Mode of action approaches to mixtures. Joop Hermens Institute for Risk Assessment Sciences Utrecht University

Similar documents
Ecotoxicology Biology Acute and Chronic Lethal Effects to Individuals: Contaminant Interactions and Mixtures

Annual Review MIXTURE TOXICITY AND ITS MODELING BY QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIPS

CHAPTER 4 ENVIRONMENTAL FATE

Chapter 1. Introduction

Adverse Outcome Pathways in Ecotoxicology Research

Nano-Ecotoxicology Assessment of Potential Effects of Engineered Nanomaterials in the Environment

User manual Strategies for grouping chemicals to fill data gaps to assess acute aquatic toxicity endpoints

A COMPARISON OF THE LETHAL AND SUBLETHAL TOXICITY OF ORGANIC CHEMICAL MIXTURES TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

AND INHIBITION OF REPRODUCTION OF DAPHNIA MAGNA

Biological Read-Across: Species-Species and Endpoint- Endpoint Extrapolation

The BEAM-project: Prediction and Assessment of Mixture Toxicities in the Aquatic Environment

QMRF# Title. number and title in JRC QSAR Model Data base 2.0 (new) number and title in JRC QSAR Model Data base 1.0

/ ) (log Pow) 7)

Using mixture toxicity approaches to identify vulnerable species, drivers of mixture toxicity and priority pesticide mixtures.

Marine Mammal Tox: Overview (1 st class) February 5, Marine Mammals. # aquatic (marine or freshwater) species

Author's personal copy

8 th BioDetectors. Applications of bioassays to prioritize chemical food safety issues. Maricel Marin-Kuan

Environmental Risk Assessment of Nanomedicines

Environmental Toxicology and Chemistry, RITOX, Utrecht University, P.O. Box 80058, NL-3508 TB Utrecht, The Netherlands

Mechanistic effect modelling for environmental risk assessment of biocides

Environmental Forensic Principals for Sources Allocation of Polycyclic Aromatic Hydrocarbons

Characterization Methods of Manufactured Nanomaterials for EHS Studies

Announcement ECB-Workshop on Biology-Based Modelling

CHAPTER VI. Executive Summary. Ganga cleaning Project has raised public awareness about the quality of Indian

BASF DocID 2010/

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

A primer on pharmacology pharmacodynamics

Grouping and Read-Across for Respiratory Sensitisation. Dr Steve Enoch School of Pharmacy and Biomolecular Sciences Liverpool John Moores University

OECD QSAR Toolbox v.3.3. Predicting skin sensitisation potential of a chemical using skin sensitization data extracted from ECHA CHEM database

COMPUTER AIDED DRUG DESIGN (CADD) AND DEVELOPMENT METHODS

Ecorisk Dilemma. ES/RP 532 Applied Environmental Toxicology. EPA Approach. EPA Objective. Hazard Identification. Hazard ID

PREDICTING THE TOXICITY OF NEAT AND WEATHERED CRUDE OIL: TOXIC POTENTIAL AND THE TOXICITY OF SATURATED MIXTURES

THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS

Biological Effects Modeling. Nancy Kinner CSE University of New Hampshire

Kang, Lin-Woo, Ph.D. Professor Department of Biological Sciences Konkuk University Seoul, Korea nd Semester

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Good Read-Across Practice 1: State of the Art of Read-Across for Toxicity Prediction. Mark Cronin Liverpool John Moores University England

Introduction to Ecotoxicology. Ludek Blaha, Jakub Hofman, Klara Hilscherova & co.

OECD Conceptual Framework for Testing and Assessment of Endocrine Disrupters (as revised in 2012)

1.3.Software coding the model: QSARModel Molcode Ltd., Turu 2, Tartu, 51014, Estonia

Item #9: Amphipod Tox Proposal Modification Page 1 of 9

COMMUNICATION FROM THE COMMISSION TO THE COUNCIL. The combination effects of chemicals. Chemical mixtures

Cefic LRI s ECO19: the ChimERA project

Lecture 5, Chemical Partitioning to Solids and Fugacity

is given for the isotopic fingerprinting methodology.

Nanoparticles and the environment: behaviour, ecotoxicity and fate

How to decide whether a substance is a polymer or not and how to proceed with the relevant registration

Biology 5868 ID Exam 2 April 6, 2007

ICCE 2017 Monitoring water quality using passive sampling in kinetic mode:

Petroleum Hydrocarbons in Suspended Solids

Properties criteria - BETA

Application of Toxicogenomics for Toxicity Assessment and Screening of Nanomaterials

anthracene Figure 1: Structures of Selected Polyaromatic Hydrocarbons (PAHs)

Unit 1: Chemistry of Life Guided Reading Questions (80 pts total)

Screening and prioritisation of substances of concern: A regulators perspective within the JANUS project

How to influence bioavailability for reducing risks from organic pollutants in bioremediation

CEE 697z Organic Compounds in Water and Wastewater

Modeled Environmental Concentrations of Engineered Nanomaterials (ENM) for different regions and at different resolutions

Prediction and QSAR Analysis of Toxicity to Photobacterium phosphoreum for a Group of Heterocyclic Nitrogen Compounds

Comparative study of mechanism of action of allyl alcohols for different endpoints

Ecological risk of mixtures

Paths and degradation of PAHs in the Environment

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2

Effect-Directed Analysis (EDA) to Identify Chemical Mixtures in Stressed Aquatic Ecosystems

Developing Molecular Design Guidelines for Reduced Toxicity. Adelina Voutchkova Yale University, George Washington University

Background Document Biology-Based Methods

Understanding the ecotoxicological risks of ionic liquids - where are we?

OECD QSAR Toolbox v.4.1. Tutorial of how to use Automated workflow for ecotoxicological prediction

Research Science Biology The study of living organisms (Study of life)

Assessment and Regulation of Nanomaterials under the European Biocides Regulation Isabel Günther

Procedure for New Chemicals

OECD QSAR Toolbox v.3.4

TECHNICAL BASIS FOR NARCOTIC CHEMICALS AND POLYCYCLIC AROMATIC HYDROCARBON CRITERIA. I. WATER AND TISSUE

Molecular mechanisms in aquatic ecotoxicology specif and non-specific membrane toxicity

Canada s Experience with Chemicals Assessment and Management and its Application to Nanomaterials

TOXICITY EVALUATION OF SINGLE AND MIXED ANTIFOULING BIOCIDES USING THE STRONGYLOCENTROTUS INTERMEDIUS SEA URCHIN EMBRYO TEST

Properties criteria - BETA

ES/RP 531 Fundamentals of Environmental Toxicology Fall 2005

Environmental quality standards for priority pesticides relevant in the aquatic environment in Slovak Republic

The Chemistry of Life

La spéciation des métaux Enjeux REACH. Solutions Analytiques. Olivier F.X. Donard

Recommendation of the BPC Working Groups

Case study: Category consistency assessment in Toolbox for a list of Cyclic unsaturated hydrocarbons with respect to repeated dose toxicity.

Management of Sediment Quality and Quantity in the Danube River Basin

Ecological impact of ionising radiation, an endpoint issue?

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

Organic Cumulative Exam April 26, 2018

Biocidal Products Committee (BPC)

P e a r s o n : M a t t e r a n d t h e E n v i r o n m e n t

Additivity and Interactions in Ecotoxicity of Pollutant Mixtures: Some Patterns, Conclusions, and Open Questions

Chemical Analysis Problem

Publications in Peer Reviewed Journals

Supporting Information

OECD QSAR Toolbox v.3.3

EC Number: - CAS Number: - MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR IDENTIFICATION OF

Study of Non-Covalent Complexes by ESI-MS. By Quinn Tays

THE BINDING OF ORGANIC CONTAMINANTS TO HUMIN

SYNOPSIS OF CHANGES TO BC LABORATORY MANUAL, MARCH 2017

OECD QSAR Toolbox v.3.4

METHOD 3600B CLEANUP

Transcription:

Mode of action approaches to mixtures Joop Hermens Institute for Risk Assessment Sciences Utrecht University

Mixtures Is the knowledge sufficient for implementing mixture toxicity in regulations? If we don t take mixture toxicity into account, we can be sure that risks will be underestimated. We can simplify the problem of mixture toxicity by including information on the mode of action of chemicals. Tools for generic risk assessment (REACH) of mixtures may be different than the tools for site specific risk assessment (WFD). Presentation is focused on effects on the environment and on tools/guidance in risk assessment.

Outline Mixture toxicity and mode of action Non specific toxicity: block approach and total body residues Complex cases: complex similar action, synergism, antagonism and multiple mechanisms Tools in ecological risk assessment of mixtures

Joint effects based on mode of action (after Plackett and Hewlett) A and B act similar A and B act dissimilar no interaction between A and B simple similar action independent action interaction between A and B complex similar action dependent action Plackett R.L. and Hewlett, P.S. 1952. Journal of the Royal Statistical Society Series B-Statistical Methodology 14:141-163.

Toxic unit concept chemical C PNEC C/PNEC mg/l mg/l TU A 0.3 0.1 3 B 20 40 0.5 C PNEC TU concentration predicted no-effect concentration toxic units

Simple similar action: concentration or dose addition 1.0 A TU A + TU B = 1 TU A TU B B 1.0 Chemicals with similar action Effect in mixture: Dose or concentration addition Σ TU = 1

Mortality Independent action (chemicals with dissimilar action): response or no-addition 1.0 A TU A No addition Response addition Response of mixture: No addition: max { P A, P B } Response addition: 1-{(1-P A )*(1-P B )} P A + P B 10 TU B B 1.0 5 0 0 1 2 3 log Concentration (mg/l)

concentration of B (TU) Joint effect of mixture of 2 chemicals 1 no addition antagonism sub-additive effects no addition equitoxic mixture isobole is line of equal toxic effect (equal strength) Note: the current policy for risk assessment is one of no addition synergism or potentiation 0 0 concentration of A (TU) 1

Target sites and toxic mechanisms target sites membranes proteins and peptides DNA partitioning (v.d. Waals and H-donor/acceptor) specific H- donor/acceptor and ionic interactions formation of covalent bonds class of effect non-specific effects receptor binding and enzyme inhibition - membrane peroxidation - protein damage and depletion - DNA damage Escher, B.I. and Hermens, J.L.M. 2002. Environ. Sci. Technol. 36, 4201-4217.

Outline Mixture toxicity and mode of action Non specific toxicity: block approach and total body residues Complex cases: complex similar action, synergism, antagonism and multiple mechanisms Tools in ecological risk assessment of mixtures

Total target (membrane) concentrations for non specific toxicity: a relevant chemical group parameter Endpoint (in vivo) Total membrane concentration mmol/kg membrane lipid Total body residue mmol/kg Effects on survival Sublethal effects NOEC ecosystem ~50 ~2.5 ~5 ~0.25 ~0.25 ~0.01

Total internal concentrations for non specific toxicity: Body residues of PAHs to an amphipod Compound External EC50 28-day ug/l Internal IEC 28-day umol/g Naphthalene 1266 5.8 Phenanthrene 95 7.6 Pyrene 79 6.1 PAH mixture 6.1 Landrum, P.F., Lotufob, G.R. Gossiauxa, D.C., Gedeonc, M.L. and. Leed, J.-H. 2003. Chemosphere 51, 481-489.

Mixtures of chemicals with non specific toxicity endpoint number of chemicals in mixture LC50 mixture ( TU) Reference LC50 guppy 50 0.9 Könemann, H. 1981. Toxicology 19, 229-238. LC50 fathead minnow 23 1.2 Broderius, S. 1985. Aquatic Toxicology, 6, 307-322. NOEC growth Daphnia 10 1.1 Hermens, J.L.M. et al. 1985. Aquat. Toxicol. 6, 209-217. EC50 Daphnia 50 Concentrations 500 times lower than E50 still show toxicity in a mixture Deneer, J.W. et al. 1988. Aquatic Toxicology, 12, 33-38 Concentration addition: ( TU) = 1.0 Chemicals far below NOEC may still show toxicity in mixtures

Generic risk assessment of mixtures of chemicals with non-specific toxicity: block approach Example: Petroleum hydrocarbons Hydrocarbon block approach Divide complex mixture of chemicals into blocks with similar properties Based on chemical structure Based on a relevant chemical property Useful approach in risk assessment - REACH EU - Technical Guidance Document on Risk Assessment, Appendix IX; Environmental Risk Assessment for petroleum substances

Generic risk assessment of mixtures of chemicals with non-specific toxicity Oil is an example of a UVCB substance: chemical substances of unknown or variable composition, complex reaction products and biological materials. Other UVCBs: surfactants,.

Generic risk assessment of mixtures: Block approach based on chemical structure See: MacLeod, M. et al. 2004. Environ. Sci. Technol. 38, 6225-6233.

Block approach based on a chemical property (experimental): hydrophobicity profiles Hydrophobicity ~ Octanol water partition coefficient Retention time on C18 column is related to octanol-water partition coefficients. Separation of mixtures on HPLC RP C18 column in fractions. Measure total concentrations in fractions. kerosine Verbruggen, E.M.J. PhD thesis. Predicting hydrophobicity, bioconcentration and baseline toxicity of complex organic mixtures, 1999.

Block and hydrophobicity profiles as input into models Emissions Fate models Concentrations in compartment block n block 1 C PNEC 1.0 Accumulation models Concentrations in biota Effects on biota NOEC ecosystem ~ 0.01 mmol/kg Block approach is promising for UVCB: Petroleum hydrocarbons, surfactants,.

Site specific assessment of mixtures of chemicals with non-specific toxicity: total body residues Biomimetic extraction Measurement of total molar concentration in extract Sample ID: Acquired 24-Jul-2002 at 18:08:05 HLR14 100 8.117 7.997 Scan EI+ TIC 1.00e8 Area 9.138 6.529 7.549 7.148 3.439 8.681 9.352 % 4.440 4.871 6.295 9.392 9.593 0 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 rt Hydrophobic phase as surrogate for oranisms organisms: - SPME fiber (PDMS, PA) - empore disk (C18) Techniques for measuring total concentrations: Vapor pressure osmometry or GC-MS Verhaar, H.J M. et al. 1995. Environ. Sci. Technol. 29, 726-734. Parkerton, T.F. et al. 2000. Toxicol. Lett. 112, 273-282. Van Loon, W.M.G.M.; et al. 1997. Environ. Toxicol. Chem. 16, 1358-1365. Leslie, H.A. et al., 2002. Environ. Sci. Technol. 36, 5399-5404.

Eem Rijn Maas Schelde IJselmeer TIC Total body residues in river water samples (sampler: empore C18 disk) 10 9 8 7 surface water samples 2 = sublethal effects 3 = ecosystem effects 6 5 2 sublethal effects 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3 ecosystem effects Van Loon, W.M.G.M. et al. 1997. Environ. Toxicol. Chem. 16, 1358-1365.

Outline Mixture toxicity and mode of action Non specific toxicity: block approach and total body residues Complex cases: complex similar action, synergism, antagonism and multiple mechanisms Tools in ecological risk assessment of mixtures

Beyond concentration addition

Mortality Chemicals with dissimilar modes of action: independent action Response of mixture: No addition: max { P A, P B } 10 5 Response addition: 1-{(1-P A )*(1-P B )} P A + P B 0 0 1 2 3 log Concentration (mg/l) For prediction of mixture effects dose-response curve are needed. If C < NOEC: no contribution to effects in mixture. Example of independent action: mixture of 16 compounds with a different mode of action in an algal assay, see Grimme, H. Altenburger, R. Backhaus, Faust, M., Bödeker, W. Scholze, 2000, UWSF-Z. Umweltchem. Ökotox. 12(4), 226-234

Complex similar action (competition), synergism and antagonism

Effect Synergism / antagonism at level of biotransformation: example of organophosphate insecticides 100 Synergism Antagonism 50 0 0 1 2 3 4 log dosis

Complex similar action (competition) at level serum protein binding Protein binding: adsorption process - saturation Protein bound Free concentration of A in serum Chemical A Chemical B Synergistic effects with drug intake (human) In general: competition may occur in adsorption processes resulting in unexpected observations

Complex similar action (competition) at level of sediment sorption Example of competitive sorption to sediment of alcohol ethoxylates (surfactants): C n (EO) m Droge, S.J. et al. 2009. Environ. Sci. Technol. 43, 5712-5718. Droge, S.J. and Hermens, J.L.M. 2010. Environ. Pollut. 158, 3116-3122.

Chemicals may act via multiple mechanisms: example organophosphates narcosis reactive toxicity aqueous phase inside EC ~ K ow EC ~ k membrane outside aqueous environment K ow EC50

log LC50 Organophosphates: specific, but also non specific toxicity Fish LC50 versus K ow 7 6 5 Non specific toxicity 4 3 2 1 Organophosphates 0-2 0 2 4 6-1 -2 log Kow data from Hermens et al. 1987 and de Bruijn et al. 1991

2.50 2.76 2.94 3.04 3.47 3.63 3.72 3.96 4.32 5.21 (mmol/kg lipid) Organophosphates: specific, but also non specific toxicity Estimated body residues at LC50 1000 100 10 1 0.1 0.01 critical body residue for narcosis K ow Some organophosphates act only via non specific toxicity. Each organic chemical will contribute to total non specific toxicity. Freidig, A.P. et al. 2000. Quant. Struct. Act. Relat. 19, 547-553.

Complex similar action (competition), synergism and antagonism: consequences for risk assessment? Synergism, antagonism and complex similar action do occur. Scientifically very interesting cases. Difficult to predict. Are these rare cases?

Outline Mixture toxicity and mode of action Non specific toxicity: block approach and total body residues Complex cases: complex similar action, synergism, antagonism and multiple mechanisms Tools in ecological risk assessment of mixtures

Ecological Risk Assessment: Risk = PEC/PNEC ratio (quantitative) Exposure assessment Effect assessment PEC: Predicted Environmental Concentration PNEC: Predicted No-observed Effect Concentration

Generic risk assessment of chemical products (UVCB substance) REACH Generic risk assessment of chemicals and products Products of mixtures of chemicals with similar action PEC PNEC Guidance: concentration addition: C PNEC 1.0 Tools: WATER AIR SOIL Total body residues Block approach SEDIMENT + DEGRADATION Block approaches block n block 1 C PNEC 1.0

Site specific ecological risk assessment of mixtures - WFD WFD: Water Framework Directive Site specific risk assessment PEC-PNEC ratio for individual contaminants (priority chemicals) TEF concept C PNEC 1.0 Effect studies, incl. field studies Chemical group parameters Biomarkers Effect parameters at cellular level Toxicity identification evaluation Effect directed analysis

Group parameters for estimating effects of mixtures based on mode of action Mode of action Chemical group parameters Biomarkers (simple biochemical parameters) Effect parameters in vitro In vivo effect parameters in risk assessment (whole organism) Non specific toxicity Effects on endocrine system Enzyme inhibition or induction Specific receptor interactions etc.

Specific toxicity of organophosphates X No simple parameter that can predict in vivo effects at whole organism level

Site specific risk assessment: WFD 1. If major contaminants and concentrations are known: Concentration addition for chemicals with similar modes of action. C PNEC 1.0 Response addition for other combinations. 1-{(1-P A )*(1-P B )} 2. Unknown composition Bioassays (in vivo) and ecology as warning. Combination of toxicology (in vivo, in vitro) and chemistry.

Questions / challenges Further development of block approaches. Are there alternatives to the classical PEC/PNEC (in vivo) approach? Can we develop quality criteria for in vitro effects? Calibration of in vitro effects to in vivo effects. Mechanistic studies into complex similar action (competition, synergism and antagonism). Further development of effect directed analysis. Development of specific risk assessment procedures for mixtures.

Acknowledgements Jack de Bruijn John Deneer Steven Droge Andreas Freidig Heather Leslie Willem van Loon Eric Verbruggen (former co-workers) European Union projects, CEFIC