Cosmic Rays, Photons and Neutrinos

Similar documents
Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

Multi-Messenger Astonomy with Cen A?

Charged Cosmic Rays and Neutrinos

Antimatter from Supernova Remnants

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

Cosmic Ray Astronomy. Qingling Ni

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Dark Matter in the Universe

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

Seeing the moon shadow in CRs

Supernova Remnants and Cosmic. Rays

Questions 1pc = 3 ly = km

An Auger Observatory View of Centaurus A

UHECRs sources and the Auger data

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

Low-Energy Cosmic Rays

Revue sur le rayonnement cosmique

Particle Acceleration in the Universe

A few grams of matter in a bright world

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Ultra High Energy Cosmic Rays I

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

The role of ionization in the shock acceleration theory

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Cosmic Pevatrons in the Galaxy

Lower bound on the extragalactic magnetic field

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Mass Composition Study at the Pierre Auger Observatory

High Energy Astrophysics: A View on Chemical Enrichment, Outflows & Particle Acceleration. (Feedback at work)

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

Gamma-ray Astrophysics

Diffusive shock acceleration with regular electric fields

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Acceleration Mechanisms Part I

Cosmic Rays & Magnetic Fields

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Particle acceleration in the universe

Lecture 14 Cosmic Rays

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Particle acceleration and pulsars

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Remnants and Pulsar Wind

Ultra- high energy cosmic rays

Gamma ray emission from supernova remnant/molecular cloud associations

Ultra High Energy Cosmic Rays. and

Particle Physics Beyond Laboratory Energies

The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization!

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

from Fermi (Higher Energy Astrophysics)

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

Cosmic rays and relativistic shock acceleration

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Radio Observations of TeV and GeV emitting Supernova Remnants

Topic 7. Relevance to the course

VHE emission from radio galaxies

MULTIMESSENGER APPROACH:Using the Different Messengers

Particle Acceleration at Supernova Remnants and Supernovae

The Pierre Auger Observatory

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Recent Observations of Supernova Remnants

Young star clusters as gamma ray emitters and their detection with Cherenkov Telescopes

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

TeV Cosmic Ray Anisotropies at Various Angular Scales

ULTRA-HIGH ENERGY COSMIC RAYS

Cosmic ray escape from supernova remnants

Physics and Astroparticle Physics A. A

High Energy Emission. Brenda Dingus, LANL HAWC

The new Siderius Nuncius: Astronomy without light

Ultrahigh Energy Cosmic Rays propagation II

Doctoral Thesis. Detection of TeV gamma-rays from the Supernova Remnant RX J

Ultra High Energy Cosmic Rays: Observations and Analysis

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

Antimatter spectra from a time-dependent modeling of supernova remnants

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

COSMIC RAYS AND AGN's

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

Cosmic ray electrons from here and there (the Galactic scale)

The Physics & Astrophysics of Cosmic Rays

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

High energy radiation from molecular clouds (illuminated by a supernova remnant

ASTRONOMY AND ASTROPHYSICS - High Energy Astronomy From the Ground - Felix Aharonian HIGH ENERGY ASTRONOMY FROM THE GROUND

Anisotropy studies with the Pierre Auger Observatory

GAMMA-RAYS FROM MASSIVE BINARIES

Transcription:

Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim []

Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems Extragalactic cosmic rays Transition Anisotropies and sources Nuclear composition CR secondaries: photons and neutrinos Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 2 / 30

Introduction Outline Milky Way globular clusters disc h = 300pc Sun 8 kpc gas/cr halo Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 3 / 30

Introduction Outline Milky Way globular clusters disc h = 300pc Sun 8 kpc gas/cr halo Larmor radius 1 pc = 3.1 10 18 cm R L = cp ZeB 100 pc 3µG B E Z 10 18 ev pp interaction: σ pp 50 mbarn mbarn = 10 27 cm 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 3 / 30

Introduction Outline Milky Way globular clusters disc h = 300pc Sun 8 kpc gas/cr halo Larmor radius 1 pc = 3.1 10 18 cm R L = cp ZeB 100 pc 3µG B E Z 10 18 ev pp interaction: σ pp 50 mbarn mbarn = 10 27 cm 2 extragalactic scales: distance to Virgo: 18 Ṁpc observable universe: c/h0 4 Gpc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 3 / 30

1910: Father Wulf measures ionizing radiation in Paris 80m: flux/2

300m: flux/2 80m: flux/2

Introduction History 1912: Victor Hess discovers cosmic rays The results are most easily explained by the assumption that radiation with very high penetrating power enters the atmosphere from above; the Sun can hardly be considered as the source. Hess and Kolhoerster s results: 80 excess ionization 60 40 20 0-10 1 2 3 4 5 6 7 8 9 altitude/1000m Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 5 / 30

Introduction Observational techniques What do we know 100 years later? solar modulation LHC Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 6 / 30

Introduction Observational techniques What do we know 100 years later? solar modulation only few bits of information? energy density ρ cr 0.8eV/cm 3 exponent α of dn/de 1/E α nuclear composition for E < 10 17 ev isotropic flux for E < 10 18 ev LHC Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 6 / 30

Introduction Observational techniques Observing gamma-rays or cosmic rays: GeV-TeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 7 / 30

Introduction Observational techniques Observing gamma-rays or cosmic rays: around TeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 7 / 30

Introduction Observational techniques Pierre Auger Observatory: Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 8 / 30

Introduction Observational techniques Pierre Auger Observatory: Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 8 / 30

Introduction Observational techniques Three options for HE astronomy: High-energy photons: IACT s (HESS, MAGIC, Veritas) extremely successful new sources, extragal. backgrounds, evidence for hadronic accelerators, M87,... synergy with Fermi-LAT next generation experiment CTA on the way Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 9 / 30

Introduction Observational techniques Three options for HE astronomy: VHE photons: successful, but restricted to few Mpc 22 radio 20 18 log10(e/ev) 16 photon horizon γγ e + e CMB 14 IR 12 10 kpc 10kpc 100kpc Mpc 10Mpc 100Mpc Gpc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 10 / 30

Introduction Observational techniques Three options for HE astronomy: VHE photons: successful, but restricted to few Mpc hadronic photons vs. synchrotron/compton photons Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 10 / 30

Introduction Observational techniques Three options for HE astronomy: astronomy with VHE photons restricted to few Mpc astronomy with HE neutrinos: smoking gun for hadrons but challenging Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 11 / 30

Introduction Observational techniques Three options for HE astronomy: astronomy with VHE photons restricted to few Mpc astronomy with HE neutrinos: smoking gun for hadrons but challenging large λν, but also large uncertainty δϑ > 1 small event numbers: < few/yr for PAO or ICECUBE identification of steady sources challenging without additional input Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 11 / 30

Introduction Observational techniques Three options for HE astronomy: astronomy with VHE photons restricted to few Mpc astronomy with HE neutrinos: Alternative: smoking gun for hadrons but challenging large λν, but also large uncertainty δϑ > 1 small event numbers: < few/yr for PAO or ICECUBE identification of steady sources challenging without additional input Astronomy with neutrinos possible? Astronomy with charged particles possible? Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 11 / 30

Introduction Observational techniques Three options for HE astronomy: 22 proton horizon 20 18 log10(e/ev) 16 photon horizon γγ e + e CMB 14 IR 12 10 kpc 10kpc 100kpc Mpc Virgo 10Mpc 100Mpc Gpc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 12 / 30

Introduction Observational techniques Three options for HE astronomy: 22 proton horizon 20 18 log10(e/ev) 16 if UHECRs 14 are protons: deflections may be small photon horizon γγ e + e use 12 larger statistics of UHECRs well-suited horizon scale 10 kpc 10kpc 100kpc Mpc Virgo 10Mpc 100Mpc CMB IR Gpc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 12 / 30

Introduction Basic observations Basic observations: Solar modulations Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 13 / 30

Introduction Basic observations Basic observations: Solar modulations Solar wind carries plasma solar rest frame: electric potential Φ Fish (t) low-energy particles cannot penetrate solar sytem Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 13 / 30

Introduction Basic observations Basic observations: Abundances at E/n = 5 GeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 14 / 30

Introduction Basic observations Basic observations: Abundances at E/n = 5 GeV Li, B and Ti groups strongly enriched Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 14 / 30

Introduction Basic observations Basic observations: Abundances at E/n = 5 GeV Li, B and Ti groups strongly enriched spallation product of CRs on gas B/C fixes residence time τ 10 7 yr Low energy CR make random walk Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 14 / 30

Introduction Basic observations Basic observations: Abundances at E/n = 5 GeV Li, B and Ti groups strongly enriched spallation product of CRs on gas B/C fixes residence time τ 10 7 yr Low energy CR make random walk diffuse in Galactic magnetic field constrains combination of D0 and h Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 14 / 30

Introduction Basic observations Diffusion in turbulent magnetic fields Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max 150 pc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 15 / 30

Introduction Basic observations Diffusion in turbulent magnetic fields Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max 150 pc CRs scatter mainly on field fluctuations B(k) with kr L 1. Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 15 / 30

Introduction Basic observations Diffusion in turbulent magnetic fields Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max 150 pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 Bohm α = 1 β = 1 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 15 / 30

Introduction Basic observations Diffusion in turbulent magnetic fields Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max 150 pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 Bohm α = 1 β = 1 observed energy spectrum of primaries: injection: dn/de E α observed: dn/de E α β α = 3/2 and β = 1/2 simplest combination Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 15 / 30

Sources and acceleration Acceleration Fermi acceleration 1.order, diffusive shock acceleration: SNR, GRB 2.order: superbubbles, continuously? Electromagnetic induction: Pulsar, Kerr BH Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 16 / 30

Sources and acceleration Acceleration Fermi acceleration 1.order, diffusive shock acceleration: SNR, GRB 2.order: superbubbles, continuously? Electromagnetic induction: Pulsar, Kerr BH Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 16 / 30

Sources and acceleration Acceleration Electromagnetic induction: Pulsar, Kerr BH millisecond pulsar: E max ZB 0R 3 ω 2 c 2 8 10 20 ev Z B ( Ω 10 13 G 3000 s 1 ) 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 17 / 30

Sources and acceleration Acceleration Electromagnetic induction: Pulsar, Kerr BH millisecond pulsar: E max ZB 0R 3 ω 2 c 2 8 10 20 ev Z B ( Ω 10 13 G 3000 s 1 but: gap, curvature radiation, plasma, Lmin : minimal power P dissipated by such an accelerator up to 10 20 ev? L min = U 2 /R > 10 37 W = 10 44 erg/s ) 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 17 / 30

Sources and acceleration Acceleration Electromagnetic induction: Pulsar, Kerr BH millisecond pulsar: E max ZB 0R 3 ω 2 c 2 8 10 20 ev Z B ( Ω 10 13 G 3000 s 1 but: gap, curvature radiation, plasma, Lmin : minimal power P dissipated by such an accelerator up to 10 20 ev? L min = U 2 /R > 10 37 W = 10 44 erg/s [density of stationary UHECR sources n s < L/L 10 5 /Mpc 3 ] ) 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 17 / 30

Sources and acceleration Acceleration Electromagnetic induction: Pulsar, Kerr BH millisecond pulsar: E max ZB 0R 3 ω 2 c 2 8 10 20 ev Z B ( Ω 10 13 G 3000 s 1 but: gap, curvature radiation, plasma, Lmin : minimal power P dissipated by such an accelerator up to 10 20 ev? L min = U 2 /R > 10 37 W = 10 44 erg/s [density of stationary UHECR sources n s < L/L 10 5 /Mpc 3 ] SMBH may be UHECR sources, pulsars mainly local e + e source ) 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 17 / 30

Sources and acceleration Possible sources and the Hillas plot: log(b/g) 13 11 9 7 5 3 1 1 3 5 7 9 pulsars AU pc AGN cores GRB SNR kpc Galactic halo Mpc radio galaxies cluster 0 2 4 6 8 10 12 14 16 18 20 22 log(r/km) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 18 / 30

Sources and acceleration Possible sources and the Hillas plot: log(b/g) 13 11 9 7 5 3 1 1 3 5 7 9 pulsars AU pc AGN cores GRB SNR kpc Galactic halo Mpc radio galaxies cluster 0 2 4 6 8 10 12 14 16 18 20 22 log(r/km) contains only size constraint; additionally age limitation: SNR, galaxy clusters energy losses: pulsars, AGN Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 18 / 30

Sources and acceleration Standard Galactic source: SNRs energetics: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr and efficiency 1% Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 19 / 30

Sources and acceleration Standard Galactic source: SNRs energetics: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr and efficiency 1% 1.order Fermi shock acceleration dn/de E γ with γ = 2.0 2.2 diffusion in GMF with D(E) τ 1 esc(e) E δ and δ 0.5 explains observed spectrum E 2.6 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 19 / 30

Sources and acceleration Standard Galactic source: SNRs energetics: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr and efficiency 1% 1.order Fermi shock acceleration dn/de E γ with γ = 2.0 2.2 diffusion in GMF with D(E) τ 1 esc(e) E δ and δ 0.5 explains observed spectrum E 2.6 Problems: maximal energy E max too low anisotropy too large (?) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 19 / 30

Sources and acceleration 1.order Fermi acceleration 2.nd order Fermi acceleration consider CR with initial energy E 1 scattering at a cloud moving with velocity V : E p 2 2 θ θ 1 2 V E p 1 1 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 20 / 30

Sources and acceleration 1.order Fermi acceleration Energy gain ξ (E 2 E 1 )/E 1? Lorentz transformation 1: lab (unprimed) cloud (primed) E 1 = γe 1 (1 β cos ϑ 1 ) where β = V/c and γ = 1/ 1 β 2 Lorentz transformation 2: cloud lab E 2 = γe 2(1 + β cos ϑ 2) scattering off magnetic irregularities is collisionless, the cloud is very massive E 2 = E 1 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 21 / 30

Sources and acceleration 1.order Fermi acceleration Energy gain ξ (E 2 E 1 )/E 1? E 2 = E 1 : Lorentz transformation 1: lab cloud E 1 = γe 1 (1 β cos ϑ 1 ) }{{} where β = V/c and γ = 1/ 1 β 2 Lorentz transformation 2: cloud lab E 2 = γe 2(1 + β cos ϑ 2) ξ = E 2 E 1 E 1 = 1 β cos ϑ 1 + β cos ϑ 2 β2 cos ϑ 1 cos ϑ 2 1 β 2 1. we need average values of cos ϑ 1 and cos ϑ 2 : Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 22 / 30

Sources and acceleration 1.order Fermi acceleration Assume: CR scatters off magnetic irregularities many times in cloud its direction is randomized, cos ϑ 2 = 0. collision rate CR cloud: proportional to their relative velocity (v V cos ϑ 1 ): for ultrarelativistic particles, v = c, dn dω 1 (1 β cos ϑ 1 ), and we obtain cos ϑ 1 = dn dn cos ϑ 1 dω 1 / dω 1 = β dω 1 dω 1 3 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 23 / 30

Sources and acceleration 1.order Fermi acceleration Energy gain ξ for 2.nd order Fermi: Plugging cos ϑ 2 = 0 and cos ϑ 1 = β 3 since β 1. ξ β 2 > 0 energy gain ξ = 1 + β2 /3 1 β 2 1 4 3 β2 into formula for ξ gives O(ξ) = β 2, because β 1: average energy gain is very small ξ depends on drift velocity of clouds Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 24 / 30

[]

Sources and acceleration Diffusive shock acceleration Diffusive shock acceleration consider CR with initial energy E 1 scattering at a shock moving with velocity V s : E 1 V p θ 1 E 1 V s E 1 E 1 V p E 2 shock E 2 θ 2 E 2 E 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 26 / 30

Sources and acceleration Diffusive shock acceleration same discussion, but now different angular averages: projection of istropic flux on planar shock: dn d cos ϑ 1 = thus cos ϑ 1 = 2 3 and cos ϑ 2 = 2 3 { 2 cos ϑ1 cos ϑ 1 < 0 0 cos ϑ 1 > 0 ξ 4 3 β = 4 3 (u 1 u 2 ) + ξ β: efficient + test particle approximation + strong shock: universal spectrum dn/de E 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 27 / 30

Sources and acceleration Diffusive shock acceleration Maximal energy of SNR: Lagage-Cesarsky limit acceleration rate β acc = de dt = 3Ev2 sh acc ζd(e), ζ 8 20 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 28 / 30

Sources and acceleration Diffusive shock acceleration Maximal energy of SNR: Lagage-Cesarsky limit acceleration rate β acc = de dt = 3Ev2 sh acc ζd(e), ζ 8 20 assume Bohm diffusion D(E) = cr L /3 E and B µg Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 28 / 30

Sources and acceleration Diffusive shock acceleration Maximal energy of SNR: Lagage-Cesarsky limit acceleration rate β acc = de dt = 3Ev2 sh acc ζd(e), ζ 8 20 assume Bohm diffusion D(E) = cr L /3 E and B µg E max 10 13 10 14 ev Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 28 / 30

Sources and acceleration Diffusive shock acceleration Maximal energy of SNR: [Bell, Luzcek 02, Bell 04 ] (resonant) coupling CR Alfven waves Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 29 / 30

Sources and acceleration Diffusive shock acceleration Maximal energy of SNR: [Bell, Luzcek 02, Bell 04 ] (resonant) coupling CR Alfven waves non-linear non-resonant magnetic field amplification Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 29 / 30

Sources and acceleration Diffusive shock acceleration Maximal energy of SNR: [Bell, Luzcek 02, Bell 04 ] (resonant) coupling CR Alfven waves non-linear non-resonant magnetic field amplification observational evidence for B 0.1 1 mg in young SNR rims Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 29 / 30

Sources and acceleration Diffusive shock acceleration SNR RX J1713.7-3946 changes on δt 1 yr imply B 1mG Michael Kachelrieß (NTNU Trondheim) Cosmic Rays NORDITA School 2013 30 / 30