Introduction to Semiconductor Integrated Optics

Similar documents
Diode Lasers and Photonic Integrated Circuits

Distributed feedback semiconductor lasers

Optics, Optoelectronics and Photonics

Semiconductor Physical Electronics

Lasers and Electro-optics

Stimulated Emission Devices: LASERS

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Electronic and Optoelectronic Properties of Semiconductor Structures

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Semiconductor Lasers II

EE 6313 Homework Assignments

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap ,

Photonics and Optical Communication

CONTENTS. vii. CHAPTER 2 Operators 15

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Chapter 5. Semiconductor Laser

The Physics of Semiconductors

UNIT I: Electronic Materials.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Optics, Light and Lasers

Semiconductor Physical Electronics

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Other Devices from p-n junctions

ISSN Review. Progress to a Gallium-Arsenide Deep-Center Laser

Semiconductor Module

Study on Quantum Dot Lasers and their advantages

Semiconductor Detectors

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17.

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Photonic Devices. Light absorption and emission. Transitions between discrete states

NANO/MICROSCALE HEAT TRANSFER

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

Chapter 6: Light-Emitting Diodes

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Single Photon detectors

Physics of Semiconductors

What do we study and do?

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Solid Surfaces, Interfaces and Thin Films

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Chapter 4. Photodetectors

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Chapter 3 The InAs-Based nbn Photodetector and Dark Current

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Semiconductor device structures are traditionally divided into homojunction devices

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Electromagnetic Theory for Microwaves and Optoelectronics

PRINCIPLES OF PHYSICAL OPTICS

EE 3329 Electronic Devices Syllabus ( Extended Play )

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Chapter 1 Overview of Semiconductor Materials and Physics

Unit IV Semiconductors Engineering Physics

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

LEC E T C U T R U E R E 17 -Photodetectors

Midterm I - Solutions

PHOTOVOLTAICS Fundamentals

Conductivity and Semi-Conductors

Chapter 7. Solar Cell

Lect. 10: Photodetectors

Quantum Dot Lasers. Jose Mayen ECE 355

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Emission Spectra of the typical DH laser

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

Silicon Detectors in High Energy Physics

Review of Optical Properties of Materials

Appendix 1: List of symbols

Schottky Rectifiers Zheng Yang (ERF 3017,

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Classification of Solids

S. Blair February 15,

KATIHAL FİZİĞİ MNT-510

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

Highenergy Nuclear Optics of Polarized Particles

PHYSICS nd TERM Outline Notes (continued)

Signal regeneration - optical amplifiers

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Effective masses in semiconductors

Photonic Devices Human eye: about 400 nm to 700 nm

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Chem 481 Lecture Material 3/20/09

Optical amplifiers and their applications. Ref: Optical Fiber Communications by: G. Keiser; 3 rd edition

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

In a metal, how does the probability distribution of an electron look like at absolute zero?

Optical Characterization of Solids

6. Light emitting devices

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

Lecture 12. Semiconductor Detectors - Photodetectors

Magnetic and optic sensing. Magnetic sensors

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Transcription:

Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London

Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1 Maxwell's Equations 1 1.1.2 Current Continuity 2 1.1.3 The Wave Equation 3 1.1.4 ТЕМ Waves and Polarization 4 1.2 Solving the Wave Equation 4 1.2.1 Propagation Constant 6 1.2.2 Maxwell for Sinusoidal Fields 7 1.3 Energy 8 1.3.1 Poynting Vector 9 1.4 Interference 10 Chapter 2 A Summary of Semiconductors 13 2.1 Silicon and Gallium Arsenide 13 2.1.1 Crystalline Properties 14 2.1.2 Miller Indices and Atomic Planes 16 2.2 Energy Bands 17 2.2.1 Band Structure Calculations 18 2.2.2 Energy Bands 19 2.2.3 Electron Transitions between Bands 20 2.2.4 Effective Mass 21 2.3 Carrier Concentration 24 2.3.1 Density of States 24 2.3.2 Fermi-Dirac Distribution 25 xv xvii xix

via INTRODUCTION TO SEMICONDUCTOR INTEGRATED OPTICS 2.3.3 Intrinsic Carrier Concentration 2.4 Doping 2.4.1 Donors and Acceptors 2.4.2 Fermi Level Determination 2.4.3 Degenerate Semiconductors 2.5 Transport 2.5.1 Drift and Diffusion 2.5.2 Contributions to Mobility 2.5.3 High Field Effects 2.6 The PN Junction 2.6.1 The Depletion Approximation 2.6.2 Debye Length 2.6.3 The PN Junction Under Bias 2.6.4 Reverse Bias Breakdown 2.6.5 Junction Capacitance 2.6.6 The P-I-N Diode 2.7 Heterojunctions and Quantum Wells 2.7.1 Single and Double Heterostructures 2.7.2 Quantum Wells Chapter 3 Optical Properties of Semiconductors 3.1 Refractive Index 3.2 Absorption 3.2.1 Direct Bandgap 3.2.2 Indirect Bandgap 3.2.3 Band Tails 3.2.4 Free Carrier Absorption 3.2.5 Franz-Keldysh Effect 3.3 Recombination 3.3.1 Radiative Transitions 3.3.2 Direct and Indirect Transitions 3.3.3 Nonradiative Recombination 3.4 Polarization 3.4.1 Susceptibility 3.4.2 Polarization Model 3.5 Complex Material Constants 3.5.1 Complex Dielectric Constant 3.5.2 Complex Refractive Index 3.5.3 Complex Propagation Constant 3.5.4 Summary of Complexities 3.6 Dielectric Tensor 3.7 Kramers-Kronig Relations

Contents IX Ihapter 4 Optical Semiconductor Materials 77 4.1 III-V Materials 77 4.1.1 The III-V Extended Family 77 4.1.2 Regimes of Application 79 4.2 Composition and Optical Properties 81 4.2.1 Refractive Index 81 4.2.2 Energy Gap 83 4.3 Bulk Crystal Growth 84 4.3.1 Liquid-Encapsulated Czochralski 86 4.3.2 Horizontal Bridgman and Vertical Gradient Freeze 87 4.3.3 Wafer Sawing and Flat Grinding 88 4.4 Epitaxial Layer Growth 89 4.4.1 Liquid Phase Epitaxy 90 4.4.2 Molecular Beam Epitaxy 90 4.4.3 Metalorganic Chemical Vapor Deposition 92 4.5 More Optical Materials 94 4.5.1 Silicon 94 4.5.2 Silicon: Modifications and Accessories 95 4.5.3 Silicon/Germanium 96 4.5.4 Other Compound Semiconductors 96 Lapter 5 5.1 5.2 5.3 5.4 5.5 5.6 Basics of Semiconductor Processing A Typical Optoelectronic Process 5.1.1 The Basics 5.1.2 The Embellishments 5.1.3 The Environment Photolithography 5.2.1 Masks 5.2.2 Photoresist 5.2.3 Lift-Off and Image Reversal 5.2.4 Mask Aligners 5.2.5 Nonoptical Lithography Etching 5.3.1 Dry Etching Basics and Machinery 5.3.2 Etch Gasses 5.3.3 Problems and Limitations 5.3.4 Wet Etching Dielectrics 5.4.1 Plasma Deposition 5.4.2 Chemical Vapor Deposition Metals Processing Varia 99 100 100 102 103 103 104 104 107 107 109 109 110 114 114 115 117 117 118 119 120

X INTRODUCTION TO SEMICONDUCTOR INTEGRATED OPTICS 5.6.1 III-V Post-Processing 5.6.2 Ion Implantation 5.6.3 Rapid Thermal Annealing Chapter 6 Reflections at Boundaries 6.1 Angles of Reflection and Refraction 6.2 Boundary Conditions of Electromagnetic Fields 6.3 Reflection and Transmission Coefficients 6.3.1 ТЕ Configuration 6.3.2 TM Configuration 6.3.3 Power Transmission and Reflection 6.4 Two Special Cases 6.4.1 Normal Incidence 6.4.2 Total Internal Reflection Chapter 7 Guided Waves and Slab Waveguides 7.1 Perfect Mirror Waveguides 7.1.1 Discrete Waveguide Modes 7.1.2 Propagation Constants and Effective Index 7.2 Dielectric Waveguides: the Ray Optic Model 7.2.1 Total Internal Reflection 7.2.2 Symmetric Waveguides 7.2.3 Monomode Conditions 7.2.4 Propagation Constants and Effective Index, Again 7.2.5 Asymmetric Waveguides 7.3 Electromagnetic Model 7.3.1 Eigenvalue Equation for a Slab Waveguide 7.3.2 Propagating and Decaying Solutions 7.3.3 Propagation and Decay Constants 7.4 Dielectric Waveguides: Electric and Magnetic Fields 7.4.1 Field Solutions 7.4.2 Power Normalization 7.4.3 Symmetric Waveguide: Cutoff Condition 7.4.4 Asymmetric Waveguide: Cutoff Condition 7.4.5 Confinement Factor 7.5 Goos-Hänchen Shift Chapter 8 Optical Channel Waveguides 8.1 Two-Dimensional Waveguide Structures 8.1.1 Etched Structures 8.1.2 Other III-V Waveguide Techniques 8.1.3 Silicon-Based Waveguides 8.2 Two-Dimensional Waveguide Analysis

Contents XI 8.2.1 Effective Index Approximation 183 8.2.2 Method of Field Shadows 186 8.2.3 Waveguide Modes 188 8.2.4 Monomode Waveguides 189 8.2.5 Lateral Waveguiding Mechanisms 191 8.3 Input/Output Coupling 193 8.3.1 Butt Coupling 193 8.3.2 End-Fire Coupling 194 8.3.3 Grating Coupling 195 8.3.4 Prism Couplers 196 8.4 Waveguide Losses 197 8.4.1 Band-Edge Absorption 197 8.4.2 Free-Carrier Absorption 198 8.4.3 Scattering 199 8.4.4 Radiation Losses 200 8.4.5 Typical Loss Values 201 8.5 Loss Characterization 201 8.5.1 Cut-Back Technique 202 8.5.2 Fabry-Perot Resonances 202 8.6 Passive Waveguide Structures 204 8.6.1 Curves 204 8.6.2 Couplers 207 8.6.3 Y-Junctions 209 hapter 9 Lasers 215 9.1 Laser Operation A Quick Heuristic Discussion 216 9.2 Photon Emission in Semiconductors 217 9.2.1 Spontaneous and Stimulated Emission 217 9.2.2 Electron Distribution and Transition Rates 218 9.2.3 Lineshape Function 220 9.2.4 Spectral Shape and Broadening 222 9.3 Optical Gain 223 9.3.1 Amplification and Attenuation 224 9.3.2 Semiconductor Gain 225 9.3.3 Gain Saturation 228 9.3.4 Hole Burning 231 9.4 Laser Oscillation 232 9.4.1 Fabry-Perot Etalon 232 9.4.2 The Etalon with Optical Gain 236 9.4.3 Laser Resonance 239 9.5 Semiconductor Laser Structures 239 9.5.1 Materials and Heterostructures 239

xii INTRODUCTION TO SEMICONDUCTOR INTEGRATED OPTICS 9.6 9.7 9.8 9.9 9.5.2 Quantum-Well Lasers 9.5.3 Typical Laser Designs 9.5.4 Reliability and Lifetime Electrical and Optical Characterization 9.6.1 9.6.2 9.6.3 9.6.4 9.6.5 Light- Threshold Current Output Power and Efficiency Spectrum Spatial Intensity Distribution Temperature Variations Emitting Diodes Distril >uted Feedback Lasers 9.8.1 9.8.2 9.8.3 Distributed Feedback DBR/DFB Fabrication Operation and Special Features Surface-Emitting Lasers 9.9.1 9.9.2 9.9.3 Mirror Deflectors Surface Grating Couplers VCSELs Chapter 10 Photodetectors 10.1 General Principles 10.1.1 Photon to Electron Conversion 10.1.2 Efficiency 10.1.3 Noise 10.2 Semiconductor Detector Materials 10.3 The P-I-N Photodiode 10.3.1 Waveguide Detector 10.3.2 Surface Detector 10.4 Schottky and MSM Detectors 10.4.1 Schottky Barrier 10.4.2 MSM Detector 10.4.3 Surface Illumination 10.5 Avalanche Photodiodes 10.5.1 Avalanche Multiplication 10.5.2 Photodetector Structure Chapter 11 Modulators 11.1 Phase and Intensity Modulation 11.2 Modulator Structures: a Brief Survey 11.2.1 Electro-Optic Effects 11.2.2 Directional Couplers 11.2.3 Total Internal Reflection Deflectors 11.2.4 Bragg Gratings

Contents xiü 11.2.5 Surface Acoustic Wave Devices 297 11.2.6 Interferometric Modulators 299 11.2.7 Traveling Wave Modulators 299 11.2.8 Mechanical Beam Steering 299 11.3 Electro-Optics 300 11.3.1 Pockets Effect 300 11.3.2 Kerr Effect 301 11.3.3 Franz-Keldysh Effect 302 11.3.4 Plasma Effects 304 11.3.5 Silicon Electro-Optics 305 11.4 Quantum-Well Modulators 306 11.4.1 Quantum-Confined Stark Effect 306 11.4.2 Electrorefraction in Quantum Wells 308 11.4.3 Chirp 310 11.4.4 Quantum-Well Modulator Structures 311 11.5 Interferometric Modulators 312 11.5.1 Output Characteristics 313 11.5.2 Interferometer Modulator Performance 315 11.5.3 Other Origins for Phase Shift 315 hapter 12 Hybridization and Monolithic Integration 321 12.1 Integration versus Hybridization 322 12.1.1 Examples: Photonic Integration 323 12.1.2 Examples: Electronics Integration 326 12.1.3 Examples: Hybridization 326 12.2 Waveguide-Based Integration 328 12.2.1 Evanescent and Butt Coupling 328 12.2.2 Selective Growth 331 12.2.3 Quantum-Well Intermixing 332 12.2.4 Electrical Isolation 334 12.3 Monolithic Devices and Systems 334 12.3.1 Odier Integratable Device Structures 335 12.3.2 Monolithic System Implementations 338 12.4 Hybrid Optical Systems 338 12.4.1 Alignment 339 12.4.2 Bonding 340 12.4.3 Heteroepitaxy 342 ppendix A List of Variables 349 ppendix В List of Useful Physical Constants 357 bout the Author 359 idex 361