Quantum theory of vortices and quasiparticles in d-wave superconductors

Similar documents
Quantum theory of vortices in d-wave superconductors

Detecting boson-vortex duality in the cuprate superconductors

Dual vortex theory of doped antiferromagnets

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Quantum Phase Transitions

Theory of the Nernst effect near the superfluid-insulator transition

Order and quantum phase transitions in the cuprate superconductors

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators

Subir Sachdev Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Subir Sachdev Harvard University

arxiv:cond-mat/ v3 3 Jan 2006

Order and quantum phase transitions in the cuprate superconductors

Emergent gauge fields and the high temperature superconductors

Tuning order in cuprate superconductors

Quantum Criticality and Black Holes

Vortices in the cuprate superconductors

Tuning order in the cuprate superconductors by a magnetic field

Deconfined Quantum Critical Points

Quantum disordering magnetic order in insulators, metals, and superconductors

REPORT DOCUMENTATION PAGE

Tuning order in the cuprate superconductors

Emergent light and the high temperature superconductors

Talk online at

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Lecture 2: Deconfined quantum criticality

Electronic quasiparticles and competing orders in the cuprate superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Scanning Tunnelling Microscopy Observations of Superconductivity

A quantum dimer model for the pseudogap metal

Metals without quasiparticles

Quantum phase transitions and the Luttinger theorem.

Cuprate high-t c superconductors

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Strongly correlated Cooper pair insulators and superfluids

Quantum critical transport, duality, and M-theory

Vortices in Classical Systems

Z 2 topological order near the Neel state on the square lattice

From the pseudogap to the strange metal

Subir Sachdev Research Accomplishments

Vortices in superconductors& low temperature STM

Quantum vortices and competing orders

Talk online: sachdev.physics.harvard.edu

Quantum dynamics in many body systems

Perimeter Institute January 19, Subir Sachdev

Inhomogeneous spin and charge densities in d-wave superconductors

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

epl draft M. L. Teague 1,A.D.Beyer 1,M.S.Grinolds 1,S.I.Lee 2 and N.-C. YEH 1 Korea

SPT: a window into highly entangled phases

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

Erotokritos Katsavounidis Assistant Professor of Physics, Experimental Astrophysics

(Effective) Field Theory and Emergence in Condensed Matter

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Topological order in insulators and metals

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Saturday, April 3, 2010

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Deconfined Quantum Critical Points

Strongly Correlated Physics With Ultra-Cold Atoms

CONDENSED MATTER: towards Absolute Zero

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

DYNAMICS of a QUANTUM VORTEX

Signatures of the precursor superconductivity above T c

Superinsulator: a new topological state of matter

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

Nernst effect in vortex-liquid state of cuprates

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Impurity effects in high T C superconductors

Quantum Choreography: Exotica inside Crystals

The Higgs particle in condensed matter

Visualization of atomic-scale phenomena in superconductors

Small and large Fermi surfaces in metals with local moments

Quantum transitions of d-wave superconductors in a magnetic field

Nematic and Magnetic orders in Fe-based Superconductors

Topology, quantum entanglement, and criticality in the high temperature superconductors

Spin liquids on the triangular lattice

General relativity and the cuprates

Heterogeneous vortex dynamics in high temperature superconductors

Quantum Melting of Stripes

Modern Aspects of Superconductivity

Superfluidity and Condensation

2. Spin liquids and valence bond solids

High temperature superconductivity: Cooper pairs in trap

The Superfluid-Insulator transition

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Superconductivity and Quantum Coherence

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1).

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

Transcription:

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74, 144516 (2006), Annals of Physics 321, 1528 (2006) Subir Sachdev Harvard University Predrag Nikolic Talks online at http://sachdev.physics.harvard.edu

BCS theory for electronic quasiparticles in a d-wave superconductor

BCS theory for electronic quasiparticles in a d-wave superconductor

Quantized fluxoids in YBa 2 Cu 3 O 6+y J. C. Wynn, D. A. Bonn, B.W. Gardner, Yu-Ju Lin, Ruixing Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Phys. Rev. Lett. 87, 197002 (2001).

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Differential Conductance (ns) 3.0 2.5 2.0 1.5 1.0 Local density of states (LDOS) Regular QPSR Vortex LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ 0.5 0.0-120 -80-40 0 40 80 120 Sample Bias (mv) I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

BCS theory for local density of states (LDOS) at the center of a vortex in a d-wave superconductor Prominent feature: large peak at zero bias Y. Wang and A. H. MacDonald, Phys. Rev. B 52, 3876 (1995). M. Ichioka, N. Hayashi, N. Enomoto, and K. Machida, Phys. Rev. B 53, 15316 (1996).

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Differential Conductance (ns) 3.0 2.5 2.0 1.5 1.0 Local density of states (LDOS) Regular QPSR Vortex 1Å spatial resolution image of integrated LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ ( 1meV to 12 mev) at B=5 Tesla. 0.5 0.0-120 -80-40 0 40 80 120 Sample Bias (mv) I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ integrated from 1meV to 12meV at 4K 7 pa 0 pa b Vortices have halos with LDOS modulations at a period 4 lattice spacings 100Å J. Hoffman et al., Science 295, 466 (2002). G. Levy et al., Phys. Rev. Lett. 95, 257005 (2005). Prediction of periodic LDOS modulations near vortices: K. Park and S. Sachdev, Phys. Rev. B 64, 184510 (2001).

STM in zero field

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Glassy Valence Bond Solid (VBS) Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Outline 1. Our model 2. Influence of electronic quasiparticles on vortex motion 3. Influence of vortex quantum zero-point motion on electronic quasiparticles 4. Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

I. The model

Outline 1. Our model 2. Influence of electronic quasiparticles on vortex motion 3. Influence of vortex quantum zero-point motion on electronic quasiparticles 4. Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

II. Influence of electronic quasiparticles on vortex motion

A finite effective mass m ~ where Λ~ Δ is a high energy cutoff. By power-counting, there are no infra-red singulatities to this order, and hence only an analytic dependence on ω is possible. v Λ v 2 F

A finite effective mass m ~ where Λ~ Δ is a high energy cutoff. By power-counting, there are no infra-red singulatities to this order, and hence only an analytic dependence on ω is possible. v Λ v Disagrees with N. B. Kopnin, and V. M. Vinokur, Phys. Rev. Lett 81, 3952 (1998), who obtained a divergent mass m ~ 1 v in an applied field H H 2 F

C 1 sub-ohmic damping with 2 v = v F Universal function of Δ v F

C Bardeen-Stephen viscous drag with 2 2 v = v F Universal function of Δ v F

C Bardeen-Stephen viscous drag with 2 2 v = v F Universal function of Δ v F Negligible damping of vortex from nodal quasiparticles at T=0; can expect significant quantum zero-point motion. Damping increases as T 2 at higher T

Outline 1. Our model 2. Influence of electronic quasiparticles on vortex motion 3. Influence of vortex quantum zero-point motion on electronic quasiparticles 4. Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

III. Influence of vortex quantum zero-point motion on electronic quasiparticles

Influence of the quantum oscillating vortex on the LDOS ω / ωv 2 2 mv α = F = 1 ω v

Influence of the quantum oscillating vortex on the LDOS No zero bias peak. Absent because of small core size. 2 α ω / ωv 2 mv = F = ω v 1

Influence of the quantum oscillating vortex on the LDOS Resonant feature near the vortex oscillation frequency 2 α ω / ωv 2 mv = F = ω v 1

Influence of the quantum oscillating vortex on the LDOS Differential Conductance (ns) 3.0 2.5 2.0 1.5 1.0 Regular QPSR Vortex 2 α Resonant feature near the vortex oscillation frequency and no zero-bias peak ω / ωv 2 mv = F = 1 ω v 0.5 0.0-120 -80-40 0 40 80 120 Sample Bias (mv) I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995) S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

Influence of the quantum oscillating vortex on the LDOS Differential Conductance (ns) Resonant feature near the vortex oscillation frequency and no zero-bias peak 3.0 2.5 2.0 1.5 1.0 0.5 Regular QPSR Vortex 0.0-120 -80-40 0 40 80 120 Sample Bias (mv) I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995) S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000). Is there an independent way to determine m v and ω v?

Outline 1. Our model 2. Influence of electronic quasiparticles on vortex motion 3. Influence of vortex quantum zero-point motion on electronic quasiparticles 4. Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

IV. Aharonov-Bohm phases in vortex motion and VBS modulations in LDOS N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001). S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002). T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Phys. Rev. B 70, 144407 (2004). L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Phys. Rev. B 71, 144508 (2005). See also Z. Tesanovic, Phys. Rev. Lett. 93, 217004 (2004); A. Melikyan and Z. Tesanovic, Phys. Rev. B 71, 214511 (2005).

In ordinary fluids, vortices experience the Magnus Force F M F = mass density of air i velocity of ball i circulation M ( ) ( ) ( )

Dual picture: The vortex is a quantum particle with dual electric charge n, moving in a dual magnetic field of strength = h (number density of Bose particles) C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989)

Influence of the periodic potential on vortex motion

Bosons on the square lattice at filling fraction f=p/q

Bosons on the square lattice at filling fraction f=p/q

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Differential Conductance (ns) 3.0 2.5 2.0 1.5 1.0 Local density of states (LDOS) Regular QPSR Vortex 1Å spatial resolution image of integrated LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ ( 1meV to 12 mev) at B=5 Tesla. 0.5 0.0-120 -80-40 0 40 80 120 Sample Bias (mv) I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ integrated from 1meV to 12meV at 4K 7 pa 0 pa b Vortices have halos with LDOS modulations at a period 4 lattice spacings 100Å J. Hoffman et al., Science 295, 466 (2002). G. Levy et al., Phys. Rev. Lett. 95, 257005 (2005). Prediction of periodic LDOS modulations near vortices: K. Park and S. Sachdev, Phys. Rev. B 64, 184510 (2001).

Influence of the quantum oscillating vortex on the LDOS Differential Conductance (ns) Resonant feature near the vortex oscillation frequency and no zero-bias peak 3.0 2.5 2.0 1.5 1.0 0.5 Regular QPSR Vortex 0.0-120 -80-40 0 40 80 120 Sample Bias (mv) I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995) S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000). Independent estimate of ω v gives a consistency check.

Deconfined quantum criticality What happens when the vortex quantum fluctuation length-scale becomes large?

Deconfined quantum criticality What happens when the vortex quantum fluctuation length-scale becomes large? Landau-forbidden quantum phase transition between a superfluid and an insulator with VBS order.

Conclusions Quantum zero zero point motion of of vortices provides a unified explanation for for many LDOS features observed in in STM experiments. Size Size of of LDOS modulation halo halo allows estimate of of the the inertial mass of of a vortex The The deduced energy of of the the LDOS sub-gap peak provides a strong consistency check of of our our proposal Direct detection of of vortex zero-point motion may may be be possible in in inelastic neutron or or light-scattering experiments