Nernst effect in vortex-liquid state of cuprates

Similar documents
Magnetization in Vortex-Liquid State in Cuprates

Nernst effect in high T c superconductors

Dual vortex theory of doped antiferromagnets

The Nernst effect in high-temperature superconductors

The Hubbard model in cold atoms and in the high-tc cuprates

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

F. Rullier-Albenque 1, H. Alloul 2 1

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

What's so unusual about high temperature superconductors? UBC 2005

Diamagnetism and Cooper pairing above T c in cuprates

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Superconducting fluctuations in Bi 2 Sr 2 Ca 1 x Dy x Cu 2 O 8+δ as seen by terahertz spectroscopy

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

arxiv: v1 [cond-mat.supr-con] 7 Jan 2017

Emergent gauge fields and the high temperature superconductors

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Quantum theory of vortices in d-wave superconductors

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Deconfined Quantum Critical Points

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

arxiv:cond-mat/ v1 4 Aug 2003

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Intertwined Orders in High Temperature Superconductors

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Strongly correlated Cooper pair insulators and superfluids

Vortices in superconductors& low temperature STM

A New look at the Pseudogap Phase in the Cuprates.

Talk online at

Vortex Liquid Crystals in Anisotropic Type II Superconductors

Order and quantum phase transitions in the cuprate superconductors

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Collective Effects. Equilibrium and Nonequilibrium Physics

Criteria for the validity of Amontons Coulomb s law; Study of friction using dynamics of driven vortices of superconductor

Lecture 2: Deconfined quantum criticality

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Strongly Correlated Systems:

Understanding correlated electron systems by a classification of Mott insulators

Quantum Melting of Stripes

Phase transitions in Bi-layer quantum Hall systems

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future?

Emergent light and the high temperature superconductors

Tuning order in cuprate superconductors

Electronic Noise Due to Thermal Stripe Switching

From Critical Phenomena to Holographic Duality in Quantum Matter

Citation PHYSICAL REVIEW LETTERS (2000), 85( RightCopyright 2000 American Physical So

The Higgs particle in condensed matter

Understanding correlated electron systems by a classification of Mott insulators

Superconductivity - Overview

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Nernst effect as a probe of superconducting fluctuations

Theoretical Study of High Temperature Superconductivity

Superinsulator: a new topological state of matter

Detecting boson-vortex duality in the cuprate superconductors

Topological order in insulators and metals

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Phase Diagram of Under-doped Cuprate Superconductors

Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors. T. Domański

Talk online: sachdev.physics.harvard.edu

Electronic Liquid Crystal Phases in Strongly Correlated Systems

High-T c superconductors

Universal scaling relation in high-temperature superconductors

November 16, 2015 ISS 2015 (Funabori, Tokyo) Road to Higher T. S. Uchida, Univ of Tokyo, 2. AIST, Tsukuba, 3. IOP-CAS, Beijing

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Superfluid vortex with Mott insulating core

Tunneling Spectroscopy of PCCO

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

Quantum Theory of Matter

Quantum theory of vortices and quasiparticles in d-wave superconductors

Theory of the Nernst effect near the superfluid-insulator transition

Heterogeneous vortex dynamics in high temperature superconductors

Cuprates supraconducteurs : où en est-on?

Collective Effects. Equilibrium and Nonequilibrium Physics

Relativistic magnetotransport in graphene

Can superconductivity emerge out of a non Fermi liquid.

Quantum Phase Transitions

Order and quantum phase transitions in the cuprate superconductors

Impurity effects in high T C superconductors

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films , Rome, Italy.

Anomalous quantum criticality in the electron-doped cuprates

Angular-dependent magnetic torque in iron-pnictide BaFe 2 x Ni x As 2

Superconducting properties of carbon nanotubes

Quantum noise studies of ultracold atoms

Ginzburg-Landau length scales

Conference on Superconductor-Insulator Transitions May 2009

Quantum magnetism and the theory of strongly correlated electrons

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

SHANGHAI JIAO TONG UNIVERSITY LECTURE

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Quantum bosons for holographic superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors

Disordered Superconductors

Vortices in Classical Systems

Transcription:

Boulder School for Condensed Matter and Materials Physics 2008 Talk 2 Nernst effect in vortex-liquid state of cuprates 1. Introduction to the Nernst effect 2. Vortex signal above Tc 3. Loss of long-range phase coherence 4. The Upper Critical Field 5. The cuprate phase diagram N. P. Ong Collaborators: Lu Li, Yayu Wang, Zhuan Xu (Princeton Univ.) S. Uchida (Univ. Tokyo) D. Bonn, W. Hardy, R. Liang (Univ. British Columbia) Supported by NSF-MRSEC, ONR Boulder, July 2008

Phase diagram of Cuprates Mott insulator s = 1/2 hole T pseudogap T * AF T c dsc Fermi liquid 0 0.05 0.25 doping x

0 ) ( k k k k k + = Ψ c c v e u i BCS φ BCS wave function Phase φ fixed (phase representation); N fluctuates [N, φ ] = 1 k u k v + + 1 0 0 1 φ i e v u k k Anderson pseudospin (r) (r) ˆ φ i e Ψ = Ψ The phase of macroscopic pair-wave function φ S

Vortices in type-ii superconductors Vortex in Niobium Vortex in cuprates Normal core b(r) CuO 2 layers J s 2D vortex pancake H J s superfluid electrons (pair condensate) ξ ξ coherence length ξ b(r) Ψ = Δ London length λ

Phase diagram of type-ii superconductor 2H-NbSe 2 cuprates 4 T H vortex solid H c1 H m liquid normal H c2 H H c1 vortex solid? vortex liquid H m? 0 T T c0 0 T T c0 Meissner state

Vortex motion in type II superconductor (Bardeen Stephen, Nozieres Vinen) Applied supercurrent J s exerts magnus force on vortex core r F M = J s Φ 0 Velocity gives induced E-field in core (Faraday effect) Current enters core and dissipates (damping viscosity) Motion of vortices generates observed E-field H E = B x v ρ xx = ρ N = BΦ0 / η H Consequence of Josephson equation c2 Tilt angle of velocity gives negative vortex Hall effect In clean limit, vortex v is - J s

Anderson-Higgs mechanism and phase rigidity F F ψ 2 ψ 1 amplitude fluctuation ψ 2 ψ 1 phase fluctuation Anderson-Higgs mechanism: Phase stiffness singular phase fluc. (excitation of vortices) Phase mode θ + EM F μν = Massive mode (Meissner effect)

P.W. Anderson Phys. Rev. 1959, RMP 1966 Phase rigidity uniform phase θ Ψ e iθ(r) H ρ ( ) 2 1 3 d r ρ θ = 2 S phase rigidity measured by ρ s But phase coherence destroyed by mobile vortices Δθ = 2π

phase-slip and Nernst signal H Δ T Δθ = 2π Passage of a vortex Phase diff. θ jumps by 2π Josephson Eq. ev J = hφ 2 = 2πh n V ΔV J time Integrate V J to give dc signal prop. to n v

Baskaran, Zou, Anderson (Sol. St. Comm. 1987) Doniach, Inui (PRB 1989) Uemura plot (Nature 1989) Emery, Kivelson (Nature 1995) low hole density and high Tc cuprates highly suscep. to phase fluctuations Corson, Orenstein (Nature 1999) Kinetic inductance meas. at THz freq extends above Tc KT physics in ultra-thin film BSCCO M. Franz and Z. Tesanovic (1999) Vortex-charge duality, QED3 model S. Sachdev (2005) Quantum vortices

Theories on phase fluctuation in cuprates Baskaran, Zou, Anderson (Solid State Comm. 1987) Δ vs. x and the loss of phase coherence in underdoped regime Emery Kivelson (Nature 1995) Phase fluctuation and loss of coherence at Tc in low (superfluid) density SC s M. Renderia et al. (Phys. Rev. Lett. 02) Cuprates in strong-coupling limit, distinct from BCS limit. Tesanovic and Franz (Phys. Rev. B 99, 03) Strong phase fluctuations in d-wave superconductor treated by dual mapping to Bosons in Hofstadter lattice --- vorticity and checkerboard pattern Balents, Sachdev, Fisher et al. (2004) Vorticity and checkerboard in underdoped regime P. A. Lee, X. G. Wen. (PRL, 03, PRB 04) Loss of phase coherence in tj model, nature of vortex core Lee, Nagaosa, Wen, Rev. Mod. Phys. (cond-mat/0410***) Good review of phase stiffness, phase fluctuation issues P. W. Anderson (cond-mat 05) Spin-charge locking occurs at T onset > T c

The Nernst effect of carriers J t t = σ.e + α.( T ) Open boundaries, so set J = 0. Wang et al. PRB 01 E E y = t ρ. t α.( T ) ( ρα + ρ )( T ) = α yx yx x Off-diag. Peltier cond. α xy 2 = 2e k 0 f k ε k μ l ε T y v B. k ( l x ) Measured Nernst signal e N E y T = 2 π 3 2 kbt e θ ε Generally, very small because of cancellation between α xy and σ xy

The vortex Nernst effect; dominant in vortex liquid state Moving vortex produces E = B x v Gradient drives vortex current with velocity v x B E v Force exerted on vortex line by grad T F = s φ ( T ) Line entropy s φ Balance F by viscous damping η v = s φ ( T ) Nernst signal e N E e N = = T Bs φ η

Nernst experiment e y H m H Vortices move in a temperature gradient Phase slip generates Josephson voltage Nernst signal e y = E y / T 2eV J = 2πh n V E J = B x v

Nernst effect in LSCO-0.12 Xu et al. Nature (2000) Wang et al. PRB (2001) vortex Nernst signal onset from T = 120 K, ~ 90K above T c`1

Nernst effect in underdoped Bi-2212 (T c = 50 K) Vortex signal persists to 70 K above T c.

OP YBCO UD LSCO Wang, Li, NPO PRB (2006) OP Bi2212 UD Bi2212

Nernst contour-map in underdoped, optimal and overdoped LSCO

Overdoped LaSrCuO x = 0.20 H* H m T co

Optimal, untwinned BZO-grown YBCO

Nernst contour maps in UD YBCO and OP YBCO Contour plots in underdoped YBaCuO 6.50 (main panel) and optimal YBCO 6.99 (inset). Vortex signal extends above 70 K in underdoped YBCO, to 100 K in optimal YBCO High-temp phase merges continuously with vortex liquid state T co Wang et al., PRL 02

Contour Map of Nernst Signal in Wang, Bi 2201 Li, Ong PRB 2006

Kosterlitz-Thouless transition Spontaneous vortices destroy superfluidity in 2D films Change in free energy ΔF to create a vortex ΔF = ΔU TΔS = (ε c k B T) log (R/a) 2 ΔF < 0 if T > T KT = ε c /k B vortices appear spontaneously ρ s Δ 0 T KT T c MF 3D version of KT transition in cuprates?

Kosterlitz Thouless transition in 2D superconductor vortex density antivortex vortex Unbinding of vortex-antivortex Free energy gain ΔF = U - TS

BCS transition 2D Kosterlitz Thouless transition n vortex Δ Δ ρ s ρ s 0 T c 0 T KT T MF H = ½ ρ s d 3 r ( φ) 2 ρ s measures phase rigidity Phase coherence destroyed at T KT by proliferation of vortices High temperature superconductors?

Simulation Nernst effect in 2D XY model Podolsky, Raghu, Vishwanath PRL (2007).

Loss of phase coherence determines Tc Condensate amplitude persists T>Tc Wang et al. PRB (2001), NPO et al. Ann. Phys (2004)

Condensate amplitude persists to T onset > T c Nernst signal confined to SC dome Vorticity defines Nernst region

The Upper Critical Field -- destruction of pair condensate upper critical field

Phase diagram of type-ii superconductor 2H-NbSe 2 cuprates 4 T H vortex solid H c1 H m liquid normal H c2 H H c1 vortex solid? vortex liquid H m? 0 T T c0 0 T T c0 Meissner state

Cooper pairing in cuprates d-wave symmetry + - - ξ coherence length + Δ θ ) = Δ cos 2θ ( 0 Upper critical field H c 2 = φ0 2 2πξ cuprates Nb 3 Sn MgB 2 NbSe 2 18 29 57 90 o ξ (A) H c2 100 Tesla 40 10 4 Tesla

PbIn, T c = 7.2 K (Vidal, PRB 73) Bi 2201 (T c = 28 K, H c2 ~ 48 T) T=1.5K 2.0 1.5 T=8K ey e y (μv/k) 1.0 H d H c2 0.5 H c2 0.3 1.0 H/H c2 0.0 0 10 20 30 40 50 60 μ 0 H (T) Upper critical Field H c2 given by e y 0. Hole cuprates --- Need intense fields. Wang et al. Science (2003)

Vortex-Nernst signal in Bi 2201

Vortex Nernst signal in overdoped, optim. and underdoped regimes Wang, Li, NPO PRB 2006 overdoped optimal underdoped Nernst signal e N = E y / T

Wang et al. Science (2003) overdoped optimum underdoped e y (μv/k) 3.5 3.0 2.5 2.0 1.5 OD-Bi2212 (T c =65K) 45 50 40 55 35 60 30 3.5 3.0 2.5 2.0 1.5 OPT-Bi2212 (T c =90K) 90 75 70K 80 85 3.0 2.5 2.0 1.5 UD-Bi2212 (T c =50K) 40K 45 50 55 60 1.0 65 25 1.0 95 1.0 65 0.5 70 75 20 80 0.0 85 90 0 5 10 15 20 25 30 μ 0 H (T) 0.5 100 105 0.0 110 0 5 10 15 20 25 30 μ 0 H (T) 70 0.5 75 80 90 100 0.0 0 5 10 15 20 25 30 μ 0 H (T) Field scale increases as x decreases

Resistivity a bad probe for absence of pair amplitude Plot of ρ and e y versus T at fixed H (33 T). Vortex signal is large for T < 26 K, but ρ is close to normal value ρ N above 15 K. LaSrCuO

0.8 N d CCO (T c =24.5K) e y (μv/k) 0.6 0.4 12K Problems with Flux-flow Resistivity Bardeen Stephen law (not seen) Wang, Li, NPO PRB 06 1.0 LSC O (0.20) ρ e y (μv/k) 0.8 0.6 0.4 22K ρ e y e y 0.2 H c2 0.2 H c2 0.0 0 2 4 6 8 10 12 14 μ 0 H (T) 0.0 0 5 10 15 20 25 30 μ 0 H (T) Resistivity does not distinguish vortex liquid and normal state

NbSe 2 NdCeCuO Hole-doped cuprates H c2 Hc2 H c2 vortex liquid vortex liquid H m H m H m T c0 Conventional SC Amplitude vanishes at T c0 (BCS) T c0 Expanded vortex liquid Amplitude vanishes at T c0 T c0 Vortex liquid dominant. Loss of phase coherence at T c0 (zero-field melting)

Vortex Nernst signal in NdCeCuO -- mean-field scenario Plot of H m, H*, H c2 vs. T H m and H* similar to hole-doped However, H c2 has mean-field form Vortex-Nernst signal vanishes just above H c2 line

Anomalous Nernst signal only in pseudogap state Hole-doped optimal Electron-doped optimal T c Strong phase fluctuations (non Gaussian) T c Mean-field like (Gaussian fluctuations above Tc)

H c2 (0) vs x matches T onset vs x Wang et al., unpublished

Summary 1. Existence of large vortex-nernst region above T c dome 2. Transition at Tc not mean-field BCS, but loss of long-range phase correlation 3. Vortex liquid state extends high above Tc in UD regime 4. Upper critical field H c2 is very large, 80-150 Tesla 5. H c2 vs. T dependence not of mean-field BCS form

References (Talk 2) 1. Z. Xu, N.P. Ong, Y. Wang, T. Kakeshita and S. Uchida, Nature 406, 486 (2000). 2. Yayu Wang, Z. A. Xu, T. Kakeshita, S. Uchida, S. Ono, Yoichi Ando, and N. P. Ong, Phys. Rev. B 64, 224519 (2001). 3. Yayu Wang, N. P. Ong, Z.A. Xu, T. Kakeshita, S. Uchida, D. A. Bonn, R. Liang and W. N. Hardy, Phys. Rev. Lett. 88, 257003 (2002) 4. Yayu Wang, S. Ono, Y. Onose, G. Gu, Yoichi Ando, Y. Tokura, S. Uchida, and N. P. Ong, Science, 299, 86 (2003). 5. Yayu Wang, Lu Li and N. P. Ong, Phys. Rev. B 73, 024510 (2006), 6. Daniel Podolsky, Srinivas Raghu and Ashvin Vishwanath, Phys. Rev. Lett. 99, 117004 (2007). 7. V. Oganesyan and Iddo Ussishkin, Phys. Rev. B 70, 054503 (2004). 8. Cigdem Capan and Kamran Behnia et al., Phys. Rev. Lett. 88, 056601 (2002) 9. F. Rullier-Albenque, R. Tourbot, H. Alloul, P. Lejay, D. Colson, and A. Forget, Phys. Rev. Lett. 96, 067002 (2006)

Magnetization in Abrikosov state M H c1 H c2 H M~ -lnh M = - [H c2 H] / β(2κ 2 1) In cuprates, κ = 100-150, H c2 ~ 50-150 T M < 1000 A/m (10 G) Area = Condensation energy U

Optimal YBCO Wang, Li and NPO, PRB 06 3-layer Bi 2223