SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

Similar documents
Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

The interplay of flavour- and Polyakov-loop- degrees of freedom

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

Thermodynamics. Quark-Gluon Plasma

Can we locate the QCD critical endpoint with a Taylor expansion?

The instanton and the phases of QCD

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256.

Spin-Orbit Interactions in Nuclei and Hypernuclei

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors

Critical lines and points. in the. QCD phase diagram

Magnetized QCD phase diagram

arxiv: v1 [hep-lat] 26 Dec 2009

Thermodynamics of the Polyakov-Quark-Meson Model

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

Complex Saddle Points in Finite Density QCD

INTERFACE of QCD and NUCLEAR PHYSICS

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

With the FRG towards the QCD Phase diagram

Cold and dense QCD matter

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Phase diagram of strongly interacting matter under strong magnetic fields.

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

QCD Symmetries in eta and etaprime mesic nuclei

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

PNJL Model and QCD Phase Transitions

arxiv: v1 [hep-ph] 15 Jul 2013

The QCD phase diagram from the lattice

Mesonic and nucleon fluctuation effects in nuclear medium

QCD confinement and chiral crossovers, two critical points?

Pions in the quark matter phase diagram

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

Multiple Critical Points in the QCD Phase Diagram

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

arxiv: v1 [hep-lat] 5 Nov 2007

Thermodynamics of (2+1)-flavor QCD from the lattice

Can we locate the QCD critical endpoint with the Taylor expansion?

arxiv: v2 [hep-ph] 17 Dec 2008

t Hooft Determinant at Finite Temperature with Fluctuations

QCD Phases with Functional Methods

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Investigation of QCD phase diagram from imaginary chemical potential

Lattice QCD at non-zero temperature and density

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Mesonic and nucleon fluctuation effects at finite baryon density

arxiv:hep-ph/ v1 7 Sep 2004

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Bulk Thermodynamics: What do we (want to) know?

The Polyakov loop and the Hadron Resonance Gas Model

Role of fluctuations in detecting the QCD phase transition

The QCD phase diagram from the lattice

Fluctuations and QCD phase structure

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

QCD Thermodynamics Péter Petreczky

Axial symmetry in the chiral symmetric phase

From confinement to new states of dense QCD matter

Heavy quark free energies and screening from lattice QCD

International Workshop on QCD Green s Functions, Confinement and Phenomenology September 7-11, 2009 ECT Trento, Italy

arxiv: v1 [hep-ph] 2 Nov 2009

Phases and facets of 2-colour matter

On the role of fluctuations in (2+1)-flavor QCD

QCD in an external magnetic field

Non-perturbative Study of Chiral Phase Transition

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

QCD and the Nambu Jona-Lasinio Model

The Quark-Gluon Plasma in Equilibrium

Baryonic Spectral Functions at Finite Temperature

Deconfinement and Polyakov loop in 2+1 flavor QCD

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

Partial Chiral Symmetry restoration and. QCD Scalar Susceptibilities in Nuclear Matter

The Flavors of the Quark-Gluon Plasma

Bulk Thermodynamics in SU(3) gauge theory

Probing the QCD phase diagram with higher moments

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

The QCD CEP in the 3 flavoured constituent quark model

The Meson Loop Effect on the Chiral Phase Transition

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at real and imaginary chemical potential

Spectral Properties of Quarks in the Quark-Gluon Plasma

Weakly coupled QGP? Péter Petreczky

Equation of state for hybrid stars with strangeness

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

Charm baryon spectroscopy from heavy quark symmetry

QCD phase structure from the functional RG

Confinement in Polyakov gauge

A Dyson-Schwinger equation study of the baryon-photon interaction.

8 September Dear Paul...

QCD-like theories at finite density

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

Faddeev equations: a view of baryon properties

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Transcription:

QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact with Dyson - Schwinger and Lattice QCD results (the non-local PNJL Model) Entanglement of CHIRAL and DECONFINEMENT transitions Role of the AXIAL U(1) ANOMALY PHASE DIAGRAM of QCD at finite BARYON DENSITY, NUCLEAR MATTER, CRITICAL POINT, and all that...

TWO SYMMETRIES that govern LOW-ENERGY QCD pure glue SU(2) R SU(2) L CHIRAL SYMMETRY s quark mass ms physical point? Z(3) SYMMETRY Center of gauge group SU(N c = 3) SU(3) R SU(3) L exact for massless quarks u,d quark mass Columbia plot m u,d exact for infinitely heavy quarks

LATTICE QCD THERMODYNAMICS: CHIRAL and DECONFINEMENT TRANSITIONS 1..8.6.4.2 spontaneously broken Chiral Symmetry.3.4.5.6.7 ψψ T l,s ψψ T= Tr Chiral Condensate p4fat3: N τ =4 6 8 T [MeV]. 1 15 2 25 3 crossover transitions no critical temperature in strict sense chiral and deconfinement transitions seem to coincide 1..8.6.4.2 Lattice QCD (2+1 flavours) almost physical quark masses.3.4.5.6.7.8.9 1. LΦ ren M. Cheng et al. Bielefeld/BNL-Riken/Columbia Phys. Rev. D77 (28) 14511 F. Karsch et al. arxiv:711.661 [hep-lat] spontaneously broken Z(3) Symmetry Tr Polyakov Loop N τ =4 6 8 T [MeV]. 1 15 2 25 3 35 4 45

POLYAKOV LOOP dynamics Confinement Synthesis Pisarsky (2) Fukushima (24) NAMBU & JONA-LASINIO model Ratti, Thaler, W.W. (25) PNJL MODEL Spontaneous Chiral Symmetry Breaking Nambu, Jona-Lasinio (1961) Action : S(ψ, ψ, φ) = β=1/t dτ V Fermion (quark) effective Hamiltonian V d 3 x [ ψ τ ψ + H(ψ, ψ, φ) ] T VT Polyakov loop effective potential U(φ, T) identify dominant collective degrees of freedom ( order parameters) quarks as quasiparticles with dynamically generated masses

Sketch of (non-local) PNJL MODEL Action : S(ψ, ψ, φ) = β=1/t dτ V d 3 x [ ψ τ ψ + H(ψ, ψ, φ) ] T V VT U(φ, T) Fermionic Hamiltonian density (NJL) : H = iψ ( α + γ 4 m φ) ψ + V(ψ, ψ ) chiral invariant Non-local fermion interaction Temporal background gauge field Φ = 1 N c Tr [ exp ( i 1/T φ = φ 3 λ 3 + φ 8 λ 8 )] dτ A 4 1 Tr exp(iφ/t) 3 SU(3) Polyakov loop Effective potential : U(Φ) confinement T < T c U(Φ) T > T c deconfinement

Polyakov Loop Effective Potential from PURE GLUE Lattice Thermodynamics Minimization of U(Φ(T), T) = p(t) [ R. Pisarsky ( ( (2) K. Fukushima ))] (24) U(Φ, T) = 1 2 a(t) Φ Φ b(t) ln[1 6 Φ Φ + 4(Φ 3 + Φ 3 ) 3(Φ Φ) 2 ] 5 energy density, entropy density, pressure 1.5 Polyakov loop effective potential 4 3 2 1 ε T 4 3 s 4 T 3 3 p T 4 1 2 3 4 5 TT c lattice results: O. Kaczmarek et al. PLB 543 (22) 41 first order phase transition U T 4 T 1..5..5 1..5 T.75 T 1. T 2. T 1.25 T 1.5..2.4.6.8 1. Φ S. Rößner, C. Ratti, W. W. PRD 75 (27) 347 T c (pure gauge) T 27 MeV

Non-Local PNJL Model: GAP EQUATION momentum dependent, dynamical quark mass M(p) = m + 8 N c G d 4 d 4 q M(q) C(p q) (2π) 4 q 2 + M 2 (q) p G C(p q) q.4 old (local) NJL correlation length d 1 3 fm (typical instanton size) Mp GeV.3.2.1 instanton model non-local PNJL dynamical quark dynamical mass quark mass lattice QCD P. Bowman et al. (23). coupling strength G 1 fm consistent with self-energy from Dyson-Schwinger calculations (Landau gauge).5 1. 1.5 2. 2.5 p GeV T. Hell, S. Rößner, M. Cristoforetti, W. W. Phys. Rev. D79 (29) 1422, and preprint iσ(p) = C.D. Roberts, S.M. Schmidt, et al. + many others

THREE - FLAVOUR non-local PNJL MODEL includes: G chiral U(3) R U(3) L invariant plus q q Kobayashi-Maskawa- t Hooft interaction K[det ψ(1 γ 5 )ψ + det ψ(1 + γ 5 )ψ] u u d d K s s breaks axial U(1) A input: G 1 fm 2 K (.63 fm) 5 m u, d m s 3. MeV 7 MeV T. Hell, S. Rößner, M. Cristoforetti, W. W. : Phys. Rev. D79 (29) 1422 and preprint

THREE - FLAVOUR non-local PNJL MODEL (contd.) Chiral low-energy theorems and Current Algebra relations o.k. e.g.: Gell-Mann, Oakes, Renner relation m 2 π f 2 π = m q ψψ + O(m 2 q) output: ūu = dd ss (.34 GeV) 3 (.323 GeV) 3 m π m K m η m η f π f K 139 MeV 495 MeV 547 MeV 964 MeV 92.8 MeV 11.1 MeV η η mixing angle θ η 29º T. Hell, S. Rößner, M. Cristoforetti, W. W. : preprint (29)

PNJL THERMODYNAMICS Construct grand-canonical partition function and minimize thermodynamic potential Relevant piece of thermodynamic potential involving quark quasiparticles: Ω T d 3 p [ ] (2π) 3 ln 1 + 3 Φ e (Ep µ)/t + 3 Φ e 2(Ep µ)/t + e 3(E p µ)/t + d 3 p [ ] (2π) 3 ln 1 + 3 Φ e (Ep+µ)/T + 3 Φ e 2(Ep+µ)/T + e 3(E p+µ)/t in the hadronic phase with Φ : single quarks and diquarks (i.e. color non-singlets) suppressed

Entanglement of CONFINEMENT and SPONTANEOUS CHIRAL SYMMETRY BREAKING Thermodynamics of the PNJL model ψψ T 1. 1. chiral ψψ Φ condensate.8.8 N f = 2 chiral limit m q = σ/σ.6.4.2 2nd order Polyakov loop 1st order.6.4.2 Φ..1.2.3.4.5 T [GeV] S. Rössner, C. Ratti, W. W. Phys. Rev. D 75 (27) 347 T. Hell, S. Rössner, M. Cristoforetti, W. W. Phys. Rev. D 79 (29) 1422

Entanglement of CONFINEMENT and SPONTANEOUS CHIRAL SYMMETRY BREAKING N f = 2 + 1 Thermodynamics of the PNJL model in comparison with Lattice QCD (with almost physical quark masses) chiral condensate qqqq 1..8.6.4.2. ūu / ūu Φ ss / ss.5 1. 1.5 2. 2.5 TT c GeV 1..8.6.4.2 Polyakov loop PNJL: T. Hell, M. Cristoforetti, S. Rössner, W. W. (29) Lattice: M. Cheng et al. (Bielefeld/BNL/Columbia) Phys. Rev. D77 (28) 14511

pressure PT 4 Beyond Mean Field: Mesonic Excitations contribution of mesonic quark-antiquark modes to pressure 4 3 2 1 MFΠ, K, Σ Π, Σ K inmedium MFΠ, Σ Π inmedium MF p [ ] [ mesons quarks.1.2.3 T GeV P meson (T ) = M M=π,σ = K,... + glue d M 2 T m Z N f = 2 + 1 qk p q + pk [ T. Hell, S. Rössner, M. Cristoforetti, W. W. (29) d 3 p (2π) 3 ln [1 GΠ M(ν m, p )]

Energy Density and Interaction Measure E Ε T 4 T 4 15 1 5 energy density mesons..5 1. 1.5 2. TT c T/T c quarks + glue Lattice: M. Cheng et al. (Bielefeld/BNL/Columbia) Phys. Rev. D77 (28) 14511 PNJL: T. Hell, M. Cristoforetti, S. Rössner, W. W. (29) 8 6 4 2 3-flavour non-local PNJL model versus lattice QCD trace of energy-momentum tensor E 3P T 4.5 1. 1.5 2. 2.5 T/T c TT interaction measure

Non-zero QUARK CHEMICAL POTENTIAL Taylor expansion of pressure: Pp(T, µ) = T 4 n c n (T) ( µ T) n c 2 c 4 c 6 S. Rößner, C. Ratti, W. W. Phys. Rev. D 75 (27) 347 N f = 2 Lattice: C.R. Allton et al. Phys. Rev. D 71 (25) 5458

Flavour non-diagonal Susceptibilities Example: -.5 c ud 2 -.1 -.15 -.2. pionic LT=4 fluctuations LT=4.6 LT=6.3 LT=8 LT=1 LT=13.6 lattice data Preliminary c ud 2 2 P µ u µ d Polyakov loop........... N f = 2.4.6.8 1 1.2 T/T T/T c Monte Carlo simulations with PNJL model M. Cristoforetti, T. Hell, B. Klein, W.W. (29) Sensitivity to effects beyond mean field (e.g. pionic fluctuations)

PHASE DIAGRAM and CRITICAL POINT N f = 2 + 1 Σ u.4 GeV.2. profile of scalar field / chiral order parameter from non-local 3-flavour PNJL model..1.2 T GeV.3.1.2 Μ GeV.3 T. Hell, S. Rössner, M. Cristoforetti, W. W. preprint (29) temperature.4. non-strange quark chemical potential

PHASE DIAGRAM (contd.) from non-local 3-flavour PNJL model.2 chiral crossover deconfinement T GeV.15.1 hadronic quarkyonic? L. McLerran, R. Pisarsky.5. 1 st order chiral Polyakov loop.5.1.15.2.25.3 Μ GeV warning: too low transition chemical potential at T = T. Hell, S. Rössner, M. Cristoforetti, W. W. preprint (29) wrong degrees of freedom at low temperature, non-zero baryon density!

PHASE DIAGRAM (contd.) 2"-3"&.$%&" Issues: Crossover Critical Point Diquarks and CSC Phase K. Fukushima (9) 2-nd 1-st 2-nd?,+"-(#./'1$")$(./''! The location of the critica depend on m Existence and location of critical point(s) crucially dependent on AXIAL U(1) ANOMALY Yamamoto, Hatsuda, Baym (27) K. Fukushima (28) T MeV 2 16 12 8 4 Critical point: Role of axial anomaly u u K 1.4 K K 1.2 K d d K s s N f = 2 + 1 24 28 32 Μ MeV K K K.9 K K.8 K K.7 K K.6 K K.55 K K.525 K K.5 K N. Bratovich, T. Hell, S. Rößner, W.W. (29) Location (and existence) of critical point(s) depends sensitively on no. of flavours, quark masses, axial U(1) A anomaly, etc....

crossover T.2.1 [GeV] Critical point Vacuum Hadron gas QGP PHASE DIAGRAM Nuclear matter Quark matter phases (contd.) CFL 1. µ baryon [GeV] Question: first order chiral transition boundary all the way down to T =? Nuclear liquid-gas phase diagram from Chiral Thermodynamics 945678 symmetric gas &' gas :.; )*+,+-./12+3, (N = Z) critical point nuclear matter "( "' (?6=,*23@*.-,+23A'B(' gas :.; liquid!"#!"$!"%!&'!&&!&#!"45678 liquid /+<=+> symmetric (N = Z) nuclear matter

From NUCLEI to COMPRESSED BARYONIC MATTER Framework: Effective Field Theory implementing the Chiral Symmetry Breaking pattern of Low-Energy QCD: In-medium chiral perturbation theory Active degrees of freedom in the hadronic phase: pions, nucleons, delta-isobars Compute Free Energy Density (3-loop order) N. Kaiser, S. Fritsch, W. W. (22-24)

NUCLEAR THERMODYNAMICS NUCLEAR CHIRAL (PION) DYNAMICS BINDING & SATURATION: Yukawa + Van der Waals + Pauli N π π N V(r) e 2m πr + N N contact terms N, r 6 P(m π r) + 3-body forces P [MeV/fm 3 ] 4 3 2 1 nuclear matter: equation of state pressure 3-loop in-medium ChEFT T = 25 MeV 2 T=25MeV T=2MeV T=15MeV T=1MeV T=5MeV -1.5.1.15.2 ρ [fm -3 ] 15 1 5 T = T=MeV Liquid - Gas Transition at Critical Temperature T = 15 MeV c (empirical: T = 16-18 MeV) c baryon density S. Fritsch, N. Kaiser, W. W. : Nucl. Phys. A 75 (25) 259

PHASE DIAGRAM of NUCLEAR MATTER 8/34567 "$ "# "' "% "& $ # ' % & 9-: gas critical point >5<+)12/?)-,+*12/@/&AB& gas 9-:!"#!"$!%&!%%!"34567 µ b [MeV] baryon chemical potential ()*+*,-./1*2+ liquid.*;<*= Pion-nucleon dynamics (incl. delta isobars) Short distance: NN contact terms Three-body forces symmetric (N = Z) nuclear matter 7+289:6 '% '$ '# '! & % $ #! gas ()* S. Fiorilla, N. Kaiser, W. W. (29) In-medium chiral effective field theory (3-loop in the free energy density) S. Fritsch, N. Kaiser, W. W. : NPA 75 (25) 259 ()* ()*+,+-./.1 -./.1!!"!#!"!$!"!%!"!&!"'!"'#!"'$!"'%!"234,5 6 ;9<=>?+3=)@<.>?+A+!"B! liquid

CHIRAL CONDENSATE at finite DENSITY (T = ) sigma term m q M N m q in-medium chiral effective field theory N π π N qq ρ qq = 1 ρ f 2 π [ σn m 2 π ( 1 3 p2 F 1 M 2 N ) +... + m 2 π ( )] Eint (p F ) A (free) Fermi gas of nucleons nuclear interactions (dependence on pion mass)

CHIRAL CONDENSATE: DENSITY DEPENDENCE In-medium Chiral Effective Field Theory (NLO 3-loop) constrained by realistic nuclear equation of state N. Kaiser, Ph. de Homont, W. W. Phys. Rev. C 77 (28) 2524 Symmetric Nuclear Matter condensate ratio 1.8.6.4.2... ψψ (ρ) ψψ (ρ = ). chiral limit m π ρ.5.1.15.2.25.3 ρ [fmρ [fm 3-3 ] chiral limit m π T = chiral in-medium dynamics m π =.14 GeV leading order leading order (Fermi gas) Substantial change of symmetry breaking scenario between chiral limit m q = and physical quark mass m q 5 MeV Nuclear Physics would be very different in the chiral limit!

Summary and Conclusions PNJL-Modelling of Phases based on QCD Symmetries SU(N f ) L SU(N f ) R and Z(3) Entanglement of CHIRAL and DECONFINEMENT crossover transitions in QCD transition temperatures (at zero chemical potential) coincide in PNJL models and on the Lattice PHASE DIAGRAM at low T, large BARYON DENSITY, CRITICAL POINT, and all that... role of axial U(1) anomaly constraints from realistic nuclear EoS thanks to: Nino Bratovic Marco Cristoforetti Salvatore Fiorilla Thomas Hell Bertram Klein Norbert Kaiser Claudia Ratti Simon Rössner