Discrete Probability Functions

Similar documents
Handout #5. Discrete Random Variables and Probability Distributions

Parameter, Statistic and Random Samples

Lecture 7: Properties of Random Samples

EE 4TM4: Digital Communications II Probability Theory

AMS570 Lecture Notes #2

Sampling Distributions, Z-Tests, Power

Econ 325: Introduction to Empirical Economics

NOTES ON DISTRIBUTIONS

Stat 400: Georgios Fellouris Homework 5 Due: Friday 24 th, 2017

Distribution of Random Samples & Limit theorems

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Chapter 6 Principles of Data Reduction

Random Variables, Sampling and Estimation

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Learning Theory: Lecture Notes

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

This section is optional.

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

Math 525: Lecture 5. January 18, 2018

Class 27. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

4. Partial Sums and the Central Limit Theorem

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

4. Basic probability theory

Stat 319 Theory of Statistics (2) Exercises

6. Sufficient, Complete, and Ancillary Statistics

Expectation and Variance of a random variable

Statistical Theory; Why is the Gaussian Distribution so popular?

Introduction to Probability and Statistics Twelfth Edition

Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

CH.25 Discrete Random Variables

Topic 9: Sampling Distributions of Estimators

Probability and statistics: basic terms

Closed book and notes. No calculators. 60 minutes, but essentially unlimited time.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

Introduction to probability Stochastic Process Queuing systems. TELE4642: Week2

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

10/31/2018 CentralLimitTheorem

Topic 9: Sampling Distributions of Estimators

IE 230 Seat # Name < KEY > Please read these directions. Closed book and notes. 60 minutes.

Topic 9: Sampling Distributions of Estimators

Topic 8: Expected Values

Some discrete distribution

Lecture 19: Convergence

Lecture 5. Random variable and distribution of probability

Lecture 12: November 13, 2018

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Lecture 4. Random variable and distribution of probability

Quick Review of Probability

Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0.

32 estimating the cumulative distribution function

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

Binomial Distribution

MIT Spring 2016

Simulation. Two Rule For Inverting A Distribution Function

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Mathematical Statistics - MS

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

Quick Review of Probability

HOMEWORK I: PREREQUISITES FROM MATH 727

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Discrete Random Variables and Probability Distributions. Random Variables. Discrete Models

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Parameter, Statistic and Random Samples

CH5. Discrete Probability Distributions

Sample Midterm This midterm consists of 10 questions. The rst seven questions are multiple choice; the remaining three

Approximations and more PMFs and PDFs

The standard deviation of the mean

Modeling and Performance Analysis with Discrete-Event Simulation

Final Review for MATH 3510

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Lecture Chapter 6: Convergence of Random Sequences

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

7.1 Convergence of sequences of random variables

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Lecture 18: Sampling distributions

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

Exponential Families and Bayesian Inference

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Notation List. For Cambridge International Mathematics Qualifications. For use from 2020

STAT Homework 2 - Solutions

Downloaded from

STATISTICAL INFERENCE

SDS 321: Introduction to Probability and Statistics

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

Solutions to Homework 2 - Probability Review

Last Lecture. Wald Test

STAT Homework 1 - Solutions

PRACTICE PROBLEMS FOR THE FINAL

The Random Walk For Dummies

Transcription:

Discrete Probability Fuctios Daiel B. Rowe, Ph.D. Professor Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 017 by 1

Outlie Discrete RVs, PMFs, CDFs Discrete Expectatios Discrete Momets

Discrete Radom Variables A radom variable is a fuctio from a sample space S ito the real umbers X. Examples: Experimet Toss two die Toss a coi 5 times Apply differet amouts of fertilizer to plats Radom Variable X=sum of umbers X= # heads i 5 tosses X=yield/acre 3

Discrete Probability Mass Fuctios Example: Toss a coi twice. S={HH,HT,TH,TT} X=umber of heads. Sample space outcomes X(s) is a mappig from S to X. Real Numbers s 1 =HH, s =HT, s 3 =TH, s 4 =TT X 1 =, X =1, X 3 =1, X 4 =0 P(X) is a mappig from X to [0,1]. s HH HT TH TT X(s) 1 1 0 x 0 1 P(X=x) 1/4 1/ 1/4 Real Numbers Uit iterval 4

Discrete Cumulative Distributio Fuctios The cdf of a radom variable X, F X (x), is F ( x) P ( X x), for all x. X X Example: Tossig a coi twice x 0 1 P(X=x) 1/4 1/ 1/4 F X 0 / 4 x 0 1/ 4 0 x 1 ( x) 3 / 4 1 x 4 / 4 x 1.00 0.75 0.50 0.5 0.00 F ( x) P ( X x) X Xx 0 1 X 5

Discrete RVs, PMFs, ad CDFs Assume that the discrete radom variable (RV) takes o values x, x, x... 1 3 if the probability of each of value x is P( X x ) the, the probability mass fuctio (PMF) is give by f ( x ) P( X x ) for 1,,3... where θ are ay parameters that the PMF depeds o. 6

Discrete RVs, PMFs, ad CDFs Further, the cumulative distributio fuctio (CDF) is give by i.e. where x k (largest value) x. Additioally, ay PMF must satisfy 1) F( x ) f ( x ) ) ( ) 1. x x F( x ) f ( x )... f ( x ) 0 f( x ) 1 f x x k 7

Discrete Expectatio Give a arbitrary discrete probability mass f(x θ), we wat to compute quatitative populatio summaries of it such as populatio mea, populatio variace, x f ( x ) populatio stadard deviatio, 1 x 1 ( ) f ( x ) 8

Discrete Expectatio These populatio umerical summaries are foud by expectatio E[ g( X ) ] g( x ) f ( x ) The mea is 1. EX ( ) ad the variace is E[( X ) ]. 9

Discrete Expectatio Liearity Property: E[ g ( X ) ] E[ g ( X ) ] 1 1 i.e. E[ g ( X ) g ( X ) ] E[ g ( X ) ] E[ g ( X ) ] 1 1 E[ g ( X ) g ( X ) ] [ g ( x ) g ( x )] f ( x ) 1 1 i i i 1 1. [ g ( x ) f ( x ) g ( x ) f ( x )] 1 g ( x ) f ( x ) g ( x ) f ( x ) 1 1 1 10

Discrete Expectatio Example: x 0 1 P(X=x) 1/4 1/ 1/4 E[ g( X ) ] g( x ) f ( x ) g( X ) 1 X (0)(1/ 4) (1)( / 4) ()(1/ 4) 1 11

Discrete Expectatio Example: x 0 1 P(X=x) 1/4 1/ 1/4 E[ g( X ) ] g( x ) f ( x ) 1 g( X ) ( X ) (0 1) (1/ 4) (1 1) ( / 4) ( 1) (1/ 4) 1/ 1

Discrete Momets For each iteger, the th momet of X, 1, is EX ( ). The th cetral momet of X,, is E[( X ) ] where. 1 EX ( ) 13

Discrete Momet Geeratig Fuctio The momet geeratig fuctio (MGF) of a discrete PMF is tx M ( t) E( e ) X x tx e f ( x). The MGF does ot always exist! Whe the MGF exists, it is uique ad completely determies the distributio. 14

Discrete Momet Geeratig Fuctio If two RVs have the same MGF, they have the same dist. Let X have a PMF M X( t) e f ( x ) 1 tx f( x ) ad Y have PMF gx ( ) Recall: e x x 0! MY( t) e g( y ) 1 ty If X ad Y have the same distributio, the M ( t) M ( t). X Y 15

Discrete Momet Geeratig Fuctio Why is this expectatio importat? If we differetiate the MGF ad set the derivatives t=0, we get the momets of the distributio. E( X ) M X ( t) t t M X () t t0 t0 M () X t t t0 16

Discrete Momet Geeratig Fuctio Deote the th derivative of the MGF evaluated at t=0 as M (0) M ( t) t t0. The, the MGF ca be writte as 1 M (0) M (0) M (0) M ( t) 1 t t t 1!!! E( X ) E( X ) E( X ) M ( t) 1 t t t 1!!! where the X subscript has bee suppressed. 17

Discrete Momet Geeratig Fuctio The MGF ca be writte as M ( t) e f ( x ) 1 1 k0 k0 1 k0 tx f( x ) ( tx ) () t k! k! k k E X ( tx ) k! f( x ) k k 18

Discrete Momet Geeratig Fuctio If we differetiate the MGF w.r.t. t ad evaluate at t=0, k ( tx ) M ( t) f ( x ) t t k! 1 k0 1 k0 f( x ) t ( tx ) k! k ( tx ) ( tx ) ( tx ) f( x) 1...... 1 t 1!!! 1 f x x tx 1 ( )... t=0 EX ( ) 19

Uiform: A radom variable x has a discrete uiform distributio, x ~uiform(n) if P( X x N) 1 N where,,. N 1,,... x1,,3,... N i.e. flippig a coi, rollig a die. 0

Uiform: It ca be show that 1 x P( X x ) N 1 1 N N 1 Note: 1 3... N N( N 1) 1

Uiform: that x P( X x ) 1 N 1 N 1 1 N N 1 1 Note: N( N 1)( N 1) 1 3... N 6

Uiform: ad that M ( t) e P( X x ) X 1 tx N 1 1 N e t e e t N(1 e ) t ( N 1) t. Note: 1 x x... x N 1 x 1 x N 1 3

Uiform: P( X x N) 1 N where,,. N 1,,3,... x1,,3,... N Uiform discrete radom variates ca be geerated by either partitioig the uit iterval ito N bis, geeratig uiform [0,1] umbers ad for each radom umber covert to if it is i the th bi or N=6; x=uidrd(n) 5 4

Uiform: 0.18 Marquette Uiversity P( X x) 1 6 1800 0.16 1600 0.14 1400 0.1 100 0.1 1000 0.08 800 0.06 600 0.04 400 0.0 00 0 N=6; xpop=(1:n); ypop = uidpdf(x,n); bar(xpop,ypop,1) 1 3 4 5 6 0 1 1.5.5 3 3.5 4 4.5 5 5.5 6 N=6;, um=10000; xsamp=uidrd(n,um,1); hist(xsamp,n) 5

Uiform: 1 P( X x) 1 6 1 0.9 0.8 0.7 0.6 0.5 0.4 0 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000 0.9 0.8 0.7 0.6 0.5 0.4 0 0.1675 0.3330 0.4958 0.6716 0.8361 1.0000 0.3 0.3 0. 0. 0.1 1 1.5.5 3 3.5 4 4.5 5 5.5 6 ducdf =uidcdf(x,6) stairs(x, ducdf,'liewidth',) 0.1 1 1.5.5 3 3.5 4 4.5 5 5.5 6 [F,x]=ecdf(xsamp); stairs(x,f,'liewidth',) 6

Uiform: P( X x) 1 6 uidstat(n) True Simulated mea(xsamp) var(xsamp) 3.5 3.4960.9167.8987 7

Beroulli: A radom variable x has a discrete Beroulli distributio, x~beroulli(p) if 1 ( ) x x P X x p p (1 p) where,,. 0 p 1 x 0,1 x = the umber of successes out of 1 trial. p = the probability of success o the trial. 8

Beroulli: It ca be show that 1 x P( X x ) (0)(1 p) (1) p p 9

Beroulli: that x P( X x ) 1 0 (1 ) 1 p(1 p) p p p p 30

Beroulli: ad that M ( t) e P( X x ) X 1 tx t(0) t(1) e q e p t ( q pe ). q (1 p) 31

Beroulli: 1 ( ) x x P X x p p (1 p) 0 p 1 x 0,1 where,,. Beroulli discrete radom variates ca be geerated by either partitioig the uit iterval ito bis, geeratig uiform [0,1] umbers ad for each radom umber covert to -1 if it is i the th bi or p=1/; =1; x=biord(1,p) 1 3

Beroulli: 1 ( ) x x P X x p p (1 p) =1; p=1/; um=10^4; x=biord (,p,um,1); mea(x) var(x) hist(x,) 6000 5000 4000 3000 True Simulated 0.5 0.4971 0.5 0.500 Ca also fid ad plot ECDF. 000 1000 0 0 0.1 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 33

Biomial: For the Beroulli distributio, x 1 x. P( X x p) p (1 p) Let X 1 ~Beroulli(p) ad X ~Beroulli(p), Defie X=X 1 +X. i.e. X=total umber of successes The distributio of X is biomial(,p). This ca be repeated to get biomial(,p). 34

Biomial: A radom variable x has a discrete biomial distributio, x~biomial(,p) if! x P( X x, p) p (1 p) x!( x)! (x successes) where, 0 p 1, 1,,3,..., x 0,1...,. = umber of trials or times we repeat the experimet. x = the umber of successes out of trials. x P(x successes ad -x failures) p = the probability of success o a idividual trial. 35

Biomial: It ca be show that x0 1 x P( X x )! x x p (1 p) x!( x)! p x 36

Biomial: that x0 x P( X x ) 1! x!( x)! x x ( x p) p (1 p) p(1 p) 37

Biomial: ad that M ( t) e P( X x ) X x0 1 tx! e p (1 p) x!( x)! t ( q pe ). tx x x q (1 p) 38

Biomial: =5; p=1/;um=10^4; x=biord (,p,um,1); mea(x) var(x) hist(x,6) True Simulated.5.498 1.5 1.455! x P( X x, p) p (1 p) x!( x)! 3500 3000 500 000 1500 1000 500 x Ca also fid ad plot ECDF. 0 0 0.5 1 1.5.5 3 3.5 4 4.5 5 39

Poisso: A radom variable x has a discrete Poisso distributio, x~poisso(λ) if P( X x ) x! x e where,,. 0 x 0,1... λ is called the itesity parameter 40

Poisso: It ca be show that 1 x P( X x ) x0 x e x x! 41

Poisso: that x P( X x ) 1 x0 ( x ) x e x! 4

Poisso: ad that M ( t) e P( X x ) X 1 tx x0 e e tx x e x! t ( e 1). 43

Poisso: lam=5;um=10^4; x=poissrd(lam,um,1); mea(x) var(x) hist(x,15) True Simulated 5 5.0181 5 5.1069 P( X x ) x! x e 1800 1600 1400 100 1000 800 600 400 00 Ca also fid ad plot ECDF. 0 0 5 10 15 44

Geometric: A radom variable x has a discrete geometric distributio, x~geometric(p) if P( X x p) p(1 p) x 1 where,,. 0 p 1 x 1,... x = the trial at which first successes occurs. p = the probability of success o the trial. 45

Geometric: It ca be show that 1 x1 x P( X x ) xp(1 p) 1 p x1 q (1 p) 46

Geometric: that x P( X x ) 1 1 ( x ) p(1 p) p x1 x1 q p q (1 p) 47

Geometric: ad that M ( t) e P( X x ) X 1 x1 tx tx e p(1 p) t pe 1 qe t x1. q (1 p) 48

Geometric: P( X x p) p(1 p) x 1 p=1/;um=10^4; x= geord(p,um,1)+1; mea(x) var(x) hist(x,1) True Simulated 1.9994.0358 8000 7000 6000 5000 4000 3000 000 1000 0 Ca also fid ad plot ECDF. 0 4 6 8 10 1 14 49

Homework 3: 1) Derive the MGF for the discrete uiform, Beroulli, biomial, Poisso, ad geometric distributios. ) Determie the first two momets from the MGF of the discrete uiform, Beroulli, biomial, Poisso, ad geometric distributios. 50

Homework 3: 3) Geerate 10 6 observatios from the discrete uiform, Beroulli, biomial, Poisso, ad geometric distributios. Use the parameter values I used. Compute ad plot a icremetal sample mea ad variace. Whe do you thik you get covergece? 51