Shedding light on Dark Matter from accelerator physics

Similar documents
Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab

PoS(LHCPP2013)016. Dark Matter searches at LHC. R. Bellan Università degli Studi di Torino and INFN

sub-gev Dark Matter Theory Tien-Tien Yu (University of Oregon)

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Effective Theory for Electroweak Doublet Dark Matter

Probing Dark Matter at the LHC

Search for Dark Matter in the mono-x* final states with ATLAS

FERMION PORTAL DARK MATTER

The Standard Model and Beyond

Light WIMPs! Dan Hooper. Fermilab/University of Chicago. The Ohio State University. April 12, 2011

Search for SUperSYmmetry SUSY

Surprises in (Inelastic) Dark Matter

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

The inert doublet model in light of LHC and XENON

LHC searches for momentum dependent DM interactions

ATLAS Missing Energy Signatures and DM Effective Field Theories

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016

Physics at Hadron Colliders

Searches for low-mass Higgs and dark bosons at BaBar

Neutrinos and DM (Galactic)

Collider Searches for Dark Matter

Searches for dark matter at CMS and ATLAS

arxiv: v1 [hep-ex] 19 Jul 2013

Search for Dark Ma-er and Large Extra Dimensions in the jets+met Final State in Proton-Proton Collisions at s = 13 TeV

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

Pseudoscalar-mediated dark matter models: LHC vs cosmology

Higgs Searches at CMS

Dark matter searches and prospects at the ATLAS experiment

Natural SUSY and the LHC

Searches for Dark Matter with in Events with Hadronic Activity

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Searches for Dark Matter at the ATLAS experiment

On behalf of the ATLAS and CMS Collaborations

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

The WIMPless Miracle and the DAMA Puzzle

MICROPHYSICS AND THE DARK UNIVERSE

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Strongly Coupled Dark Matter at the LHC

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Dark Matter Searches in CMS. Ashok Kumar Delhi University - Delhi

On Symmetric/Asymmetric Light Dark Matter

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

MULTIPURPOSE MONOJETS AT THE LHC: DARK MATTER & NEUTRINOS

Simplified models in collider searches for dark matter. Stefan Vogl

Search for non-thermal dark matter and new scalar boson at the LHC

Not reviewed, for internal circulation only

Constraints on Effective Dark Matter Interactions. Tzu-Chiang Yuan ( ) Institute of Physics, Academia Sinica Taipei, Taiwan

Constraining minimal U(1) B L model from dark matter observations

The production of additional bosons and the impact on the Large Hadron Collider

Ian Shoemaker. Santa Fe Summer Workshop - INFO 2011 July 20, with Michael Graesser and Luca Vecchi

BSM Higgs Searches at ATLAS

The LHC Dark Matter Working Group. Antonio Boveia (Ohio State University)

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

The Four Basic Ways of Creating Dark Matter Through a Portal

PAMELA from Dark Matter Annihilations to Vector Leptons

R-hadrons and Highly Ionising Particles: Searches and Prospects

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Searches for Beyond SM Physics with ATLAS and CMS

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Beyond Simplified Models

Why SUSY? Key Words LECTURE OUTLINE. Between Supersymmetry and Dark Matter Teruki Kamon KNU/TAMU. Probing the Connection.

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Neutralino Dark Matter and the 125 GeV Higgs boson measured at the LHC

Constraints on Darkon Scalar Dark Matter From Direct Experimental Searches

Dark Matter WIMP and SuperWIMP

Looking for Dark Matter Here, There, and Everywhere... Tim M.P. Tait. University of California, Irvine

Higgs results and prospects at ATLAS

Exotica in CMS. ICNFP 2015 Kolymbari, Crete 25 August Claudia-Elisabeth Wulz CMS Collaboration Institute of High Energy Physics, Vienna

Hunting the Invisible -- Searches for Dark Matter at the LHC

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

A simple model for magnetic inelastic dark matter (MiDM) Abstract

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

e e Collisions at ELIC

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Slepton, Charginos and Neutralinos at the LHC

Fermionic DM Higgs Portal! An EFT approach

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

Dark Matter in the Universe

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA

Electroweak Physics and Searches for New Physics at HERA

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Dynamical Dark Matter and the Positron Excess in Light of AMS

SUSY at Accelerators (other than the LHC)

A halo-independent lower bound on the DM capture rate in the Sun from a DD signal

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

New Physics beyond the Standard Model: from the Earth to the Sky

Prospects and Blind Spots for Neutralino Dark Matter

LHC searches for dark matter.! Uli Haisch

Discovery Physics at the Large Hadron Collider

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

Determination of Electroweak Parameters

Transcription:

Shedding light on Dark Matter from accelerator physics 17/11/ 11. UL-Bruxelles. based on Y. Mambrini, B.Z., hep-ph/16.4819 JCAP 11 (2011) 023

Overview Introduction Experimental evidences DM interpretations Nature of couplings Motivation Discussion & Results LEP vs Tevatron fermionic DM scalar DM combined analysis (astro+accel) universal lepton coupling pure electron coupling words on LHC Conclusions

Dark Matter in a nutshell

Dark Matter in a nutshell WMAP data: Ω X h 2 = 0.1123 ± 0.0175 4.7% baryonic matter, 22% dark matter, 73% dark energy Boltzmann equation Ω X h 2 1 σv m2 X gx 4 WIMP miracle m X 0 GeV g g Weak σv 3 26 cm 3 /s. A priori requisites: weakly interacting, long-lived, neutral.

Dark excesses? (Acc. Exp., D.D ) CDF Collaboration [hep-ex/14.0699]

Dark excesses? (Acc. Exp., D.D) Many possibilities: Standard Model effect Stringy origin Technicolor 2-Higgs models etc hep-ph/11xx.xxx Sullivan et al, hep-ph/14.3790 Anchordoqui et al, hep-ph/14.2303 Eichten et al, hep-ph/14.0976 Chen et al, hep-ph/15.2870 Dark Matter interpretation e.g. Buckley et al, hep-ph/14.3145 dark Z-boson χ-nucleon scattering σ χ n 40 cm 2 (for m χ GeV) Hadrophilic coupling

Dark excesses? (Astro. Exp., D.D.) Fox et al, 19.4398/hep-ph

Dark excesses? (Astro. Fox Exp., et al, 19.4398/hep-ph D.D.) Tension in XENON and DAMA results electrophilic DM Bernabei et al, astro-ph/0712.0562 DAMA sensible also to electron recoil leptophilic Fox et al, hep-ph/0811.0399 hadrophilic Kopp et al, hep-ph/0907.3159

Dark excesses? (Astro. Exp. I.D.) γ-rays observed by Fermi - inner parsecs unexplained - leptophilic DM Hooper et al, hep-ph/.2752

Dark excesses? (Astro. Exp. I.D.) e + -flux, by PAMELA - electrophilic, µ philic, π philic,... Cholis et al, astro-ph/08.5344

Motivation (LEP vs. Tevatron) Fox et al, hep-ph/13.0240 c O V = ( χγ µχ)( lγ µ l) Λ 2 O S = ( χχ)( ll) Λ 2 O A = ( χγ µγ 5 χ)( lγ µ γ 5 l) Λ 2 O t = ( χl)( lχ) Λ 2

Motivation (LEP vs. Tevatron) Fox et al, hep-ph/13.0240 c Fox et al, hep-ph/13.0240 O V = ( χγ µχ)( lγ µ l) Λ 2 O S = ( χχ)( ll) Λ 2 O A = ( χγ µγ 5 χ)( lγ µ γ 5 l) Λ 2 O t = ( χl)( lχ) Λ 2

Motivation (LEP vs. Tevatron) σ 1 loop = 4α2 µ 2 p 18 2 π 3 Λ 4 [ l f(q2, m l ) ] 2 Fox et al, hep-ph/13.0240 c (σv) S = 1 1 m2 l (m 2 8πΛ 4 m 2 χ m 2 l )vrel 2 χ

Motivation (LEP vs. Tevatron) Fox et al, hep-ph/13.0240 σ 1 loop = 4α2 µ 2 p 18 2 π 3 Λ 4 [ l f(q2, m l ) ] 2 c Fox et al, hep-ph/13.0240 (σv) S = 1 1 m2 l (m 2 8πΛ 4 m 2 χ m 2 l )vrel 2 χ

Motivation (LEP vs. Tevatron) c Luminosity of 1 fb 1

Motivation (LEP vs. Tevatron) Luminosity of 1 fb 1 c Bai et al, hep-ph/05.3797 Bai et al, hep-ph/05.3797

Motivation (LEP vs. Tevatron)

Motivation (LEP vs. Tevatron)

Motivation (LEP vs. Tevatron)

Motivation (LEP vs. Tevatron)

Motivation (LEP vs. Tevatron)

The Models Effective scales: Operators: L V = i L S = i L A = i 1 gl Λ l Λ ; 1 gh Λ h Λ gl i ( l i γ µ l i )( χγ Λ 2 µ χ) + gh i i ( q i γ µ q i )( χγ Λ 2 µ χ) gl i ( l i l i )( χχ) + g Λ 2 h i i ( q i q i )( χχ) Λ 2 gl i ( l i γ µ γ 5 l i )( χγ Λ 2 µ γ 5 χ) + gh i i ( q i γ µ γ 5 q i )( χγ Λ 2 µ γ 5 χ) L t = gl i i ( l i χ)( χl i ) + g Λ 2 h i i ( q i χ)( χq i ) Λ 2 Models in lepton sector: A) Electrophilic couplings: gl e = g e, g i=µ,τ,ν i l = 0 B) Charged lepton couplings: g i=e,µ,τ l = g l, g i=ν i l = 0 C) Universal lepton couplings: g i=e,µ,τ,ν i l = g l Universality in hadronic couplings: g i=u,d,c,s,b,t h = g h.

Annihilation cross-sections dσ I dω = M I 2 s 2m 2 3 2m2 4 + (m2 3 m2 4 )2 s 64π 2 s s 4m 2 χ ; s 4m 4 χ + m 2 χv 2 σ J I v = g 2 l σi,l J v+c g2 h σi,h J v l=e,µ,τ,ν h=u,d,c,s,t,b J: operator type I: coupling type σ V,k v = 4g Λ ( 24(2m 2 χ + m 2 k) + 8m4 χ 4m 2 χm 2 k + ) 5m4 k m 2 χ m 2 v 2 l σ S,k v = 24g Λ (m 2 χ m 2 k)v 2 ( σ A,k v = 4g Λ 24m 2 k + 8m4 χ 22m 2 χm 2 k + ) 17m4 k m 2 χ m 2 v 2 k g Λ = 1 m 2 k /m 2 χ 192πΛ 4

Idea and example Requiring σ max l v + σh max v 3 26 cm 3 s 1 2.5 9 GeV 2 assume e.g. m χ 5 GeV, in a model with only electronic coupling and vector-like interaction: (Λ e ) min 480 GeV from LEP m χ >> m h, m l σ V v m2 χ πλ 4 + 3 m2 χ e πλ 4 h g h 16 g l = m2 χ πλ 4 e (1 + 3 g2 h gl 2 ) 2.5 9 94% ann. rate to hadrons

Numerical Results from LEP bounds: Vector Scalar Axial t Scalar 0 Vector Scalar Axial t Scalar 0 80 (%) Br h 80 60 40 20 Electronic couplings 0 0 5 15 20 m (GeV) χ Most-conservative: Universal-leptonic, vector Less-conservative: Electronic, scalar (%) Br h (%) Br h 60 40 20 Charged leptonic couplings 0 0 5 15 20 mχ (GeV) Vector Scalar Axial t Scalar 0 80 60 40 20 Universal leptonic couplings 0 0 5 15 20 m (GeV) χ

Combined analysis

Combined analysis

Numerical Results: universal-leptonic, vector gh/ge 0 Vectorial coupling χ γµ χ f γµ f WMAP gh/ge 0 Vectorial coupling χ γµ χ f γµ f WMAP + LEP 1 1 1 1 2 3 0 5 15 20 gh/ge 0 1 Vectorial coupling χ γµ χ f γµ f Mdm (GeV) WMAP + LEP + TEVATRON 2 3 0 5 15 20 gh/ge 0 1 Vectorial coupling χ γµ χ f γµ f Mdm (GeV) 1 1 WMAP + LEP + TEVATRON + XENON0 2 2 3 0 5 15 20 Mdm (GeV) 3 0 5 15 20 Mdm (GeV)

Numerical Results: electronic, scalar gh/ge 0 gh/ge 0 WMAP + TEVATRON Scalar coupling χ χ f f 1 1 WMAP + LEP Scalar coupling χ χ f f 1 1 Allowed 2 Allowed 2 3 0 5 15 20 Mdm (GeV) 3 0 5 15 20 Mdm (GeV)

Scalar Dark Matter L e = g e Λ S χχēe Madgraph analysis: same bckgr: e + e γν ν χ 2 -analysis signal+bckgr sim. Infer bounds for σs,e s v : σs,e s v ( 1 m2 e m 2 χ g 2 e 4πΛ 2 S Result: σ s S,e 24 cm 3 /s ) 3/2 + g 2 e 32πΛ 2 S v 2. No constraints from LEP, nor Tevatron Λ S ge σv 26 5TeV LHC? Events (for 650 pb -1 ) 450 400 350 300 250 200 150 0 50 0 scalar DM; scalar Op. m = GeV; S = 300 GeV signal + bckg data 0 20 40 60 80 0 E (GeV)

LHC (Fox et al. ph/19.4398)

Conclusions Nature of DM coupling is crucial to fit all present data We computed the rate of hadronic/leptonic coupling to respect: 1 LEP + Tevatron (mono-photon, mono-jet events) 2 WMAP + XENON0 A very light fermionic DM ( GeV) mainly excluded whatever the type of interaction Heavier candidates ( GeV) should be largely hadrophobic (vector int.) or even excluded (scalar int.) Models with electrophilic couplings (motivated by INTEGRAL, or Synchrotron radiation data) are excluded by LEP/Tevatron analysis Escaping conclusions: DM candidate not coupled to electrons (LEP bound not applicable) or hadronic coupling only to bottom or charm (Tevatron bound not applicable) Nothing to say for the moment for scalar DM.

merci beaucoup!

Back-up. Light-mediators

Back-up. High-energy completions