Polarized Neutrons Hirohiko SHIMIZU Department of Physics, Nagoya University

Similar documents
Neutron spin filter based on dynamically polarized protons using photo-excited triplet states

Neutron spin filtering with polarized protons

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

Neutron spin filter based on dynamically polarized protons using photo-excited triplet states

Inorganic Spectroscopic and Structural Methods

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Neutron Polarization and polarimetry for precision neutron decay measurments

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Neutron spin filtering with dynamically polarized protons using photo-excited triplet states

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Polarised 3 He Based Neutron Polarisers & Analysers for OPAL Instruments. W. T. Hal Lee, Frank Klose (ANSTO) Ken Andersen, David Jullien (ILL)

Electron spin resonance

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University

Polarized Neutrons Intro and Techniques. Ross Stewart

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Magnetic Resonance in magnetic materials

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei.

A new UCN source at TRIUMF for EDM, β decay, gravity etc.

Fundamental MRI Principles Module Two

Møller Polarimetry on Atomic Hydrogen

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Institute Laue-Langevin, Grenoble

Highenergy Nuclear Optics of Polarized Particles

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

POLARIZED 3 He in FUNDAMENTAL PHYSICS with COLD NEUTRONS. Tom Gentile National Institute of Standards and Technology (NIST)

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

Measuring Spin-Lattice Relaxation Time

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Spin Feedback System at COSY

arxiv: v3 [nucl-ex] 18 May 2018

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chopping High-Intensity Ion Beams at FRANZ

Polarization for precision measurements. Torsten Soldner Institut Laue Langevin

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT

Magnetic Resonance Spectroscopy EPR and NMR

Synthesis of a Radical Trap

AMOR the time-of-flight neutron reflectometer at SINQ/PSI

The NMR Inverse Imaging Problem

Relaxation. Ravinder Reddy

12. Spectral diffusion

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Muons in Chemistry Training School Dr N J Clayden School of Chemistry University of East Anglia Norwich

Single Particle Motion

Chemistry 431. Lecture 23

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Fundamental Neutron Physics II. Fundamental Neutron Physics III

MRI Physics I: Spins, Excitation, Relaxation

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Magnetic resonance imaging MRI

ILL beam experiment Improved experiment with horizontal beam: (1) Reactor source,,(2)pulsed source Vertical experiment: DUSEL proposal

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Laserunterstützte magnetische Resonanz

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

9 Atomic Coherence in Three-Level Atoms

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Experimental Atomic Physics Research in the Budker Group

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

ELECTRON PARAMAGNETIC RESONANCE

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field.

Chemistry 213 Practical Spectroscopy

PoS(INPC2016)191. Precise neutron lifetime experiment using pulsed neutron beams at J-PARC

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

Questions Chapter 22 Electric Fields

Measurement of the electron EDM using Cold YbF Molecules:

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

The Use of NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy

arxiv: v1 [nucl-ex] 10 Feb 2017

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Polarised Gas Targets and Polarised Ion Sources for Accelerators

Physics of MR Image Acquisition

Ferdowsi University of Mashhad

Study on Bose-Einstein Condensation of Positronium

Axion dark matter search using the storage ring EDM method

The Search for the Neutron Electric Dipole Moment

NMR: Formalism & Techniques

TUNING NEUTRON RF-PULSE FREQUENCY

Chapter 13 Spectroscopy

COPYRIGHTED MATERIAL. Index

Transcription:

Polarized Neutrons Hirohiko SHIMIZU shimizu@phi.phys.nagoya-u.jp Department of Physics, Nagoya University

Introduction

Neutron

1T Ni 244neV Strong Interaction 60neV 0neV - 60neV g γ d nneutron u d W G 1m e - ν e n τ=885.7s p Weak Interaction 103neV 0neV Electromagnetic Interaction Gravitational Interaction n µ µ µ µ

Devices

Devices Magnetic Supermirror

Neutron Reflection Fermi pseudopotential Ni: +243neV Fermi pseudopotential 0 grazing angle

Multilayer Mirror (Monochromatic) Fermi pseudopotential Ni: +243neV Ti: -50neV Fermi pseudopotential 0 grazing angle

Supermirror Fermi pseudopotential Ni: +243neV Ti: -50neV Fermi pseudopotential 0 grazing angle

Magnetic Supermirror Magnetic layers Non-magnetic layers reflective transparent Fe SiGe3 Fe SiGe3 Fe SiGe3 Fermi pseudopotential 0 Fermi pseudopotential 0 Fermi pseudopotential 0 µ0h σn σn parallel anti-parallel

Devices Spin Filter

Neutron Polarizer (Spin Filter) n : nuclear number density pa : target nuclear polarization t : target thickness

Spin Analyzer

Polarized Target (solid) B=0.3T T=77K B=2.5T T=0.5K B=10T T=0.01K e p e p e p Polarization P e =tanh(µ e B/kT) P p =tanh(µ p B/kT) e p e p e p B/T [T/K]

Polarized Target (solid) method electron proton Brute-force DNP thermal equilibrium thermal equilibrium thermal equilibrium thermal nonequilibrium MIONP thermal nonequilibrium thermal nonequilibrium

e p e p microwave paramagnetic center

(Differential) Solid Effect narrow ESR Δωe < ωn ΔωN ESR Electron Spin Resonance ωn ωn Δωe ωn ωe ωe+ωn ω ωe-ωn ωeωe+ωn ωe NMR Nuclear Magnetic Resonance ωe-ωn ωn ωe-ωn ωe ωe+ωn ω

Pentacene C22H14 Chem. Phys. Lett. 165 (1990) 6 m.p.=270 C y z x H0 H0 // x H0 // y H0 // z m=+1 12% 45% 46% m=0 76% 16% 8% m=-1 12% 39% 46% 73% 12% m=+1 9GHz S1 S0 laser excitation ps intersystem crossing T0 20µs 100µs 20µs 76% 12% Ix=+1/2 DNP-ISE Ix=-1/2 m=0 m=-1 0.29T 0.35T

Naphthalene C10H8 m.p.=80 C 2 naphthalene molecules 1 pentacene molecule Pentacene < 0.01 mol% b c x b a=0.82nm b=0.6nm c=0.87nm a a=g=90 b=123 P21/a (monoclinic) The x-axis of pentacene is aligned in host crystals.

Experimental Result (MIONP) K.Takeda et al., J. Phys. Soc. Jpn. 73 (2004) 2313 Pp~0.7 T=105K B=0.32T Naphthalene + 0.018 mol% Pentacene 4 mm 4 mm (ab) 2.2 mm (c)

Neutron Polarizer/Analyzer Energy Regions Methods Research Fields Fast Neutron Epithermal Neutron Thermal Neutron Cold Neutron Very-Cold Neutron Ultracold Neutron Magnetic Mirror Polarized 3 He Polarized Proton Magnetic Field Heusler Crystal Nuclear Engineering Nuclear Physics Fundamental Physics Hard Matter Researches Soft Matter Researches Fundamental Physics

Beam Chopper

Neutron Beam Chopper Disk Chopper Fermi Chopper Velocity Selector Diffraction Spin-flip Chopper 2 k =2d sin

Neutron Accelerator/Decelerator Y.Arimoto et al., Phys. Rev. A 86 (2012) 023843

Neutron Decelerator by Successive Spin Flip magnetic dipole interaction unit cell AFP-NMR (adiabatic fast passage nuclear magnetic resonance) B 1 (rf) B 1 (rf) 1T +60neV 0neV 60neV B z B 0 B max spin parallel spin flip spin antiparallel spin flip H 1 = ω γ γ = 1.8 10 8 rad s -1 T -1 (29 MHz/T) ΔE = 120 B max 1 T nev inner surface = neutron guide pulsed neutron source cell L=0.12m B max =5T ΔE = 0.6 µev L total ΔE = 120 µev L=24m 200 cells sweep synchronized with neutron pulse z J = 1.5 10 4 cm -2 s -1 LANSCE storage time = 50sec neutron density 3 10 4 cm -3 LANSCE 3 10 5 cm -3 JSNS (0.9948) 172 =0.41 0.32 0.54 reflection loss spin flip loss phase mismatch due to neutron pulse width 2 10 3 cm -3 LANSCE 2 10 4 cm -3 JSNS

Neutron Accelerator/Decelerator rebuncher M.Kitaguchi, Prog. Theor. Exp. Phys. (2017) 043D01

UCN Rebuncher = Neutron Accelerator Original density can be restored if faster UCNs are decelerated appropriately. Neutron Rebuncher Neutron source Rebuncher reshapes UCNs into sharp pulse. x door position high density Storage cell Rebuncher fast UCN slow UCN decelerated accelerated UCN production at converter Rebuncer decelerates the UCNs according to the velocity, synchronized with time of flight in pulsed source. M. Kitaguchi, et. al, t

Adiabatic Fast Passage (AFP) spin flipper Large 100 0 Deceleration -100 1200 1400 \NEDM\FILPA0A.AF 6-10-2010 0:23:28 100 0 \NEDM\FILPA33A.AF 6-10-2010 0:55:30 1400 1200-100 1200 1400 \NEDM\FILPA33A.AF 0 6-10-2010 0:55:30 100 L\NEDM\FILPA0A.AF 6-10-2010 0:23:28 1200 1400 Small Deceleration RF magnetic field in gradient field gives/ removes the energy with spin flip. 2µB = h! 30 MHz = 1T = 120 nev Faster neutrons arrive earlier. Large deceleration = High Freq. RF -100 0 100 Slower neutrons arrive later. Small deceleration = Low Freq. RF Energy exchange is proportional to the RF frequency. Sweeping frequency matching to the arrival time

Prototype Static Magnet 0 Y. Arimoto et al. / Physics Proced 4-2000 2 011 2 23 (Gauss) B x -4000-6000 -8000-10000 -12000 Yoke SS400 () Anisotropic inter-poles make SS400+ homogeneous gradient field. 0-60 -40-20 0 20 40 z (cm) -2000 y= 0.0 cm Spin flip region x= 0.0 cm y= 0.0 cm y= 1.0 cm y= 2.0 cm y= 3.0 cm Y.Arimoto, et. al.,ieee Trans. Appl. Supercond. 22, 4500704 (2012). db x /dz (Gauss) Figure 8: B x (left) and db x /dz (right) as a function of z on the median plane. T 1.0 cm (square), 2.0 cm (triangle), 3.0 cm (inverse triangle), respectively. Effectiv and return yoke shape are indicated as same scale and position in z-direction on (Gauss) -4000-6000 x= 0.0 cm y= 1.0 cm y= 2.0 cm y= 3.0 cm -2-4 -6-8 -10 x= B x -8000-10000

Results RF ON / RF OFF 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 Accelerated (opposite spin) RF ON Rebunched! 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 TOF [sec] Blue : Exp. Data Red : Simulation Rebunching of UCNs was observed! Y. Arimoto, et., al., Phys. Rev. A 86, 023843 (2012).

Neutron Accelerator/Decelerator velocity concentrator M.Kitaguchi, Prog. Theor. Exp. Phys. (2017) 043D01