Contents Acknowledgements iii Introduction Preliminaries on Maass forms for

Similar documents

An application of the projections of C automorphic forms

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

PETERSSON AND KUZNETSOV TRACE FORMULAS

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

Basic Background on Mock Modular Forms and Weak Harmonic Maass Forms

Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;". D* 1 = Z)& ^. H N[Qt C =

Iterative methods for positive definite linear systems with a complex shift

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t

PRISON POLICY INITIATIVE ANNUAL REPORT

Periods and congruences of various lifts

Prime Numbers and Irrational Numbers

RESEARCH ANNOUNCEMENTS PROJECTIONS OF C AUTOMORPHIC FORMS BY JACOB STURM 1

LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips

MATH 797MF PROBLEM LIST

Branching Processes II: Convergence of critical branching to Feller s CSB

Riemann Mapping Theorem (4/10-4/15)

DETERMINATION OF GL(3) CUSP FORMS BY CENTRAL VALUES OF GL(3) GL(2) L-FUNCTIONS, LEVEL ASPECT

Horocycle Flow at Prime Times

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

Infinite Series. 1 Introduction. 2 General discussion on convergence

Math 715 Homework 1 Solutions

Hyperbolic volumes and zeta values An introduction

1 Assignment 1: Nonlinear dynamics (due September

Eisenstein series June 18, 2006

On the investigation of summable series *

A class of trees and its Wiener index.

MIS S BALLS, L.L.A.]

Converse theorems for modular L-functions

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

LHS Grads Are 89 in Number Hahn,

Complex Analysis, Stein and Shakarchi The Fourier Transform

Gauge-Higgs Unification and the LHC

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

I. An overview of the theory of Zeta functions and L-series. K. Consani Johns Hopkins University

The Langlands Program: Beyond Endoscopy

Appendix A. Touchpoint Counting Patterns

Meromorphic Continuation of Eisenstein Series. Gideon Providence


Lecture 1: Small Prime Gaps: From the Riemann Zeta-Function and Pair Correlation to the Circle Method. Daniel Goldston

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

Poincaré Models of Hyperbolic Geometry

Extension of the Barut-Girardello Coherent State and Path Integral

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

M e t ir c S p a c es

Real Analysis Problems

GORAN DJANKOVIĆ AND RIZWANUR KHAN

Math Homework 2

Explicit Maass forms.

Regularity of flat level sets in phase transitions

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Awards Screening Test. February 25, Time Allowed: 90 Minutes Maximum Marks: 40

RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s) AND L(s, χ)

Math 259: Introduction to Analytic Number Theory More about the Gamma function

PROBLEMS ON LINEAR ALGEBRA

Resonance sums for Rankin-Selberg products

Starting from Heat Equation

Power Series Solutions to the Legendre Equation

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

FOURIER TRANSFORMS OF SURFACE MEASURE ON THE SPHERE MATH 565, FALL 2017

Complex Representation in Two-Dimensional Theory of Elasticity

Alan Turing and the Riemann hypothesis. Andrew Booker

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand

The Path Integral: Basics and Tricks (largely from Zee)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

A L A BA M A L A W R E V IE W

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

Problems for MATH-6300 Complex Analysis

Complex Analysis Qual Sheet

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Arithmetic properties of harmonic weak Maass forms for some small half integral weights

Shimura correspondence of Maass wave forms of half integral weight

A Bombieri-Vinogradov theorem for all number fields

Lecture Discrete dynamic systems

Errata for Robot Vision

Chemistry 431 Practice Final Exam Fall Hours

arxiv: v2 [math.nt] 7 Feb 2009

Errata for Robot Vision

INTRODUCTION TO REAL ANALYTIC GEOMETRY

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

MS 3011 Exercises. December 11, 2013

Lectures on Classical Analytic Theory. of L-functions. Amir Akbary

Distribution of Fourier coefficients of primitive forms

A Master Theorem for Discrete Divide and Conquer Recurrences. Dedicated to PHILIPPE FLAJOLET

Real Analysis Chapter 8 Solutions Jonathan Conder. = lim n. = lim. f(z) dz dy. m(b r (y)) B r(y) f(z + x y) dz. B r(y) τ y x f(z) f(z) dz

MATH 220: MIDTERM OCTOBER 29, 2015

X i, AX i X i. (A λ) k x = 0.

Bernoulli polynomials

Metric Invariance and Haar Measure

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

Minimax Redundancy for Large Alphabets by Analytic Methods

book 2005/1/23 20:41 page 132 #146

Dimension formulas for vector-valued Hilbert modular forms

Hecke s Converse Theorem

Estimates for sums over primes

III.2. Analytic Functions

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Transcription:

L σ = 1 L L Γ 0 (q) q

Γ 0 (q) GL(2) L

a n α S(α) = a n e(nα), e(θ) = e 2πiθ S(α) α R/Z α 1,..., α R δ R/Z α r α s δ r s R S(α r ) 2 r=1 ( N + 1 ) a n 2. δ

1 ψ(x; q, a) = n x n a q Λ(n), Λ(n) Λ(n) = { p n = p k, p k 1, 0. A B Q x1/2 ( x) B (a,q)=1 y x q Q ψ(y; q, a) y ϕ(q) x( x) A. L (a,q)=1 y x ψ(y; q, a) y ϕ(q) x1/2 2 x,

Q x 1/2 ( x) B Q = x ϑ ϵ ϑ > 1/2 ϵ > 0 n (p n+1 p n ) <, p n n ϑ = 1 n (p n+1 p n ) 12. ϑ = 1/2 q n (p n+1 p n ) < 7 10 7. q Q χ q a n χ(n) 2 (N + Q 2 ) a n 2.

N 2 N 2 N χ(n) χ µ(n)χ(n) µ L Q M = q Q q D = d(q) d(q) q N(α, T ; χ) q Q s = σ + it L(s, χ) α σ 1, t < T τ(χ) a q q Q 1 ϕ(q) χ(a)e(a/q) χ q τ(χ) 2 N(α, T ; χ) DT (M 2 + MT ) 4(1 α) (3 2α) 10 (M + T ), Q 1 2 α 1 T 2

T c q Q χ q N(α, T ; χ) (Q 7 T 4 ) 1 α α c (Q + T ). N(α, T ; χ) s = σ + it L(s, χ) α σ 1, t < T c q T χ q N(α, T ; χ) T c(1 α). X < X 1 δ δ L L GL(1, A Q ) L GL(n)

L L L L GL(2) GL(2) GL(2) L T 2 T 0 = T 2/3 ϵ > 0 T +T0 T ( ) 1 4 ζ 2 + it dt T 0 T ϵ.

GL(2) L L q 1 {f j } j 1 Γ 0 (q) f j = ( 1 + t 4 j 2 )f j f j T n f j (z) = a j (n) yk itj (2π n y)e(nx) n 0 N j (α, T ) s = σ + it α σ 1, t T L(s, f j ) c ϵ > 0 α t j T a j (1) 2 πt j N j (α, T ) T c(1 α)+ϵ. q 1 + 4 t2 L 2 (Γ 0 (q)\h) q N(α, T )

T c(1 α) c T 2(1 α)/α ( T ) C T T L GL(n) M(Q, α) Q Q p ( Q) α ( p) ϵ > 0 M(Q, α) Q 8 α +ϵ. GL(3) GL(3) SL(3, Z) N 3 2 +ϵ N 1+ϵ GL(2)

Γ 0 (q) SL(2, Z)

Γ 0 (q) GL(2) GL(2) h {x + iy x R, y > 0} SL(2, R) h ( ) a b z = az + b c d cz + d. h = h Q

SL(2, Z) SL(2, R) h ( ) a b = c d { a c c 0, c = 0, ( ) a b m c d n = { cm + dn = 0, am+bn cm+dn. q Γ 0 (q) {( ) a b Γ 0 (q) = c d } SL(2, Z) c 0 q. Γ 0 (q) Q Γ 0 (q) SL(2, Z) f : h C a Q f a σ a SL(2, R) σ a = a f(σ a (x + iy)) = O(y N ) N y k 0 k Γ 0 (q) f : h C ( ) a b γ = Γ c d 0 (q) f(γz) = (cz + d) k f(z) z h f Γ 0 (q)

f g k Γ 0 (q) f g f, g k = Γ 0 (q)\h f(z)g(z)y k dxdy y 2, Γ 0 (q) h k f, f < L 2 (Γ 0 (q)\h, k) n f Γ 0 (q) T n T n f(z) = 1 n ad=n (a,n)=1 d ( ) az + b f. d b=1 T 1 f(z) = f ( ) 1. Nz

T m T n = d (m,n) (d,n)=1 T mn d 2, T n (n, N) = 1 T n L 2 (Γ 0 (q)\h, k) T n (n, N) = 1 T n ( ) = y 2 2 x + 2. 2 y 2 SL(2, R) Γ 0 (q) Γ 0 (q) f : h C f 0 Γ 0 (q) f = ( 1 4 + t2 )f 1 4 +t2 t

f Γ 0 (q)\h f = λf λ 1/4 λ 975 4096 t 7 64 0.238... { ( ) } 1 b Γ = ± b Z Γ 0 1 0 (q) a σ a SL(2, R) σ a = a σa 1 Γ a σ a = Γ Γ a a Γ 0 (q) σ a g a Γ a Γ 0 (q) ( ) 1 1 σa 1 g a σ a = f Γ 0 1 0 (q) f(σ a (z + 1)) = f ( ( ) ) 1 1 σ a z = f(g 0 1 a σ a z) = f(σ a z), z f(σ a z) x f(σ a z) = n Z c an (y)e(nx), e(θ) = e 2πiθ Γ 0 (q) f Γ 0 (q) f, f < c a0 (y) a f = ( 1 4 + t2 )f

c an (y) n 0 y 2 c an(y) = ( 4π 2 n 2 y 2 1 t 2) c an (y). c an (y) = a(n) yk it (2π n y), K K s (y) = 1 2 0 e y(t+t 1 )/2 t s dt t, f f(z) = n 0 a f (n) yk it (2π n y)e(nx). a f (n) L f SL(2, Z) z f(nz) Γ 0 (q) L

f f(z) = g(dz) g Γ 0 (M) M N d N M T n n (n, N) = 1 T n L L f(z) = n Z a f (n) yk it (2π n y)e(nx) λ f (n) = a f(n) a f (1). λ f (1) = 1 λ f (n) T n f L f R(s) > 1 L(s, f) = λ f (n)n s. n=1 T m T n = T mn d 2 d (m,n) (d,n)=1

λ f (mn) = λ f (m)λ f (n) (m, n) = 1 L L(s, f) = p q p q ( 1 λf (p)p s) 1 ( 1 α1,f (p)p s) 1 ( 1 α2,f (p)p s) 1, ( 1 λf (p)p s) 1 ( 1 λf (p)p s + p 2s) 1 = p q p q α i,f (p) α 1,f (p) + α 2,f (p) = λ f (p) α 1,f (p)α 2,f (p) = 1 α i,f (p) λ f (n) α i,f (p) = 1 α i,f (p) p 7/64. L L ( ) s + ϵ + it Λ(s, f) = q s/2 π s Γ Γ 2 ( s + ϵ + it 2 ) L(s, f),

1 4 + t2 f ϵ = { 0 T 1 f = f, 1 T 1 f = f. Λ(s, f) = ( 1) ϵ Λ(1 s, f). L(σ + it, f) 0 < σ < 1 σ = 1/2 {u j } j 1 Γ 0 (q) {u j } u j T n (n, N) = 1 {u j } u j T n n λ j u j = λ j u j λ 1 λ 2 u 0 u 0

L 2 (Γ 0 (q)\h) a Γ 0 (q) R(s) > 1 z h E a (z, s) = (σ a γz) s, γ Γ a\γ 0 (q) Γ a a σ a SL(2, R) σ a = a σa 1 Γ a σ a = Γ E a (z, s) b E α (σ b z, s) = δ ab y s + π 1/2 Γ(s 1) 2 φ ab0 (s)y 1 s + 2y1/2 π s Γ(s) Γ(s) n 0 n s 1 2 φabn (s)k s 1 (2π n y)e(nx), 2 φ abn (s) = c>0 c 2s d e ( ) nd, c d ( c) ( ) a b c d σa 1 Γ 0 (q)σ b. E a (z, s) s Ea(z, s) a s 1 s

E a (z, 1 2 + ir) u 0 L 2 (Γ 0 (q)\h) f L 2 (Γ 0 (q)\h) {u j } f(z) = j 0 f, u j u j (z) + 1 4π a f, E a (, 12 + ir) E a (z, 1 2 + ir)dr, a Γ 0 (q) f, g L 2 (Γ 0 (q)\h) {u j } f, g = j 0 f, u j g, u j + 1 4π a f, E a (, 12 + ir) g, E a (, 12 + ir) dr.

S(m, n; c) = ( ) md + nd e, c d c (c, d) = 1 d dd 1 c

(c 1, c 2 ) = 1 c 1 c 2 c 1 c 1 1 c 2 c 2 c 2 1 c 1 S(m, n; c 1 c 2 ) = S(c 2 m, c 2 n; c 1 )S(c 1 m, c 1 n; c 2 ). ( c2 md 1 + c 2 nd 1 e c 1 d 1 c 1 e d 1 c 1 d 2 c 2 = ) e d 2 c 2 ( ) c1 md 2 + c 1 nd 2 c 2 ( c2 c 2 md 1 + c 2 c 2 nd 1 + c 1 c 1 md 2 + c 1 c 1 nd 2 c 1 c 2 ). md 1 +nd 1 c 1 md 2 +nd 2 c 2 d c 1 c 2 (d, c 1 c 2 ) = 1 d 1 d 2 d c 1 c 2 md + nd c 1 c 2 d c 1 c 2 (d, c 1 c 2 ) = 1 (d 1, d 2 ) S(m, n; c 1 c 2 ) c

S(m, n; c) τ(c)(m, n, c) 1/2 c 1/2, τ(c) c (m, n, c) m n c T m T n = d (m,n) T mn d 2 SL(2, Z)\h S(m, n; c) = d (m,n,c) d S ( 1, mn d, c ). 2 d Z m,n (s) = S(m, n; c)c 2s. c=1 σ > 1/2 Z m,n (s) R(s) > σ

σ(1 σ) R(s) > 3/4 3/16 α 1,..., α R α r α s δ r s S(α) = a n e(nα). R r=1 S(α r ) 2 (N + 1 δ ) a n 2. α r r/c r c δ = 1/c r c ( a n e n r ) 2 c (N + c) a n 2.

B(θ, c, M, N) = m=m+1 ( ) 2 mn b m b n S(m, n, c)e θ, c N M θ > 0 c > M 1 ϵ B(θ, c, M, N) M ϵ (c + N) b n 2. α = N M 1 1 mn M η( mn ) M η(x) = 1 + α m, n { 1 1 x 1 + α, 0 x 1 α 2 x 1 + 2α. η(x)e(2θc 1 Mx) = 1 2πi 1+i 1 i R(s)x s ds, R(s) = 0 η(x)e(2θc 1 Mx)x s 1 dx. s = 1 + it t t 2 t > 16πθc 1 M

1+i 1 i ( ) ( ) mn 2 mn B(θ, c, M, N) = b m b n S(m, n, c)η e M c m=m+1 = 1 1+i ( ) s mn b m b n S(m, n, c)r(s) ds 2πi 1 i M m=m+1 ( ) md b m m s/2 ( ) nd e b n n s/2 e c c M s R(s)ds. d c m=m+1 d c m=m+1 ( ) md b m m s/2 e c b n n s/2 e ( ) nd c M 1 (N + c) b n 2. B(θ, c, M, N) 1+i 1 i R(s)ds (N + c) b n 2, R c > M 1 ϵ c B(θ, c, M, N) N M c M 1 ϵ 0 < θ < 2 B(θ, c, M, N) θ 1 1 1 1 2 c 2 N 4 M 4 +ϵ b n 2.

B(θ, c, M, N) = d c d X ( θ, c d, M d, N ), d x n = b dn, q = c/d, K = M/d, L = N/d X (θ, q, K, L) = K<m,n K+L ( ) 2 mn x m x n S(1, mn; q)e. q X(θ, q, K, L) 2 = ( ( K<n K+L K<n K+L ) ( n ) x n 2 η K n Z x n 2 ) K<m 1,m 2 K+L K<m K+L x m1 x m2 ( ) 2 2 mn x m S(1, mn; q)e q ( ) h1 h 2 e f(n), q h 1,h 2 q n Z η (h 1 h 2, q) = 1 h i ( q) h i h i 1 q ( n ) ( h1 m 1 h 2 m 2 f(n) = η e n + 2( m 1 ) m 2 )θ n. K q q A B f(n) = η ( n K ) e (An + B n) n Z f(n) = u Z f(u),

f(u) = ( ) t ( η e (A u)t + B ) t dt. K u A A u 1 q t η ( t K ) 0 t > K/2 B 2 < θ K+L K/2 K t q 1 q p ( ) p (( 1 ( ) ) ) t 1 1 f(u) = η 2πi K A u + B 2 A u + B t 2 t ( e (A u)t + B ) t dt, f(u) K( A u K) p. u A f(u) K ( ) p K = M q d ( ) p M M c d M ϵp K 1 p u = A A h 1 m 1 h 2 m 2 q h 1,h 2 q ( ) h1 h 2 e (m 1 m 2, q), q h 1 m 1 h 2 m 2 q m 1 = m 2 f(a) L f(a) = ( ) t ( η e B ) t dt K L B q KL θ m 1 m 2.

K<m 1,m 2 K+L x m1 x m2 q(q + L) h 1,h 2 q θ 1 qk ϵ KL K<m K+L ( ) h1 h 2 e f(n) q K<m K+L n Z x m 2 + θ 1 q KL x m 2. K<m 1,m 2 K+L m 1 m 2 (m 1 m 2, q) x m1 x m2 m 1 m 2 ( ) 2 X(θ, q, K, L) 2 θ 1 qk ϵ KL x n 2. K<m K+L d c Γ 0 (q) m 0 P m (z, s) = (γz) s e(mγz). γ Γ \Γ 0 (q) m = 0 R(s) > 1 P m (γz, s) = P m (z, s) P m (, s) L 2 (Γ 0 (q)\h)

P m (, s 1 ), P n (, s 2 ) P m (z, s) P m (z, s) R(s) > 1 m 0 P m (z, s) = n Z B n (m, y, s)e(nx), B n (m, y, s) = δ mn y s e 2πny + y s c>0 c 0 q c 2s S(m, n; c) ( (x 2 + y 2 ) s e nx ) m dx. c 2 (x + iy) Z m,n (s) = c=1 S(m, n; c)c 2s R(s) > 3/4 P m (z, s) R(s) > 3/4 m, n 1 P m (, s 1 ), P n (, s 2 ) = 0 B n (m, y, s 1 )y s 2 2 e 2πny dy.

D Γ 0 (q) h P m (, s 1 ), P n (, s 2 = = D P m (z, s 1 ) γ Γ \Γ 0 (q) γd = E γ Γ \Γ 0 (q) (γz) s 2 e(nz) dxdy y 2 P m (γ 1 z, s 1 )y s 2 e(nz) dxdy y 2 P m (z, s 1 )e( nx)y s 2 2 e 2πny dxdy, E Γ 0 x < 1, y > 0 P m (z, s 1 ) P m (, s 1 ), P n (, s 2 ) = 1 0 0 k Z B k (m, y, s 1 )e(kx)e( nx)y s2 2 e 2πmy dxdy. x k = n B k (m, y, s 1 ) P m (, s 1 ), P n (, s 2 ) R(s 1 ) > 3/4 R(s 2 ) > 3/4 s 1 = 1+it s 2 = 1 it m, n 1 P m (, 1 + it), P n (, 1 + it) = δ ( mn n ) it 4πn 2i S(m, n; c) i m c 2 c>0 i c 0 q ( ) 4π mn dv K 2it v c v. P m (, s 1 ), P n (, s 2 )

P m (, s) L 2 (Γ 0 (q)\h) P m m f(z) = n 0 a f (n) yk it (2π n y)e(nx) Γ 0 (q) 1 4 + t2 m 1 R(s) > 1 P m (, s), f = (4πm) 1 2 s π 1 2 af (m) Γ(s 1 + it)γ(s 1 it) 2 2. Γ(s) P m (, s), f = = D γ Γ \Γ 0 (q) γ Γ \Γ 0 (q) γd = = E 1 0 = a f (m) (γz) s e(mγz)f(z) dxdy y 2 (z) s e(mz)f(γ 1 z) dxdy y 2 f(z)e(mx)y s 2 e 2πmy dxdy a f (n)k it (2π n y)e( nx)e(mx)y s 3 2 e 2πmy dxdy 0 n 0 0 K it (2πmy)y s 3 2 e 2πmy dy. 0 K it (y)y s 3 2 e y dy = π 1 2 2 1 2 s Γ(s 1 2 + it)γ(s 1 2 it) Γ(s)

m 1 R(s) > 1 a Γ 0 (q) P m (, s), E a (, 12 + ir ) = 2 2 2s m 1 2 s ir π 3 2 s ir φ a m ( 1 2 + ir ) Γ(s 1 2 + ir)γ(s 1 2 ir) Γ(s)Γ( 1 2 ir). u j (z) = n 0 a j(n) yk it (2π n y)e(nx) u j 1 4 + t2 j m, n 1 ( πm 1 2 s 1 n 1 2 s 2 P m (, s 1 ), P n (, s 2 ) = (4π) s 1+s 2 a 1 j (m)a j (n)λ(s 1, s 2 ; t j ) Γ(s 1 )Γ(s 2 ) j 1 + ( n ) ( ) ( ) ) ir 1 1 φa m a m 2 + ir φ a n 2 + ir Λ(s1, s 2 ; r) Γ( 1 dr, + ir) 2 2 Λ(s 1, s 2 ; r) = Γ (s 1 12 ) + ir Γ (s 1 12 ) ir Γ (s 2 12 ) + ir Γ (s 2 12 ) ir. s 1 = 1 + it s 2 = 1 it

( P m (, 1 + it), P n (, 1 + it) = 1 ( n ) it 4 πt π mn m t j 1 + a ( n m a j (m)a j (n) π(t j t) π(t j + t) ) ir φ a m ( 1 2 + ir) φ a n ( 1 2 + ir) π(r t) π(r + t) πrdr ). ( 1 4 n mn m ) it πt t {u j } Γ 0 (q) 1 4 +t2 j u j (z) = n 0 a j(n) yk it (2π n y)e(nx) m, n 1 t R 2it πt c>0 c 0 q 4π mn i S(m, n; c) c 2 = π a j (m)a j (n) π(t j 1 j t) π(t j + t) + a i ( ) 4π mn dv K 2it v c ( n m v + δ t mn π πt ) ir φ a m ( 1 2 + ir) φ a n ( 1 2 + ir) π(r t) π(r + t) πrdr. a Γ 0 (q) {u j }

{b n } M N 1 πt j t j K b n a j (n) 2 (K 2 + M ϵ N) b n 2. t πte (t/k)2 b m b n t j 1 t j + 1 (tj/k)2 e πt j K 3 + a b n 2 + 1 c c>0 c 0 q b n a j (n) 2 ( r + 1)e (r/k)2 m=m+1 b n n ir φ a n ( 1 2 + ir ) 2 dr 4π mn b m b n S(m, n; c)φ c ( 4π mn c ), Φ (x) = t 2 e (t/k)2 i i K 2it (xv) dv v. Φ Φ (x) = πik 3 e (ξk)2 ξ ξ (x ξ)dξ 1 0 xφ (x) = ( πik 3 e (ξk)2 1 ξ ξ 2ξ 2 K 2) dξ (x ξ) ξ xk 2. 0 c > K 2 M c K 2 M ϕ(c, K, M, N) = m=m+1 4π mn b m b n S(m, n; c)φ c ( 4π mn c ).

c > M 2 Φ(c, K, M, N) c 1 2 +ϵ M 2 b n 2. M 1 ϵ < c M 2 Φ(c, K, M, N) M ϵ N b n 2. K 2 M < c M 1 ϵ ξ 1 ξ 1 Φ(c, K, M, N) M ϵ (Ke K2 c 1 MN + K 2 c 1 5 1 2 M 4 N 4 ) b n 2. c K 2 M Φ(c, K, M, N) M ϵ (Ke K2 c 1 MN + c 1 1 1 2 M 4 N 4 ) b n 2. c>0 c 0 q 1 c ϕ(c, K, M, N) KN(M ϵ + MKe K2 ) b n 2,

t j + 1 πt j t j K b n a j (n) 2 K(K 2 + M ϵ N + MNKe K2 ) b n 2. K K K + M ϵ t j + 1 πt j t j K b n a j (n) 2 K(K 2 + M ϵ N) b n 2, 1 πt j t j K b n a j (n) 2 (K 2 + M ϵ N) b n 2.

L L L L L L GL(2) L

L(s, f) L Γ 0 (q) w = 1 + iv L L (s, f) = ρ 1 + O( q( v + 2)), s ρ ρ L(s, f) ρ w 1 L L(s, f) Q(f, v, r) L(s, f) s (1 + iv) r Q(f, v, r) r q( v + 2) + 1. m 0 {b j } z 1 z 2 z n. ν m + 1 ν m + n ( ) n b 1 z1 ν + b 2 z2 ν + + b n zn ν z 1 ν n 24e 2 (m + 2n) b 1 + + b j. 1 j n

L(s, f) w = 1 + iv v T r 0, A, B, C L(s, f) s w r 1 T r r 0 x T A x B x x<p y a f (p) p a f (1)p w dy y x Cr 2 x, p s w 1/2 L (s, f) = L ρ w 1 1 + O( T ). s ρ s w 1/4 d k 1 L (s, f) = k! ds k ( 1)k L ρ w 1 1 (s ρ) k+1 + O(4k T ). s = w+r r < 1/4 λ r λ 1/4 ρ 2 j λ < ρ w 2 j+1 λ 2 j λ T ρ 1 (s ρ) k+1 (2 j λ) (k+1) ρ w > λ (2 j λ) k T λ k T. j=0 λ 1/4 ρ w > λ d k 1 L (s, f) = k! ds k ( 1)k L ρ w λ 1 (s ρ) k+1 + O(λ k T ).

A 1 λ T A 1 s w r ρ s ρ 2r z j 1 s ρ b j = 1 z 1 1 2r m A 1λ T k m k 2m 1 (s ρ) k+1 (Dr) (k+1) ρ w λ D λ = A 2 Dr r 0 λ 1/4 A 2 O(λ k T ) r 1 T 1 k! d k L ds k L (s, f) (Dr) (k+1), m k 2m m A 1 λ T = Er T E = A 1 A 2 D L L (s, f) = Λ f (n)n s, n=1 Λ f (p j ) = { λ f (p) j p p q, (α f,1 (p) j + α f,2 (p) j ) p p q Λ f (n) = 0 n Λ f (p) = λ f (p) p Λ(f)(p j ) p 7 64 j+ϵ n=1 Λ f (n) n p k(r n) D k w r,

p k (u) = e u u k. k! B 1 B 2 p k p k (u) (2D) k u B 1 k p k (u) (2D) k e u/2 u B 1 k A = B 1 E x T A m = B 1 1 r x m Er T k m k 2m B = 2B 2 /B 1 Λ f (n) n p k(r n) (2D) k Λ f (n) w n n x n x Λ f (n) n p k(r n) (2D) k Λ f (n) w n 1+ r n>x B n>x B 2 (2D) k k r, (2D) k. r L(s, f) n x Λ f(n) x n x n > x B Λ f (n) n p k(r n) D k w r. x<n x B Λ(f)(p j ) p 7 64 j+ϵ p j j 2 S(y) = x<p y Λ f (p) p w = x<p y λ f (p) p p w = x<p y a f (p) p a f (1)p w. x B x p k (r y)ds(y) = p k (r x B )S(x B ) x B x S(y)p k(r y)r dy y.

(2D) k k p r k 1 x B x S(y) dy y D k r 2 x Cr 2 x. S(t) = n=1 a n n it T T S(t) 2 dt T 2 0 y<n ye 1/T a n 2 dy y. {u j } Γ 0 (q) u j 1 + 4 t2 j u j (z) = n 0 a j(n) yk it (2π n y)e(nx) {b n } b n a j (n) n=1 1 πt j t j K T T b n a j (n)n 2dt it n=1 (K 2 T + n 1+ϵ ) b n 2. n=1

T 2 1 πt j 0 t j K ye 1/T b n a j (n) y 2 dy y. 1 πt j t j K ye 1/T 2 b n a j (n) ( K 2 + y ϵ (e 1/T 1) ) ye1/t b n 2. y y b n 2 T 2 K 2 n ne 1/T dy y + T ( 2 e 1/T 1 ) n ne 1/T y ϵ dy K 2 T + T 2 ( e 1/T 1 ) ( 1 e 1/T ) 1+ϵ n 1+ϵ K 2 T + n 1+ϵ T 1 2(1 α) r T 0 1 α 1 T α r = 2(1 α) x = T (A,3) L(s, f j )

s w r x B x Cr 2 x x x p y a j (p) p a j (1)p w dy y 1, p c = 4C (A, 3) T c(1 α) 3 T x B x x p y a j (p) p a j (1)p w 2 dy y 1. s w 2(1 α) ((1 α) T ) 1 α w 1 α w = 1 + iv N j (α, T ) T c(1 α) 2 T x B T x T x p y a j (p) p a j (1)p 1+iv 2 dv dy y. {f j } {u j } a j (1) 2 N j (α, T ) 1 x B T T c(1 α) 2 T πt j πt j x T t j T t j T x p y a j (p) p p 1+iv 2 dv dy y, {f j } {u j } b p = p p b n = 0 t j T a j (1) 2 x B N j (α, T ) T c(1 α) 2 T πt j x x p y ( ) 2 p (T 3 + p 1+ϵ dy ) p y.

x T 3 T x p x B p ϵ 2 p T ϵ,

Γ 0 (m) GL(3) σ = 1 L GL(n, R) L

GL(3) L L L GL 4 GL 2 ax 2 + by 2 + cz 2 + dt 2 L

L L L L GL 3