OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

Similar documents
Contents. Preface to the first edition

Electronic and Optoelectronic Properties of Semiconductor Structures

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Contents. Zusammenfassung Abbreviations and Acronyms Notations for Precursor Molecules

Surface Analysis - The Principal Techniques

Solid Surfaces, Interfaces and Thin Films

Functional Materials. Optical and Magnetic Applications. Electrical, Dielectric, Electromagnetic, Deborah D. L Chung.

Vibrational Spectroscopy of Molecules on Surfaces

Semiconductor Physical Electronics

Luminescence basics. Slide # 1

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Seminars in Nanosystems - I

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. Foreword by Darrell H. Reneker

Near-Field Nano/Atom Optics and Technology

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Nanostructures. Nanomaterials Synthesis, Properties, and Applications

Optical Characterization of Solids

Quantum Tunneling and

3.23 Electrical, Optical, and Magnetic Properties of Materials

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

NANO/MICROSCALE HEAT TRANSFER

Optical Properties of Solid from DFT

Molecular Electronics

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

Surface Analysis - The Principal Techniques

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Nanocomposite photonic crystal devices

Organic Molecular Solids

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006)

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Lecture 20 Optical Characterization 2

Scanning Tunneling Microscopy and its Application

Spectroscopy of Polymers

Optics and Spectroscopy

Solar Cell Materials and Device Characterization

Supporting Information s for

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Quantum Dots for Advanced Research and Devices

Highenergy Nuclear Optics of Polarized Particles

OPTICAL PROPERTIES of Nanomaterials

MOLECULAR SPECTROSCOPY

Self-Assembled InAs Quantum Dots

PROCEEDINGS OF SPIE. Imaging carrier dynamics on the surface of the N-type silicon

Modern Optical Spectroscopy

ET3034TUx Utilization of band gap energy

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

Advanced Spectroscopy Laboratory

Photoelectron Spectroscopy

Appendix A. Assessments Points 4 Mode of Assessments. New Course Code and Title Course Coordinator. MS741M Nanomaterials

Survey on Laser Spectroscopic Techniques for Condensed Matter

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Nanomaterials and their Optical Applications

Chapter 6 Photoluminescence Spectroscopy

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy

CONTENTS. vii. CHAPTER 2 Operators 15

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Other SPM Techniques. Scanning Probe Microscopy HT10

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Electronic Processes on Semiconductor Surfaces during Chemisorption

Basic Principles of Light Emission in Semiconductors

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

SUPPLEMENTARY INFORMATION

Semiconductor Physical Electronics

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Electronic Properties of Materials An Introduction for Engineers

UNIT I: Electronic Materials.

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1)

QUANTUM WELLS, WIRES AND DOTS

Luminescence Process

ATOMIC AND LASER SPECTROSCOPY

Physics of Low-Dimensional Semiconductor Structures

Carbon Nanomaterials

Graphene. Tianyu Ye November 30th, 2011

Physics and Chemistry of the Interstellar Medium

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Optical effects of ion implantation

Introduction to the Electronic Properties of Materials

Conductivity and Semi-Conductors

Linear and nonlinear spectroscopy

Physics of atoms and molecules

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

Optical Spectroscopy of Single-Walled Carbon Nanotubes

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Supplementary Materials

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications

Light Interaction with Small Structures

Transcription:

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING SHANGHAI HONG KONG TAIPEI CHENNAI

Contents Preface vii Acknowledgments ix 1. Introduction 1 2. Spectroscopic Techniques for Studying Optical Properties 11 of Nanomaterials 2.1. UV-visible electronic absorption spectroscopy 11 2.1.1. Operating principle; Beer's law 11 2.1.2. Instrument: UV-visible spectrometer 12 2.1.3. Spectrum and interpretation 14 2.2. Photoluminescence and electroluminescence 18 spectroscopy 2.2.1. Operating principle 18 2.2.2. Instrumentation: spectrofluorometer 18 2.2.3. Spectrum and interpretation 20 2.2.4. Electroluminescence (EL) 23 2.3. Infrared (1R) and Raman vibrational spectroscopy 24 2.3.1. IR spectroscopy 24 2.3.2. Raman spectroscopy 26 2.4. Time-resolved optical spectroscopy 29 2.5. Nonlinear optical spectroscopy: harmonic generation 38 and up-conversion 2.6. Single nanoparticle and single molecule spectroscopy 40 2.7. Dynamic light scattering (DLS) 41 2.8. Summary 42 xi

xii Optical Properties and Spectroscopy of Nanomaterials 3. Other Experimental Techniques: Electron Microscopy 47 and X-ray 3.1. Microscopy: AFM, STM, SEM and TEM 48 3.1.1. Scanning probe microscopy (SPM): 48 AFM and STM 3.1.2. Electron microscopy: SEM and TEM 52 3.2. X-ray: XRD, XPS, and XAFS, SAXS 58 3.3. Electrochemistry and photoelectrochemistry 65 3.4. Nuclear magnetic resonance (NMR) and electron 67 spin resonance (ESR) 3.4.1. Nuclear magnetic resonance (NMR) 67 3.4.2. Electron spin resonance (ESR) 69 3.5. Summary 72 4. Synthesis and Fabrication of NanomateriaLs 77 4.1. Solution chemical methods 77 4.1.1. General principle for solution-based 77 colloidal nanoparticle synthesis 4.1.2. Metal nanomaterials 79 4.1.3. Semiconductor nanomaterials 84 4.1.4. Metal oxides 90 4.1.5. Complex nanostructures 91 4.1.6. Composite and hetero-junction 95 nanomaterials 4.2. Gas or vapor-based methods of synthesis: CVD, 96 MOCVD and MBE 4.2.1. Metals 99 4.2.2. Semiconductors 99 4.2.3. Metal oxides 99 4.2.4. Complex and composite structures 101 4.3. Nanolithography techniques 101 4.4. Bioconjugation 102 4.5. Toxicity and green chemistry approaches 103 for synthesis 4.6. Summary 104

Cimlcnt.s xiii 5. Optical Properties of Semiconductor Nanomaterials 117 5.1. Some basic concepts about semiconductors 117 5.1.1. Crystal structure and phonons 118 5.1.2. Electronic energy bands and bandgap 119 5.1.3. Electron and hole effective masses 121 5.1.4. Density-of-states, Fermi energy, and carrier 121 concentration 5.1.5. Charge carrier mobility and conductivity 123 5.1.6. Exciton, exciton binding energy, and exciton 123 Bohr radius 5.1.7. Fundamental optical absorption due to 125 electronic transitions 5.1.8. Trap states and large surface-to-volume ratio 126 5.2. Energy levels and density of states in reduced 127 dimension systems 5.2.1. Energy levels 127 5.2.2. Density of states (DOS) in nanomaterials 130 5.2.3. Size dependence of absorption coefficient, 132 oscillator strength, and exciton lifetime 5.3. Electronic structure and electronic properties 133 5.3.1. Electronic structure of nanomaterials 133 5.3.2. Eleclron-phonoii interaction 135 5.4. Optical properties of semiconductor nanomaterials 135 5.4.1. Absorption: direct and indirect bandgap 135 transitions 5.4.2. Emission: photoluminescence and Raman 142 scattering 5.4.3. Fjnission: chemiluminescence and 147 electroluminescence 5.4.4. Optical properties of assembled 148 nanostructures: interaction between nanoparticles 5.4.5. Shape dependent optical properties 153 5.5. Doped semiconductors: absorption and 153 luminescence

xiv Optical Properties and Spectroscopy of Nanomaterials 5.6. Nonlinear optical properties 157 5.6.1. Absorption saturation and harmonic 157 generation 5.6.2. Luminescence up-conversion 159 5.7. Optical properties of single particles 160 5.8. Summary 165 6. Optical Properties of Metal Oxide Nanomaterials 181 6.1. Optical absorption 182 6.2. Optical emission 187 6.3. Other optical properties: doped and sensitized metal 194 oxides 6.4. Nonlinear optical properties: up-conversion (LUC) luminescence 197 6.5. Summary 199 7. Optical Properties of Metal Nanomaterials 205 7.1. Strong absorption and lack of photoemission 206 7.2. Surface plasmon resonance (SPR) 207 7.3. Correlation between structure and SPR: a theoretical 214 perspective 7.3.1. Effects of size and surface on SPR of metal 214 nanoparticles 7.3.2. The effect of shape on SPR 217 7.3.3. The effect of substrate on SPR 218 7.3.4. Effect of particle-particle interaction on SPR 218 7.4. Surface enhanced Raman scattering (SERS) 220 7.4.1. Background of SERS 220 7.4.2. Mechanism of SERS 221 7.4.3. Distance dependence of SERS 224 7.4.4. Location and orientation dependence 225 of SERS 7.4.5. Dependence of SERS on substrate 226 7.4.6. Single nanoparticle and single molecule SERS 229 7.5. Summary 229

Contents xv 8. Optical Properties of Composite Nanostructures 237 8.1. Inorganic semiconductor-insulator and 239 semiconductor-semiconductor 8.2. Inorganic metal-insulator 244 8.3. Inorganic semiconductor-metal 246 8.4. Inorganic-organic (polymer) 249 8.4.1. Nonconjugated polymers 249 8.4.2. Conjugated polymers 250 8.5. Inorganic-biological materials 253 8.6. Summary 257 9. Charge Carrier Dynamics in Nanomaterials 261 9.1. Experimental techniques for dynamics studies 261 in nanomaterials 9.2. Electron and photon relaxation dynamics in metal 262 nanomaterials 9.2.1. Electronic dephasing and spectral line shape 263 9.2.2. Electronic relaxation due to 264 electron-phonon interaction 9.2.3. Photon relaxation dynamics 267 9.3. Charge carrier dynamics in semiconductor 271 nanomaterials 9.3.1. Spectral line width and electronic 272 dephasing 9.3.2. Intraband charge carrier energy relaxation 274 9.3.3. Charge carrier trapping 275 9.3.4. Interband electron-hole recombination 276 or single excitonic delay 9.3.5. Charge carrier dynamics in doped 282 semiconductor nanomaterials 9.3.6. Nonlinear charge carrier dynamics 283 9.4. Charge carrier dynamics in metal oxide and 288 insu 1 ator nanomaterials 9.5. Photoinduced charge transfer dynamics 290 9.6. Summary 297

xvi Optical Properties and Spectroscopy of Nanomaterials 10. Applications of Optical Properties of Nanomaterials 305 10.1. Chemical and biomedical detection, imaging 306 and therapy 10.1.1. Luminescence-based detection 306 10.1.2. Surface plasmon resonance (SPR) detection 309 10.1.3. SERS for detection 311 10.1.4. Chemical and biochemical imaging 315 10.1.5. Biomedical therapy 322 10.2. Energy conversion: PV and PEC 326 10.2.1. PV solar cells 326 10.2.2. Photoelectrochemical cells (PEC) 330 10.3. Environmental protection: photocatalytic and 331 photochemical reactions 10.4. Lasers, LEDs, and solid state lighting 335 10.4.1. Lasing and lasers 335 10.4.2. Light emitting diodes (LEDs) 336 10.4.3. Solid state lighting: ACPEL 339 10.4.4. Optical detectors 341 10.5. Optical filters: photonic bandgap materials 341 or photonic crystals 10.6. Summary 344 Index 359