Evidence for cyclic-di-gmp-mediated signaling pathway in Bacillus subtilis by Chen Y. et al.

Similar documents
Supporting Information

Salt-sensitivity of SigH and Spo0A prevents Bacillus subtilis sporulation at high osmolarity avoiding death during cellular differentiation

Phosphorylation of Spo0A by the Histidine Kinase KinD Requires the Lipoprotein Med in Bacillus subtilis

Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A

kina mrna is missing a stop codon in the undomesticated Bacillus subtilis strain ATCC 6051

Using Mini-Tn10 Transposon System to Research the Genes Involved in Biofilm Formation in Bacillus

A Widely Conserved Gene Cluster Required for Lactate Utilization in Bacillus subtilis and Its Involvement in Biofilm Formation

The Major Role of Spo0A in Genetic Competence Is To Downregulate abrb, an Essential Competence Gene

MstX and a Putative Potassium Channel Facilitate Biofilm Formation in Bacillus subtilis

YycH and YycI Interact To Regulate the Essential YycFG Two-Component System in Bacillus subtilis

The Threshold Level of the Sensor Histidine Kinase KinA Governs Entry into Sporulation in Bacillus subtilis

Cannibalism by Sporulating Bacteria

JOHN R. LEDEAUX AND ALAN D. GROSSMAN* Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Supporting Information

Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis

In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis

A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis

Supplemental Figure 1.

Control of cell fate by the formation of an architecturally complex bacterial community

Replication Initiation Proteins Regulate a Developmental Checkpoint in Bacillus subtilis

Strain or plasmid Relevant characteristics Reference

SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis

Supporting online material

University of Dundee. Published in: Microbiology-SGM. DOI: /mic Publication date: 2014

Mini-Tn7 Derivative Construction and Characterization. Mini-Tn7 derivatives for

Characterization of sporulation histidine kinases of Paenibacillus polymyxa

Supplementary Materials for

Supporting Information

Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics

Supplementary Figure 1 Mycobacterium tuberculosis WhiB1 expressed in Mycobacterium smegmatis possesses an O 2 -stable [4Fe-4S] cluster.

Helical Macrofiber Formation in Bacillus subtilis: Inhibition by Penicillin G

Role of Leucine Zipper Motifs in Association of the Escherichia coli Cell Division Proteins FtsL and FtsB

Analyses of mrp Genes during Myxococcus xanthus Development

Microbes of many kinds enter complex pathways of development

The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division

SUPPLEMENTARY INFORMATION

Optimization of the heme biosynthesis pathway for the production of. 5-aminolevulinic acid in Escherichia coli

ydci GTC TGT TTG AAC GCG GGC GAC TGG GCG CGC AAT TAA CGG TGT GTA GGC TGG AGC TGC TTC

CheX in the Three-Phosphatase System of Bacterial Chemotaxis

Modulation of the ComA-Dependent Quorum Response in Bacillus subtilis by Multiple Rap Proteins and Phr Peptides

Role of GerD in Germination of Bacillus subtilis Spores

Regulation of Synthesis of the Bacillus subtilis Transition-Phase, Spore-Associated Antibacterial Protein TasA

2. Yeast two-hybrid system

CodY Is Required for Nutritional Repression of Bacillus subtilis Genetic Competence

Supporting Information

Role of CodY in Regulation of the Bacillus subtilis hut Operon

cote cote-yfp spc This work cote cote-yfp spc This work cote cote-yfp spc This work cote cote-yfp spc This work cote cote-yfp spc This work

SUPPLEMENTARY DATA - 1 -

Received 12 June 1995/Accepted 10 August 1995

A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions

Roles of hilc and hild in Regulation of hila Expression in Salmonella enterica Serovar Typhimurium

Bacterial strains, plasmids, and growth conditions. Bacterial strains and

Autoregulation of swraa and Motility in Bacillus subtilis

Cyclic di-amp homeostasis in Bacillus subtilis: both lack and high-level accumulation of the nucleotide are detrimental for cell growth

Processing of a Membrane Protein Required for Cell-to-Cell Signaling during Endospore Formation in Bacillus subtilis

Honors Thesis: Characterization of the Che7 System of Myxococcus xanthus through a Yeast Two-Hybrid Assay

Noise in a phosphorelay drives stochastic entry into sporulation in Bacillus subtilis

Comparison of the expression patterns of several sox genes between Oryzias latipes and Danio rerio

Abh and AbrB Control of Bacillus subtilis Antimicrobial Gene Expression

Multiple Interactions between the Transmembrane Division Proteins of Bacillus subtilis and the Role of FtsL Instability in Divisome Assembly

Sporulation Phenotype of a Bacillus subtilis Mutant Expressing an Unprocessable but Active E Transcription Factor

SUPPLEMENTARY INFORMATION

Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization

Effects on Bacillus subtilis of a Conditional Lethal Mutation in

Supplementary Figure 1 Biochemistry of gene duplication

Citation for published version (APA): Krom, B. P. (2002). Citrate transporters of Bacillus subtilis Groningen: s.n.

Mutation in yaat Leads to Significant Inhibition of Phosphorelay during Sporulation in Bacillus subtilis

DivIVA homologues constitute a group of highly conserved

Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on Spo0A activation during development in Bacillus subtilis

Assembly Dynamics of FtsZ Rings in Bacillus subtilis and Escherichia coli and Effects of FtsZ-Regulating Proteins

Integration and amplification of the Bacillus sp cellulase gene in the Bacillus subtilis 168 chromosome

Supporting information

Supplemental Data. Architecture-Dependent Noise. Discriminates Functionally Analogous. Differentiation Circuits SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Communication and Stochastic Processes in Some Bacterial Populations: Significance for Membrane Computing

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

Intercellular Nanotubes Mediate Bacterial Communication

BMC Microbiology. Open Access. Abstract

The initiation of sporulation in the Gram-positive organism

James B. Munro, Roger B. Altman, Nathan O Connor, and Scott C. Blanchard

DegU-P Represses Expression of the Motility fla-che Operon in Bacillus subtilis

Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comk

University of Groningen

DegU-P Represses Expression of the

A CsgD-Independent Pathway for Cellulose Production and Biofilm Formation in Escherichia coli

Development of inducer free expression plasmids based on IPTG inducible promoters for Bacillus subtilis

PETER J. LEWIS, LING JUAN WU, AND JEFFERY ERRINGTON* Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom

CsoR regulates the copper efflux operon copza in Bacillus subtilis

Stochastic simulations

VITTORIO L. KATIS AND R. GERRY WAKE* Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia

Identification of a New Gene Essential for Germination of Bacillus subtilis Spores with Ca 2 -Dipicolinate

FEMS Microbiology Letters 173 (1999) 217^222

The Bacillus subtilis SinR and RapA Developmental Regulators Are Responsible for Inhibition of Spore Development by Alcohol

Coordinated c-di-gmp repression of Salmonella. motility through YcgR and cellulose

Supporting Online Material for

Extracellular Proteolytic Activity Plays a Central Role in Swarming Motility in Bacillus subtilis

Structural insights into bacterial flagellar hooks similarities and specificities

Natural Genetic Competence in Bacillus subtilis Natto OK2

Fitness constraints on horizontal gene transfer

YodL and YisK possess shape-modifying activities that are suppressed by mutations in Bacillus subtilis mreb and mbl

Transcription:

Supplemental materials for Evidence for cyclic-di-gmp-mediated signaling pathway in Bacillus subtilis by Chen Y. et al. 1. Table S1. Strains used in this study 2. Table S2. Plasmids used in this study 3. Table S1. Primers used in this study 4. Supplemental methods 5. Supplemental references

Table S1. Strains used in this study. strain genotype reference E. coli XL1 Blue an E. coli strain used for molecular cloning Invitrogen BTH101 an E. coli host strain for bacterial two hybrid assay (6) RL219 RL1927 RL1936 DH5α derivative containing the plasmid pdg268, Amp R, Cm R DH5α derivative containing the plasmid pdg1662, Amp R, Spc R DH5α derivative containing the plasmid pdg780, Amp R, Kan R (1) (5) Losick lab collection RL3002 RL3544 DH5α derivative containing the plasmid pdr111, Amp R, Spc R DH5α derivative containing the plasmid pah54, Amp R, Spc R (7) Losick lab collection RL3545 DH5α derivative containing the plasmid pah52, Amp R, Mls R Losick lab collection RL4505 DH5α derivative containing the plasmid pac225, Amp R, Cm R Losick lab collection B. subtilis PY79 laboratory strain used as a host for transformation 3610 undomesticated wild strain capable of forming robust biofilms (2) RL4620 spo0a in 3610, Kan R Losick lab collection RL4573 kina kinb in 3610, Mls R, Kan R (8) RL5273 kinc kind in 3610, Mls R, Tet R (8) YC110 amye::p epsa -lacz in 3610, Cm R (3) YC121 amye::p tapa -lacz in 3610, Cm R (4) CY3 ypfa in 3610, Kan R this study CY5 yhck in 3610, Mls R this study CY7 ytrp in 3610, Spec R this study CY8 yybt in 3610, Kan R this study CY9 yuxh in 3610, Mls R this study CY10 ykow in 3610, Mls R this study CY11 ykui in 3610, Cm R this study CY24 yybt yhck ytrp in 3610, Kan R, Mls R, Spec R this study CY25 yuxh ykui ykow in 3610, Spec R, Cm R, Mls R this study CY30 yuxh ypfa in 3610, Mls R, Kan R this study CY84 amye::p hyspank -ypfa in 3610, Spec R this study CY85 yuxh, amye::p hyspank -ypfa in 3610, Mls R, Spec R this study CY87 yuxh, amye::yuxh wt in 3610, Mls R, Cm R this study CY88 yuxh, amye::yuxh mut (ELL>AEL) in 3610, Mls R, Cm R this study CY89 yuxh, amye::yuxh mut (ELL>EDA) in 3610, Mls R, Cm R this study CY110 amye::p yuxh -lacz in 3610, Cm R this study CY121 spo0a, amye::p yuxh -lacz in 3610, Kan R, Cm R this study CY158 yuxh, ypfa, amye::p hyspank -gst-ypfa in 3610, Mls R, Kan R, Spec R this study CY182 yuxh, ypfa, amye::p hyspank -gst in 3610, Mls R, Kan R, Spec R this study CY230 kina kinb ypfa in 3610, Cm R, Mls R, Kan R this study CY231 kinc kind ypfa in 3610, Mls R, Tet R, Kan R this study CY301 ypfa-pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY302 ypfa-pknt25, flig-pch363 in BTH101, Kan R, Amp R this study CY303 yabk-pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY304 yabk-pknt25, flig-pch363 in BTH101, Kan R, Amp R this study CY305 ypfa-pknt25, pch363 in BTH101, Kan R, Amp R this study CY306 yabk-pknt25, pch363 in BTH101, Kan R, Amp R this study CY307 pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY308 pknt25, flig-pch363 in BTH101, Kan R, Amp R this study CY309 pknt25, pch363 in BTH101, Kan R, Amp R this study CY331 yuxh, amye::p hyspank -ypfa R100F in 3610, Mls R, Spec R this study CY332 yuxh, amye::p hyspank ypfa R104D in 3610, Mls R, Spec R this study CY357 ypfa R100F -pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY358 ypfa R104D -pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY372 ypfa K24D -pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY373 ypfa N127A -pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY375 ypfa G132A -pknt25, mota-pch363 in BTH101, Kan R, Amp R this study CY396 yuxh, amye::p hyspank -ypfa K24D in 3610, Mls R, Spec R this study CY397 yuxh, amye::p hyspank -ypfa N127A in 3610, Mls R, Spec R this study CY399 yuxh, amye::p hyspank -ypfa G132A in 3610, Mls R, Spec R this study CY437 ypfa, amye::p epsa -lacz in 3610, Kan R,Cm R this study CY438 ypfa, amye:: P tapa -lacz in 3610, Kan R,Cm R this study

Table 2. Plasmids used in this study. pah52 a plasmid for the LHF PCR drug template, Amp R, MLS R Losick lab collection pah54 a pbskii (+) derivative as template for the LHF PCR mutagenesis, Amp R, Spec R Losick lab collection pdg268 pdg780 an amye integration vector that contains a promoter-less lacz, Cm R, Amp R a plasmid for Campbell integration in B. subtilis, Kan R, Amp R (1) Losick lab collection pdg1662 a plasmid for integration at amye in B. subtilis, Cm R, Amp R (5) pdr111 pch363 pknt25 an amye integration vector that contains P hyspank, Spec R, Amp R T18 adenylate cylcase domain, Amp R T25 adenylate cyclase domain, Kan R (7) (6) (6) pgex-2tk an expression vector for GST fusion proteins GE Healthcare pcy58 amye::yuxh mut ( 88 ELL 90 > 88 AEL 90 ) in pdg1662 this study pcy59 amye::yuxh mut ( 88 ELL 90 > 88 EDA 90 ) in pdg1662 this study pcy60 amye::yuxh wt in pdg1662 this study pcy83 amye::p hyspank -ypfa in pdr111 this study pcy88 amye::p hyspank -gst in pdr111 this study pcy100 amye::p yuxh -lacz in pdg268 this study pcy152 amye::p hyspank- gst-ypfa in pdr111 this study pcy283 ypfa cloned into pknt25 between BamHI and EcoRI this study pcy301 yabk cloned into pknt25 between BamHI and EcoRI this study pcy302 mota cloned into pch363 between BamHI and EcoRI this study pcy303 flig cloned into pch363 between KpnI and EcoRI this study

Table 3. Primers used in this study. yhck-ko-p1 yhck-ko-p2 yhck-ko-p3 yhck-ko-p4 ytrp-ko-p1 ytrp-ko-p2 ytrp-ko-p3 ytrp-ko-p4 ypfa-ko-p1 ypfa-ko-p2 ypfa-ko-p3 ypfa KO-P4 yybt-ko-p1 yybt-ko-p2 yybt-ko-p3 yybt-ko-p4 yuxh-ko-p1 yuxh-ko-p2 yuxh-ko-p3 yuxh-ko-p4 P yuxh -F1 P yuxh -R1 yuxh-m1-f yuxh-m1-r yuxh-m2-f yuxh-m2-r yuxh-r1 ypfa-f ypfa-r pgex-ypfa-f1 pgex-ypfa-r1 gst-ypfa-f3 gst-ypfa-r2 gst-ck-f1 gst-ck-r3 ypfa-mut K24D -F ypfa-mut K24D -R ypfa-mut R100F -F ypfa-mut R100F -R ypfa-mut R104D -F ypfa-mut R104D- R ypfa-mut N127A -F ypfa-mut N127A -R ypfa-mut G132V -F ypfa-mut G132V -R B 2 ypfa-f B 2 ypfa-r1 B 2 mota-f B 2 mota-r B 2 flig-f B 2 flig-r1 B 2 yabk-f B 2 yabk-r 5 -ATAAACATAGTGATTAACGCGGC-3 5 -CAATTCGCCCTATAGTGAGTCGTCAGTTCTTTCAGCAAATATT-3 5 -CCAGCTTTTGTTCCCTTTAGTGAGAAGAATGAATTCAATGTTCGA-3 5 -GATAAGTAATAGGAATTGACAAC-3 5 -GATCATTGGGAGCAGCAGGCGCA-3 5 -CAATTCGCCCTATAGTGAGTCGTTTAGTTTGTTCTACCATGTT-3 5 -CCAGCTTTTGTTCCCTTTAGTGAGGCTTGATGATTCATGACTCA-3 5 -TAATGTGGAGTCAATTGTGACTT-3 5 -ACCTTCGCTGGATGGACGTAGAA-3 5 -CAATTCGCCCTATAGTGAGTCGTTCTCCAATCTCTATCATTGAC-3 5 -CCAGCTTTTGTTCCCTTTAGTGAGCGAATGGAATAAACATCGGC-3 5 -GTGGCATTTGCCATCCTCAGCGGG-3 5 -ATTCGTATGTTCAGGATGATACG-3 5 -CAATTCGCCCTATAGTGAGTCGTAGCTTGGCATTTCTATCACTC-3 5 -CCAGCTTTTGTTCCCTTTAGTGAGGCGTACAGAGATGAAGGTTA-3 5 -CTTGTGCGTTCTGCTTCTCACAC-3 5 -ATGCGCATGCGCTTGTGCAGGCTT-3 5 -CAATTCGCCCTATAGTGAGTCGT CACCCTCATTGATTTATC-3 5 -CCAGCTTTTGTTCCCTTTAGTGAGGACGCAAAATGATTGCGG-3 5 -CATTTATTGTATCGGTAGAAC-3 5 -GTACGAATTCGAAGAAGAGCTTGAGGAAGAA-3 5 -GTACGGATCCTTACAATACGCGCGGCTTTCA-3 5 -TGTTGCTTATGCAGAGCTGTATAGAGAAA-3 5 -TTTCTCTATACAGCTCTGCATAAGCAACA-3 5 -TTGTCATTGAAGACGCTGAAGATATAC-3 5 -GTATATCTTCAGCGTCTTCAATGACAA-3 5 -GTCAGGATCCTCATTTTGCGTCCATAAGATT-3 5 -GTACAAGCTTAAGGAGGAACTACTATGATAGAGATTGGAGAAAAT-3 5 -GACTGCTAGCTTATTCCATTCGGGCCTTTCT-3 5 -GTACGGATCCATGATAGAGATTGGAGAAAAT-3 5 -GTACGAATTCTTATTCCATTCGGGCCTTTCT-3 5 -GTACAAGCTTAAGGAGGAACTACTATGTCCCCTATACTAGGTTATTG-3 5 -GTACGCTAGCTTATTCCATTCGGGCCTTTCT-3 5 -GTACAAGCTTAAGGAGGAACTACTATGTCCCCTATACTAGGTTAT-3 5 -GTACGCTAGCTCAAACAGATGCACGACGAG-3 5 -TGAATTGAAAAAGGCAAAAAGCGATGCGGTCAGCATCGAAAACAATG-3 5 -CATTGTTTTCGATGCGACCGCATCGCTTTTTGCCTTTTTCAATTCA-3 5 -AAAATGAAAAGAATCCAGCGCTTCCAATATGTAAGAACTGATGCG-3 5 -CGCATCAGTTCTTACATATTGGAAGCGCTGGATTCTTTCATTTT-3 5 -ATCCAGCGCCGCCAATATGTAGACACTGATGCGGTATTAGATGTG-3 5 -CACATCTAATACCGCATCAGTGTCTACATATTGGCGGCGCTGGAT-3 5 -GAGATCCGCACACTATCCTATCTCATCAGTGCAGGCGGCATCGCC-3 5 -GGCGATGCCGCCTGCACTGATGAGATAGGATAGTGTGCGGATCTC-3 5 -ATCCTATAACATCAGTGCAGGCGTCATCGCCGTGGTTTTAGCTGATG-3 5 -CATCAGCTAAAACCACGGCGATGACGCCTGCACTGATGTTATAGGAT-3 5 -GTACGGATCCGATAGAGATTGGAGAAAATGTA-3 5 -GTACGAATTCCGTTCCATTCGGGCCTTTCTTCT-3 5 -GTACGGATCCGATGGATAAAACTTCGTTAATCG-3 5 -GTACGAATTCCGTGCTTCTTCTTCTTTTTTCTCGC-3 5 -GTACGGTACCGATGGCGAGACGTGATCAAGATAAG-3 5 -GTACGAATTCCGGACAATAATATCATCCCCTC-3 5 -GTACGGATCCGATGGCTTTGCATTATTATTGTC-3 5 -GTACGAATTCCGTTGAATAAATGTGTGATATTC-3

Supplemental methods Assays of swimming motility. The effect on swimming motility by overexpression of YpfA in B. subtilis was examined as follows. CY85 ( yuxh amye::p hyspank -ypfa) cells were grown in LB shaking culture to O.D. 600 about 0.3. IPTG was added to the culture at a final concentration of 50 µm. After 30 min of incubation at 37 C, 50 µl of cell suspension was quickly spotted on a cover slide and analyzed by time-lapse phasecontrast microscopy. 3610 cells treated with IPTG and CY85 cells without IPTG treatment were used as controls. Cell movement in each sample was recorded for about 10 seconds.

Supplemental references 1. Antoniewski, C., B. Savelli, and P. Stragier. 1990. The spoiij gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172:86-93. 2. Branda, S. S., J. E. Gonzalez-Pastor, S. Ben-Yehuda, R. Losick, and R. Kolter. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98:11621-11626. 3. Chai, Y., F. Chu, R. Kolter, and R. Losick. 2008. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67:254-263. 4. Chai, Y., R. Kolter, and R. Losick. 2009. Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Molecular Microbiology 74:876-887. 5. Guérout-Fleury, A. M., N. Frandsen, and P. Stragier. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57-61. 6. Karimova, G., J. Pidoux, A. Ullmann, and D. Ladant. 1998. A bacterial twohybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95:5752-5756. 7. Kearns, D. B., and R. Losick. 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19:3083-3094. 8. McLoon, A. L., I. Kolodkin-Gal, S. M. Rubinstein, R. Kolter, and R. Losick. 2011. Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J. Bacteriol. 193:679-685.