V 100 khz ±0.11 V ± 0.00109 V C Copyright 2007 Agilent Technologies

Change 3 Change the Measurement Uncertainty value of DC Bias Level Accuracy Test (Page 9-39) to the following information. DC Bias Level Test Limits Test Result 1 Uncertainty Measurement 0 V ±0.002 V V ± 0.088 mv 1.5 V ±0.077 V V ± 0.44 mv 2 V ±0.102 V V ± 0.92 mv Change 4 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Capacitance Measurement Accuracy Test (Meas. Time Mode: LONG) (Page 9-40) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 10 pf 100 khz Cp ±0.331 pf pf ± 0.0040 pf D ±0.0331 ± 0.00043 100 pf 1 khz Cp ±0.19 pf pf ± 0.0074 pf D ±0.0019 ± 0.000063 100 pf 10 khz Cp ±0.44 pf pf ± 0.017 pf D ±0.0044 ± 0.00023 100 pf 20 khz 2 Cp ±1.10 pf pf ± 0.021 pf D ±0.0110 ± 0.000091 100 pf 100 khz Cp ±1.37 pf pf ± 0.019 pf D ±0.0137 ± 0.00033 1000 pf 100 Hz Cp ±2 pf pf ± 0.000098 nf D ±0.0020 ± 0.000063 1000 pf 1 khz Cp ±0.0012 nf pf ± 0.000092 nf D ±0.0012 ± 0.000064 1000 pf 100 khz Cp ±0.0128 nf pf ± 0.00012 nf D ±0.0128 ± 0.00033 0.01 μf 100 Hz Cp ± 0.018 nf pf ± 0.00065 nf D ±0.0018 ± 0.000022 0.01 μf 120 Hz Cp ± 0.018 nf pf ± 0.00059 nf D ±0.0018 ± 0.000022 0.01 μf 1 khz Cp ± 0.011 nf pf ± 0.00076 nf D ±0.0011 ± 0.000021 0.01 μf 10 khz Cp ± 0.018 nf pf ± 0.00067 nf D ±0.0018 ± 0.000036 0.01 μf 100 khz Cp ± 0.128 nf pf ± 0.00087 nf D ±0.0128 ± 0.00022 0.1 μf 1 khz Cp ± 0.11 nf pf ± 0.0068 nf D ±0.0011 ± 0.000023 0.1 μf 100 khz Cp ± 1.47 nf pf ± 0.015 nf D ±0.0147 ± 0.00026 C Copyright 2007 Agilent Technologies

Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Capacitance Measurement Accuracy Test (Meas. Time Mode: LONG) (Page 9-41) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 1 μf 100 Hz Cp ±0.0018 μf pf ± 0.000074 μf D ±0.0018 ± 0.000047 1 μf 120 Hz Cp ±0.0018 μf pf ± 0.000073 μf D ±0.0018 ± 0.000047 1 μf 1 khz Cp ±0.0011 μf pf ± 0.000067 μf D ±0.0011 ± 0.000032 1 μf 10 khz Cp ±0.0026 μf pf ± 0.00014 μf D ±0.0026 ± 0.000069 1 μf 100 khz Cp ±0.0176 μf pf ± 0.00018 μf D ±0.0176 ± 0.00032 Change 5 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Capacitance Measurement Accuracy Test (Meas. Time Mode: MED) (Page 9-41) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 0.01 μf 100 Hz Cp ± 0.063 nf pf ± 0.00070 nf 100 Hz D ±0.0063 ± 0.000043 0.01 μf 100 khz Cp ± 0.271 nf pf ± 0.0023 nf 100 khz D ±0.0271 ± 0.00044 Change 6 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Capacitance Measurement Accuracy Test (Meas. Time Mode: SHORT) (Page 9-41) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 0.01 μf 100 Hz Cp ± 0.179 nf pf ± 0.011 nf D ±0.0179 ± 0.00072 0.01 μf 100 khz Cp ± 0.287 nf pf ± 0.00081 nf D ±0.0287 ± 0.00069 C Copyright 2007 Agilent Technologies

Change 7 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Capacitance Measurement Accuracy Test (DC Bias: ON) (Page 9-41) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 1 μf 1 k Cp ±0.0011 μf μf ± 0.000066 μf D ±0.0011 ± 0.000033 Change 8 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Resistance Measurement Accuracy Test (Meas. Time Mode: LONG) (Page 9-42) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 mohm 100 Hz R ±0.52 mohm mohm ± 0.030 mohm 100 mohm 1 khz R ±0.48 mohm mohm ± 0.030 mohm Change 9 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Resistance Measurement Accuracy Test (Meas. Time Mode: MED) (Page 9-42) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 mohm 100 Hz R ±0.62 mohm mohm ± 0.033 mohm Change 10 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m Resistance Measurement Accuracy Test (Meas. Time Mode: SHORT) (Page 9-42) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 mohm 100 Hz R ±1.10 mohm mohm ± 0.13 mohm C Copyright 2007 Agilent Technologies

Change 11 Change the Measurement Uncertainty value of 0 m Impedance Measurement Accuracy Test for 0 m DC Resistance Measurement Accuracy Test (Opt. 001 Only) (Page 9-42) to the following information. Standard Test Limits Test Result 1 Uncertainty Measurement 100 mohm ±0.97 mohm mohm ± 0.039 mohm 100 kohm ±0.87 kohm kohm ± 0.013 kohm Change 12 Change the Measurement Uncertainty value of 1 m Impedance Measurement Accuracy Test for 1 m Capacitance Measurement Accuracy Test (Page 9-43) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 pf 1 khz Cp ±0.19 pf pf ± 0.0077 pf D ±0.0019 ± 0.000063 100 pf 10 khz Cp ±0.48 pf pf ± 0.012 pf D ±0.0048 ± 0.00013 100 pf 20 khz 2 Cp ±1.10 pf pf ± 0.024 pf D ±0.0110 ± 0.000085 100 pf 100 khz Cp ±1.37 pf pf ± 0.010 pf D ±0.0137 ± 0.00016 1000 pf 100 Hz Cp ±0.002 nf pf ± 0.000091 nf D ±0.0020 ± 0.000063 1 μf 100 Hz Cp ±0.0018 μf μf ± 0.000075 μf D ±0.0018 ± 0.000047 1 μf 1 khz Cp ±0.0011 μf μf ± 0.000069 μf D ±0.0011 ± 0.000033 1 μf 10 khz Cp ±0.0026 μf μf ± 0.00014 μf D ±0.0026 ± 0.000061 1 μf 100 khz Cp ±0.0207 μf μf ± 0.00016 μf D ±0.0207 ± 0.00029 Change 13 Change the Measurement Uncertainty value of 1 m Impedance Measurement Accuracy Test for 1 m Resistance Measurement Accuracy Test (Page 9-43) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 mohm 100 Hz R ±0.60 mohm mohm ± 0.030 mohm 100 mohm 1 khz R ±0.60 mohm mohm ± 0.031 mohm C Copyright 2007 Agilent Technologies

Change 14 Change the Measurement Uncertainty value of 1 m Impedance Measurement Accuracy Test for 1 m DC Resistance Measurement Accuracy Test (Opt. 001 Only) (Page 9-43) to the following information. Standard Test Limits Test Result 1 Uncertainty Measurement 100 mohm ±1.05 mohm mohm ± 0.030 mohm 100 kohm ±0.87 kohm kohm ± 0.014 kohm Change 14 Change the Measurement Uncertainty value of 2 m Impedance Measurement Accuracy Test for 2 m Capacitance Measurement Accuracy Test (Page 9-44) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 pf 1 khz Cp ±0.19 pf ± 0.011 pf D ±0.0019 ± 0.000073 100 pf 10 khz Cp ±0.51 pf ± 0.013 pf D ±0.0051 ± 0.00014 100 pf 20 khz 2 Cp ±1.10 pf ± 0.022 pf D ±0.0110 ± 0.000094 1 nf 100 Hz Cp ±0.002 nf ± 0.000090 nf D ±0.0020 ± 0.000075 1 μf 100 Hz Cp ±0.0018 μf ± 0.000077 μf D ±0.0018 ± 0.000047 1 μf 1 khz Cp ±0.0011 μf ± 0.000069 μf D ±0.0011 ± 0.000033 1 μf 10 khz Cp ±0.0026 μf ± 0.00014 μf D ±0.0026 ± 0.000062 Change 15 Change the Measurement Uncertainty value of 2 m Impedance Measurement Accuracy Test for 2 m Resistance Measurement Accuracy Test (Page 9-44) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 mohm 100 Hz R ±0.68 mohm mohm ± 0.030 mohm 100 mohm 1 khz R ±0.72 mohm mohm ± 0.034 mohm C Copyright 2007 Agilent Technologies

Change 16 Change the Measurement Uncertainty value of 2 m Impedance Measurement Accuracy Test for 2 m DC Resistance Measurement Accuracy Test (Opt. 001 Only) (Page 9-44) to the following information. Standard Test Limits Test Result 1 Uncertainty Measurement 100 mohm ±1.13 mohm mohm ± 0.030 mohm 100 kohm ±0.87 kohm kohm ± 0.014 kohm Change 17 Change the Measurement Uncertainty value of 4 m Impedance Measurement Accuracy Test for 4 m Capacitance Measurement Accuracy Test (Page 9-45) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 pf 1 khz Cp ±0.19 pf pf ± 0.0078 pf 1 khz D ±0.0019 ± 0.000065 1000 pf 100 Hz Cp ±0.002 nf pf ± 0.000089 nf 100 Hz D ±0.0020 ± 0.000062 1 μf 100 Hz Cp ±0.0018 μf μf ± 0.000077 μf 100 Hz D ±0.0018 ± 0.000047 1 μf 1 Hz Cp ±0.0011 μf μf ± 0.000071 μf 1 khz D ±0.0011 ± 0.000033 Change 18 Change the Measurement Uncertainty value of 4 m Impedance Measurement Accuracy Test for 4 m Resistance Measurement Accuracy Test (Page 9-45) to the following information. Standard Test Signal Frequency Parameter Measurement Measured Test Limits Test Result 1 Uncertainty 100 mohm 100 Hz R ±0.84 mohm mohm ± 0.030 mohm 100 mohm 1 khz R ±0.96 mohm mohm ± 0.030 mohm C Copyright 2007 Agilent Technologies

Change 19 Change the Measurement Uncertainty value of 4 m Impedance Measurement Accuracy Test for 4 m DC Resistance Measurement Accuracy Test (Opt. 001.Only) (Page 9-45) to the following information. Standard Test Limits Test Result 1 Uncertainty Measurement 100 mohm ±1.29 mohm mohm ± 0.030 mohm 100 kohm ±0.87 kohm kohm ± 0.013 kohm C Copyright 2007 Agilent Technologies

MANUAL SUPPLEMENT 3-2 3-2 Agilent 1 3-2 P/N 16000-99023 Print Date: October 2001 PRINTED IN JAPAN Copyright Agilent Technologies Japan, Ltd. 2001 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 JAPAN

Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A July 2007 Change 1 Add the following steps to the step 2 of DC Bias Level Accuracy Test (page 9-9). 2-a. Set the test signal frequency to 100 khz using Freq. 2-b. Set the test signal level to 50 mv using Level. Change 2 Change the figure 9-4 of DC Bias Level Accuracy Test Setup without the Interface Box (page 9-10) as follows. C Copyright 2007 Agilent Technologies

マニュアルチェンジ 変更 1 DC バイアス レベル確度試験の手順 2( ページ 9-9) に以下の手順を追加して下さい 2-a. Freq を押して測定信号周波数を 100 khz に設定します 2-b. Level を押して測定レベルを 50 mv に設定します 変更 2 DC バイアス レベル確度試験用セットアップの図 9-4( ページ 9-10) を以下に変更して下さい C Copyright 2007 Agilent Technologies

Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A June 2007 Change 1 Add the following note to the 3-c. Turning On the 4263B and Setting the Line Frequency (page 1-13). Note In case the setting of the ac line frequency is not match, there s any possibility the measurement error will rise. Make sure the ac line frequency has been set up correctly. Change 2 Add the following condition to the Measurement Accuracy (page 8-3). 5. The ac line frequency has been set up correctly. C Copyright 2007 Agilent Technologies

マニュアルチェンジ 変更 1 電源投入と電源周波数の設定の手順 3-c( ページ 1-11) に以下の注記を追加して下さい 注記 AC 電源周波数の設定値が一致していない場合 測定誤差が増大する可能性があります 必ず AC 電源周波数を正しく設定して下さい 変更 2 測定確度の条件 ( ページ 8-3) に以下の条件を追加して下さい 5. AC 電源周波数が正しく設定されている C Copyright 2007 Agilent Technologies

Safety Summary When you notice any of the unusual conditions listed below, immediately terminate operation and disconnect the power cable. Contact your local Agilent Technologies sales representative or authorized service company for repair of the instrument. If you continue to operate without repairing the instrument, there is a potential fire or shock hazard for the operator. Instrument operates abnormally. Instrument emits abnormal noise, smell, smoke or a spark-like light during the operation. Instrument generates high temperature or electrical shock during operation. Power cable, plug, or receptacle on instrument is damaged. Foreign substance or liquid has fallen into the instrument. 使用上の安全について 以下のような異常が見られたときは 直ちに使用を中止して電源プラグを抜き 最寄りの当社セールス オフィス オフィスまたは当社指定のサービス会社に連絡して修理を受けて下さい そのまま使用を続けると 火災や感電のおそれがあります 正常な動作をしない 動作中に異音 異臭 発煙あるいはスパークのような光が発生した 使用時に異常な高温や電気ショックを感じた 電源コード 電源プラグ 電源コネクタが損傷した 製品内に異物 液体などが入った

Caution Do not apply DC voltage or current to the UNKNOWN terminals. Do not apply External DC bias voltage more than +2.5V. Doing so will damage the 4263B. Before you measure a capacitor, be sure the capacitor is fully discharged. 注意 UNKNOWN 端子には DC 電圧 または電流を印加しないでください 外部 DC バイアス入力端子に +2.5V を越える DC バイアスを外部電源からかけないでください 故障の原因となります キャパシタを測定するときには 試料を十分に放電してから UNKNOWN 端子 ( あるいはフィクスチャ ) に接続してください 4263B