Vortex matter in nanostructured and hybrid superconductors

Similar documents
University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems

arxiv:cond-mat/ v1 [cond-mat.supr-con] 20 Jun 2001

Pinning-induced formation of vortex clusters and giant vortices in mesoscopic. superconducting disks

Formation and size dependence of vortex shells in mesoscopic superconducting niobium disks

Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder

arxiv:cond-mat/ v1 [cond-mat.supr-con] 25 Apr 2005

arxiv: v1 [cond-mat.supr-con] 10 Apr 2008

Vortices in superconductors& low temperature STM

From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks

arxiv:cond-mat/ v1 [cond-mat.supr-con] 10 Oct 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 29 Mar 2007

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

arxiv: v2 [cond-mat.supr-con] 5 Apr 2017

M.C. Escher. Angels and devils (detail), 1941

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

Ginzburg-Landau length scales

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

smaller mfp coh L type II

Vortices in superconductors: I. Introduction

Note that some of these solutions are only a rough list of suggestions for what a proper answer might include.

Anisotropy included in a nanoscale superconductor: Theoretical development

1 Superfluidity and Bose Einstein Condensate

Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: The London approximation

CONDENSED MATTER: towards Absolute Zero

Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field

DE GENNES PARAMETER DEPENDENCE ON SUPERCONDUCTING PROPERTIES OF MESOSCOPIC CIRCULAR SECTOR

Superconducting films with antidot arrays Novel behavior of the critical current

arxiv: v1 [cond-mat.supr-con] 13 Jun 2017

arxiv: v1 [cond-mat.supr-con] 16 Aug 2013

Multivortex states in mesoscopic superconducting squares and triangles

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays

Properties of mesoscopic superconducting thin-film rings: London approach

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9)

Electrodynamics of superconductor-ferromagnet hybrid structures

Abrikosov vortex lattice solution

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Jun 2001

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 15 Jul 1998

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 1999

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size

Quantum Phase Slip Junctions

Vortex lattice pinning in high-temperature superconductors.

Advances in Physics Theories and Applications ISSN X (Paper) ISSN (Online) Vol.27, 2014

Superconductivity - Overview

Critical fields and intermediate state

Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field

arxiv:cond-mat/ v1 [cond-mat.supr-con] 17 Mar 2003

Intermediate State in Type I superconducting sphere: pinning and size effect.

arxiv:cond-mat/ v1 [cond-mat.supr-con] 4 Jul 2002

What was the Nobel Price in 2003 given for?

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

Physics 525, Condensed Matter Homework 8 Due Thursday, 14 th December 2006

14.4. the Ginzburg Landau theory. Phys520.nb Experimental evidence of the BCS theory III: isotope effect

Collective Effects. Equilibrium and Nonequilibrium Physics

Electric current crowding in nanostructured conductors. Alejandro V. Silhanek

Chapter 1. Macroscopic Quantum Phenomena

arxiv:cond-mat/ v1 [cond-mat.supr-con] 7 Jul 2004

Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1

Phase transitions in Bi-layer quantum Hall systems

Lecture 10: Supercurrent Equation

Superconductivity and the BCS theory

The Ginzburg-Landau Theory

WHAT IS SUPERCONDUCTIVITY??

Strongly Correlated Systems:

Ginzburg-Landau Theory: Simple Applications

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures


Chapter 1. Macroscopic Quantum Phenomena

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Exotic Properties of Superconductor- Ferromagnet Structures.

SHANGHAI JIAO TONG UNIVERSITY LECTURE

LECTURE 3: Refrigeration

Ginzburg-Landau theory

SUPPLEMENTARY INFORMATION

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

(Color-)magnetic flux tubes in dense matter

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Unit V Superconductivity Engineering Physics

Chapter Phenomenological Models of Superconductivity

Ferromagnetic superconductors

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Cover Page. The handle holds various files of this Leiden University dissertation.

On the Higgs mechanism in the theory of

Coexistence of the Meissner and Vortex States on a Nanoscale Superconducting Spherical Shell

Vortex Liquid Crystals in Anisotropic Type II Superconductors

ABSTRACT ANODIC ALUMINUM OXIDE MEMBRANES

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Superconductivity and Superfluidity

Superconductivity. Dept of Phys. M.C. Chang

Condensed Matter Option SUPERCONDUCTIVITY Handout

Quantum Theory of Matter

arxiv: v1 [cond-mat.supr-con] 22 Feb 2011

Transcription:

Vortex matter in nanostructured and hybrid superconductors François Peeters University of Antwerp In collaboration with: B. Baelus, M. Miloševic V.A. Schweigert (Russian Academy of Sciences, Novosibirsk) D. Vodolazov (Russian Academy of Sciences, Nizhny Novgorod) P. Deo (Bose Institute, Calcutta) A.K. Geim (University of Nijmegen, The Netherlands) (since 1: University of Manchester, UK)

Common wisdom about superconductivity # Superconducting phase boundary: is a material property independent of the size of the superconductor # Two general classes of superconductors # Quantization of flux in units of Φ =hc/e

S/N boundary: mesoscopic effects film S/N boundary depends on the size of the sample. Decreasing the size of the superconductor enhances the superconducting state

Magnetization T =.4K Al-disks d =.7-.15 µm λ() = 7 nm ξ() =.15 µm κ = λ/ξ =.8 < 1/ -4π M (a. u.) 3 1 x1 x.5 x1.3 x1.5 µm.5 µm Type I or type II behavior is no longer.75 µm only determined by the material. The size of the sample is very important and can turn a type I superconductor into a type II superconductor. r = 1. µm A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, and F.M. Peeters, Nature 39, 59 (1997) 5 1 H (Gauss)

Fractional and negative vortices Al-disks R = 7.5 µm d =.1 µm T =.5 K Φ (φ ) 3 δφ 1 5.5 H (G) 6 φ Vortex entry no longer leads to an increase of flux by a quantized unit. The amount of flux can even be negative with increasing H. 4 6 8 H (Gauss) A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, F.M. Peetrs, and V.A. Schweigert, Nature 47, 55 ()

Ginzburg-Landau formalism condensation energy (<) interaction energy (>) α r Gs = Gn + dr r β r 4 Ψ ( r) + Ψ( r) 1 * + Ψ m* internal magnetic field urr rr rota( r) = h( r) * r urr r r e 1 () r ih Ar () Ψ () r + (() hr H) c 8π kinetic energy operator for Cooper pairs: m*=m, e*=e applied magnetic field α = h mξ o T (1 ) T o, length scales: ξ =h / m* α coherence length λ = c m β 4 e π α penetration length

G s Ψ, r A Ginzburg Landau equations δ G s δψ = 1 m e i ur r h A Ψ = αψ βψ Ψ c δ δ G s r A = ur ur ur 4π r A = j c r ur ur ur j eh im ( * *) 4 e = Ψ Ψ Ψ Ψ Ψ mc A Boundary conditions: # At the superconducting/insulating interface: # Magnetic field far away from disk = applied field: e ih A Ψ= c r r n ur 1 r Ar = Ho ρ eφ

Superconducting Normal phase boundary E Electrons e, m, E H H Cooper pairs e*=e, m*=m, E -α 1-T/T o S N T Box Ψ Electrons Ψ(R)= R Ψ Cooper pairs (-ih -e*a/)ψ n = R

electrons Cooper pairs A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, and F.M. Peeters, Nature 39, 59 (1997) R=.55µm d=.8µm ξ()=.µm

Circular symmetry: Giant vortex states r Ψ ( r) = F( ρ, ze ) ilϕ -M free energy..1. -.1. 5 6 7 8 3 4 -. -.4 -.6 -.8-1. L= 1 L= 1 3 4 5 6 7 R/ξ=3.5 d/ξ=.18 κ=.8 8 equilibrium F( ρ) vorticity (for thin disks and cylinders) Magnetic field: A ϕ (ρ,z) [Ψ, A j ] [1D, D] - problem..5 1. 1.5. H/H c

Density of superconducting condensate density Cooper pairs 1..8.6.4. L=1 L= L= L=3 L=4 L=5 L=6 L=7 L=8....4.6.8 distance in µm -magnetization (Gauss).3..1 magnetic field (Gauss) 1 1 8 6 4 Magnetization r.6 1.5 Ψ.5 ( r) = F( ρ, ze ) ilϕ 1..4.8 Magnetic field distribution 119.57G 111.5G 13.43G 87.8G 79.1G 71.14G 63.7G 46.9G 38.85G L=8 L=7 L=6 L=5 L=4 L=3 L= L=1 L= R=.8µm d=.134µ m ξ()=.183 µm λ()=.7µm T=.4K..5 1. 1.5. ρ L (ρ ) distance in µm.75.5.5. 4 6 8 1 1 magnetic field (Gauss).

Experiment theory -M (Gauss).3.5..15.1 T=.4K R=.5 µm d=.134 µm 1.5 1.5 1..75.5.5.5..6. 1.5 1 3 4 5 6 7 Superconducting dots H (Gauss) Two-dimensional electron gas -magnetization (Gauss).5.4.3..1 Total magnetic field (Gauss) 1 8 6 4 Averaging over detector DETECTOR DISK -.3 1 3 4 5 6 7 Magnetic field (Gauss).. 4 6 8 1 1 - -1 1 3 Distance along a line through the disc center in µm -Magnetization (Gauss).15.1.9.6.3. magnetic field (Gauss) T =.4K R =.8 µm d =.134 µm 1..8.75.5.5

Larger disks Small disks: symmetry of disk determines the symmetry of superconducting density r Ψ ( r) = F ( ρ, z) e ilϕ Larger disks: competition between symmetry boundary of sample and Abrikosov lattice [Ψ, A] [D, 3D] - problem

Giant - multi-vortex transitions F/F -M/H c (x 1-3 ). -. -.4 -.6 -.8-1. 1 8 6 4 R/ξ = 4. d/ξ =.1 κ =.8 L = 1 3 4..5 1. 1.5. 5 H /H c 6 7 8 9 11 1 y/ξ y/ξ 4 H=.55H c - -4 H=.75H c 4 - -4 Magnetic field distribution -4-4 x/ξ H=.65H c H=.8H c -4-4 x/ξ

Multiple-small-tunnel junctions The idea: Lead 1 (N) I 1 small tunnel junction superconductor ξ 4 Al, R=75nm, d=33nm Apply a fixed current I 1 = 1pA and measure the voltage as a function of the field. Decrease of the energy gap by the supercurrent underneath the junction (Bardeen, 196): ( J S ) = () 1 7 J J S C y/ξ - -4-4 - 4 x/ξ Axial symmetry: V A = V B = V C = V D -4-4 x/ξ Non-Axial symmetry: V A V B V C V D A. Kanda et al (4)

Multi-vortex transitions

Giant - multi-vortex states. L=6 L=7-4π M 35 4 45 5 H (Gauss) A.K. Geim, S.V. Dubonos and J.J. Palacios, Phys. Rev. Lett. 84, 1796 ()

Vortex states (R=6ξ) L=6-14: one vortex in center + (L-1) vortices in a ring Are 9 vortices on a ring stable? L=1-14: two vortices in center + (L-) vortices in a ring 6 4 L = 11 y/ξ - -4-6 -6-4 - 4 6 x/ξ L=1-14: three vortices in center + (L-3) vortices in a ring

Free energy F/F L 3 vortices on an outer ring + 3 vortices on an inner. ring for L = 1 14.. -.1 -. -.3 -.4 -.5 -.6 -.7 -.8 -.9-1. R = 6.ξ L vortices on a ring -. L - 1 vortices on a ring + 1 vortex in the center -.5 Giant vortex state with vorticity L L - vortices on a outer ring + vortices on a inner ring L - 3 vortices on a outer ring + 3 vortices on a inner ring...4.6.8 1. 1. 1.4 1.6 1.8 H /H c F/F -.5 -.1 -.15 R = 6.ξ.7.8.9 1. 1.1 H /H c 1 13 14

Larger disks (L = 16) Three different vortex configurations are stable: y/ξ 15 1 5-5 -1-15 - - -15-1 -5 5 1 15 x/ξ y/ξ 15 1 5-5 -1-15 - - -15-1 -5 5 1 15 x/ξ y/ξ 15 1 5-5 -1-15 - - -15-1 -5 5 1 15 x/ξ (4,1) (5,11) (1,5,1) R =? H = 1.H c Lowest energy B.J. Baelus, L.R.E. Cabral, and F.M. Peeters, Phys. Rev. B 69, 9451 (4)

Disks with R 5? High fields: triangular lattice in the center Cooper-pair density L = 3 Voronoi construction L = 3 L. R. E. Cabral et al, PRB (4)

T =.4K Summary: size dependence 3 x1.5 µm Only Meissner state Only axially symmetric states (giant vortex states) Multivortex states: one vortex shell -4π M (a. u.) Multivortex states: several vortex shells 1 x. 5 x1. 3 x 1 Circular vortex shells near the boundary + Triangular vortex lattice in the center 5 1 H (Gauss).5 µm.75µm r = 1.µm Small disks Large disks

Entrance and exit of vortices Bean-Livingston surface barrier -.17 R=4.8ξ, d= H/H c =.86 free energy -.18.78.8.84.8 r Ψ, A -.19 [18 18, (768 768) 6] 1 3 4 5 x/ξ

Fractional and negative vortices

Fractional and negative vortices Al-disks R = 7.5 µm d =.1 µm T =.5 K Φ (φ ) 1 3 5.5 δφ H (G) Φ (φ ) 5 4 3 6 (a) (b) φ µm 1 (c) 4 6 15 8 3 45 H (Gauss) H (Gauss) A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselev, F.M. Peeters, and V.A. Schweigert, Nature (London) 47, 55 ().

Surface roughness -. -.3 -.4 -.5 -.5 -.6 -.7 -.8 -.9-1. (d) (e) (e)..1..3 (d) (c) (a) Superconducting density free energy -.6 -.7 -.8 -.9 (a) (a) (b) (c) (b) (d) (b) (a) (b) -1. (e) (c)..1..3.4 H/H c Vortex exit Vortex entrance

Ring structures Sub-micron Hall probe Detector area Multiple flux entry/exit (Ørsted Laboratory, Copenhagen) R 5.5ξ w 1.3ξ D.Y. Vodolazov, F.M. Peeters, S.V. Dubonovs, A.K. Geim, Phys. Rev. B 67, 5456 (3) S. Pedersen, G. R. Koford, J. C. Hollingbery, C. B. Sorensen, and P. E. Lindelof, Phys. Rev. B 64, 145 (1).

Time-dependent Ginzburg-Landau equations ψ ( ) ( u + iϕψ = i A ψ+ψ ψ 1) +χ t ( i A) ( ( * )) ϕ= div Re ψ ψ

Comparison with experiment R 5.5 ξ w 1.3ξ

Conclusions Ginzburg-landau theory is able to describe the superconducting state of mesoscopic superconductors (also deep inside the superconducting state) Depending on the radius of the disk: type I, type II, multi-type I behavior Geometry (i.e. size) determines the properties Giant multi-vortex transition (second-order) Multi-vortex configurations (first order) Metastability: Hysteresis Fractional and negative flux entrance Multi-vortex entry/exit in ring structures

University of Antwerp Condensed Matter Theory Group Nanostructured ferromagnets + superconducting film D.S. Golubovic et al, Phys. Rev. B 68, 1753 (3) J.I. Martín et al, Phys. Rev. B 6, 911 () J.E. Villegas et al, Science 3, 1188 (3) Ferromagnets create inhomogeneous magnetic fields with <H>= will locally destroy superconductivity pinning centra <H> vortex/antivortex pairs can be created

University of Antwerp Condensed Matter Theory Group I II III IV V Single magnetic dot on top of a SC film Φ + /Φ 4 6 8 1 1 -.96 VI VII VIII F/F -.97 -.98 -.99-1. I II III IV VII VIII d/ξ=.5 d d /ξ=.5 R d /ξ=1. κ=1. 5 1 15 5 3 V m/(h C ξ 3 ) VI

University of Antwerp Condensed Matter Theory Group Larger magnetic disk favoring the multivortex state h mz /H c,5, 1,5 1,,5, -,5 1 3 4 5 6 7 r / x d d /ξ=1. R d /ξ = 1. 4. R /ξ d = 4. 1.

University of Antwerp Condensed Matter Theory Group 5 y/ξ -5-5 5 x/ξ 5 y/ξ -5-5 5 x/ξ The equilibrium vortex phase diagram: Solid lines: transitions between different vortex configurations for different size (R d ) and magnetic moment (m) of the dot. Dashed lines: denote the formation of a new ring of anti-vortices. N is the number of the anti-vortices involved. Shaded area: the multi-vortex state under the dot is energetically favorable (giant vortex splits into individual vortices).

University of Antwerp Condensed Matter Theory Group Transition between successive N-states: the baby vortex-antivortex pair F/F 4 6 8 1 1 -.96 -.97 -.98 -.99-1. IV III Φ + /Φ IV III II I VIII VII VI V 8 1 1 14 16 18 5 1 15 5 3 m/m IV III m/m

University of Antwerp Condensed Matter Theory Group Normal state N=1 N= N=3 N=4 Φ + /Φ =1.65 Φ + /Φ =1.63 N= Φ + /Φ =1.9 Φ + /Φ =1.7

University of Antwerp Condensed Matter Theory Group Normal state N=1 N= N= N=3 N=4 single dot-like behavior

Fractional states +3 + Unit cell - Appear only as metastable states, in the considered range of parameters - Significantly influenced by the Ginzburg-Landau parameter κ enhanced stability in strong type II superconductors

University of Antwerp Condensed Matter Theory Group Magnetic-field-enhanced critical current L / ξ = 6.5 a / ξ =. D / ξ =. l / ξ =.1 d / ξ =. κ = 1.

University of Antwerp Condensed Matter Theory Group Magnetic-field-induced superconductivity M. Lange et al., Phys. Rev. Lett. 9, 1976 (3) H/H 1 =1 φ + / φ =.8 H/H 1 = H/H 1 =

Conclusions Single FM dot on top of a SC film - Vortex/anti-vortex molecule - Anti-vortex ring structure Lattice of FM dots: Vortex/anti-vortex lattice Perpendicular magnetization Magnetic field enhanced critical current Magnetic field induced superconductivity New vortex/anti-vortex lattice structures: each of them may have a different unit cell

THE END