Dr Željko Aleksić, predavanja MS1AIK, februar D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008.

Similar documents
Projektovanje paralelnih algoritama II

Red veze za benzen. Slika 1.

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH

TEORIJA SKUPOVA Zadaci

MATHEMATICAL ANALYSIS OF PERFORMANCE OF A VIBRATORY BOWL FEEDER FOR FEEDING BOTTLE CAPS

Mathcad sa algoritmima

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA

Metod za indirektno određivanje parametara turbogeneratora u radnim uslovima

ADAPTIVE NEURO-FUZZY MODELING OF THERMAL VOLTAGE PARAMETERS FOR TOOL LIFE ASSESSMENT IN FACE MILLING

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU

Regulisani elektromotorni pogoni sa asinhronim mašinama Direktna kontrola momenta

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ URL:

Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012

Đorđe Đorđević, Dušan Petković, Darko Živković. University of Niš, The Faculty of Civil Engineering and Architecture, Serbia

INVESTIGATION OF UPSETTING OF CYLINDER BY CONICAL DIES

U X. 1. Multivarijantna statistička analiza 1

PARAMETRIC OPTIMIZATION OF EDM USING MULTI-RESPONSE SIGNAL-TO- NOISE RATIO TECHNIQUE

Fajl koji je korišćen može se naći na

APPROPRIATENESS OF GENETIC ALGORITHM USE FOR DISASSEMBLY SEQUENCE OPTIMIZATION

Conventional and sub-threshold operation regimes of CMOS digital circuits

VELOCITY PROFILES AT THE OUTLET OF THE DIFFERENT DESIGNED DIES FOR ALUMINIUM EXTRUSION

Analogne modulacije / Analog modulations

Philippe Jodin. Original scientific paper UDC: :519.6 Paper received:

ANALYSIS OF INFLUENCE OF PARAMETERS ON TRANSFER FUNCTIONS OF APERIODIC MECHANISMS UDC Života Živković, Miloš Milošević, Ivan Ivanov

REGIONALNI CENTAR ZA TALENTE VRANJE

DEVELOPMENT OF MATHEMATICAL MODELS TO PREDICT THE EFFECT OF INPUT PARAMETERS ON FEED RATE OF A RECIPROCATORY TUBE FUNNEL FEEDER

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Realizacija i ocjena MPPT algoritama u fotonaponskom sistemu napajanja

Metrički prostori i Riman-Stiltjesov integral

Aneta Prijić Poluprovodničke komponente

BROJEVNE KONGRUENCIJE

ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING

Signal s(t) ima spektar S(f) ograničen na opseg učestanosti (0 f m ). Odabiranjem signala s(t) dobijaju se 4 signala odbiraka: δ(t kt s τ 2 ),

Asian Journal of Science and Technology Vol. 4, Issue 08, pp , August, 2013 RESEARCH ARTICLE

Analiza faktora koji utiču na sorpciju Cu(II) jona klinoptilolitom

PRELIMINARY COMMUNICATION Influence of chloride ions on the open circuit potentials of chromium in deaerated sulfuric acid solutions

Yu.G. Matvienko. The paper was presented at the Twelfth Meeting New Trends in Fatigue and Fracture (NT2F12) Brasov, Romania, May, 2012

Osobine metode rezolucije: zaustavlja se, pouzdanost i kompletnost. Iskazna logika 4

Zadatci sa ciklusima. Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva.

THE BOUNDARY VALUES OF THE PUNCH DIAMETER IN THE TECHNOLOGY OF THE OPENING MANUFACTURE BY PUNCHING UDC

Lecture 11: MOSFET Modeling

Practice 3: Semiconductors

Nonlinear Statistical Methodology Applied on Modeling the Growth Correlation of Some Global Macroeconomic Parameters

Mjerenje snage. Na kraju sata student treba biti u stanju: Spojevi za jednofazno izmjenično mjerenje snage. Ak. god. 2008/2009

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle).

UOPŠTENI INVERZI, FAKTORI USLOVLJENOSTI I PERTURBACIJE

AIR CURTAINS VAZDU[NE ZAVESE V H

Programiranje u realnom vremenu Bojan Furlan

Regulisani elektromotorni pogoni sa asinhronim mašinama vektorsko upravljanje

Dynamic analysis of 2-D and 3-D quasi-brittle solids and structures by D/BEM

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu

Fraktali - konačno u beskonačnom

Izvod. Abstract NAUKA ISTRAŽIVANJE RAZVOJ SCIENCE RESEARCH DEVELOPMENT. B. Međo, M. Rakin, O. Kolednik, N.K. Simha, F. D. Fischer

EE105 - Fall 2006 Microelectronic Devices and Circuits

Summary Modeling of nonlinear reactive electronic circuits using artificial neural networks

MAGNETIC FIELD OF ELECTRICAL RADIANT HEATING SYSTEM

Šta je to mašinsko učenje?

MODEL PARCIJALNIH PRAŽNJENJA KOD VELIKIH OBJEKATA DISHARGE MODEL OF LARGE APPARATUS

Karakterizacija problema zadovoljenja uslova širine 1

EE105 - Fall 2005 Microelectronic Devices and Circuits

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

MORFOLOGIJA POVRŠINE PRIREDIO ALEKSANDAR MILETIĆ

γσ (1) γσ (1) Adresa autora / Author's address: Mašinski fakultet Univerziteta u Beogradu, Srbija & Crna Gora

Nelinearna dinamika u okviru Frenkel-Kontorova modela pod dejstvom spoljašnjih periodičnih sila

Kontrolni uređaji s vremenskom odgodom za rasvjetu i klimu

Kristina Popadić. Analiza preživljavanja sa primenama u zdravstvenom osiguranju - master rad -

Choice of V t and Gate Doping Type

IV razred- matematika. U prvoj nedelji septembra planirano je obnavljanje gradiva druge godine (3 èasa), a 4-tog èasa radi se inicijalni test.

SEMI-ANALYTICAL FORMULAS FOR THE FUNDAMENTAL PARAMETERS OF GALACTIC EARLY B SUPERGIANTS

Kompresija slike pomoću Wavelet transformacije

EARNED VALUE METHOD - EVM METOD OSTVARENE VREDNOSTI

DEFINING OF VARIABLE BLANK-HOLDING FORCE IN DEEP DRAWING

Geometrijski smisao rješenja sustava od tri linearne jednadžbe s tri nepoznanice

Određivanje dinamičkih karakteristika regulatora napona statora i struje pobude elektromašinskog pobudnog sistema sa jednosmernom budilicom

DISTRIBUIRANI ALGORITMI I SISTEMI

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

DESIGN AND CALCULATION OF RING SPRINGS AS SPRING ELEMENTS OF THE WAGON BUFFER UDC : Jovan Nešović

TEHNIČKO REŠENJE. Algoritam za određivanje graničnih linija impedansi za rezistivno-reaktivnu klasu-b/j pojačavača snage

ECE 342 Electronic Circuits. 3. MOS Transistors

An Algorithm for Computation of Bond Contributions of the Wiener Index

Kontrola temperature uljnih transformatora promenom brzine obrtanja ventilatora

DEVELOPMENT OF A MATHEMATICAL MODEL TO PREDICT THE PERFORMANCE OF A VIBRATORY BOWL FEEDER FOR HEADED COMPONENTS

Product Function Matrix and its Request Model

povezuju tačke na četiri različita načina (pravom linijom, splajnom,

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

UPRAVLJANJE POGONIMA SA ASINHRONIM

1.1 Algoritmi. 2 Uvod

EFFECT OF LAYER THICKNESS, DEPOSITION ANGLE, AND INFILL ON MAXIMUM FLEXURAL FORCE IN FDM-BUILT SPECIMENS

ABOUT SOME VARIOUS INTERPRETATIONS OF THE FATIGUE CRITERION AT LOW NUMBER OF STRAIN CYCLES UDC Miodrag Janković

Uvod u relacione baze podataka

FTN Novi Sad Katedra za motore i vozila. Drumska vozila Uputstvo za izradu vučnog proračuna motornog vozila. 1. Ulazni podaci IZVOR:

ROBUSTNO UPRAVLJANJE SISTEMOM AKTIVNOG OSLANJANJA VOZILA ROBUST CONTROL OF ACTIVE VEHICLE SUSPENSION SYSTEM

Nanoscale CMOS Design Issues

Algoritam za množenje ulančanih matrica. Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek

AN EXPERIMENTAL METHOD FOR DETERMINATION OF NATURAL CIRCULAR FREQUENCY OF HELICAL TORSIONAL SPRINGS UDC:

NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika POLARIZACIJA SVJETLOSTI

Transcription:

METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA Dr Željko Aleksić, predavanja MS1AIK, februar 2009. D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008. 1

Circuit level parameters Transistor level parameters 2

Strukturisano projektovanje analognih kola Tok projektovanja pojačavača od sistemskog do tranzistorskog nivoa baziran na metodu strukturisanog projektovanja. Pojačavač se u početnoj fazi zamenjuje modelom ponašanja. Na osnovu zahteva i simulacija na sistemskom nivou izvode se specifikacije na nivou kola. Izabrana topologija pojačavača se deli na osnovne analogne strukture i na osnovu zahteva na nivou kola se izvode projektne specifikacije za svaku osnovnu analognu strukturu. Da bi se olakšao ovaj zadatak definiše se biblioteka osnovnih analognih struktura, iza svaku osnovnu strukturu specificiraju se važni projektni slučajevi i projektni parametri. 3

Scenario procedure projektovanja Posle raščlanjavanja kola i prenošenja specifikacija na nivo osnovnih analognih struktura, potrebno je razviti proceduralnu sekvencu projektovanja da bi se dostigle zahtevane specifikacije. Lokalna optimizacija Optimizacija se takođe prenosi na nivo osnovnih analognih struktura. Potrebno je da se procene granice tehnologije i da se odrede granične vrednosti parametara. Pošto uvek ima više puteva u nalaženju rešenja, i rešenje jako zavisi od odluka korisnika (projektanta), u kritičnim tačkama proceduralnih scenarija projektovanja se daju uputstva i komentari za lokalnu optimizaciju. Varijante topologije Na kraju, u slučajevima kada su specifikacije vrlo zahtevne i ne mogu da se dostignu, rešenje je da se zameni naprednijom verzijom samo ona osnovna analogna struktura koja utiče na parametar koji je u pitanju. Kada se kolo kompletira na tranzistorskom nivou, njegove performanse moraju da se provere ponavljanjem simulacija na sistemskom nivou, kakve su bile korišćene na početku projektovanja. Ukoliko neka od specifikacija na sistemskom nivou nije dostignuta, mogu da se izdvoje parazitni efekti i dodaju u model ponašanja, a zatim da se ponove sekvence projektovanja. 4

Projektovanje na tranzistorskom nivou bazirano na nivou inverzije tranzistora U klasičnom pristupu p dimenzionisanju CMOS tranzistora projektne promenljive su I D (struja polarizacije tranzistora), W (širina kanala) i L (dužina kanala). U alternativnom pristupu koriste se dve projektne promenljive: IF (faktor inverzije tranzistora) i L (dužina kanala). MožeM ž sepokazati da struja polarizacije ij tranzistora t nije nezavisno promenljiva na tranzistorskom t nivou pošto je ona određena specifikacijama na nivou kola. Stoga ona može da se promeni samo na nivou kola, a za to je potrebna iteracija ponovnog projektovanja na nivou osnovnih analognih struktura. U ovom alternativnom pristupu projektovanje na nivou tranzistora se obično zasniva na EKV modelu, u kojem su projektni parametri tranzistora dati kao kontinualne i jedinstvene funkcije nivoa inverzije tranzistora. Ovo omogućava jednostavnu procenu granica vrednosti parametara i definisanje strategije t optimizacije i ij natranzistorskom t nivou. Na ovoj osnovi identifikuju se mogući slučajevi rešenja i predlažu se uputstva za projektovanje na tranzistorskom nivou. 5

#Projektni parametri tranzistora Simetrija tranzistora i definisanje njegovih napona MOS tranzistor je komponenta sa četiri priključka koja poseduje simetriju sors/drejn. Imajući u vidu ovu simetriju, naponi se određuju u odnosu na supstrat (osnovu). V V V G Gt Bt V V V S St Bt V V V D Dt Bt E OX V t G ms s ox s - površinski potencijal Q i = Q inv -naelektrisanje lkti inverzijeij (po jedinici površine) Q b - nepokretno negativno naelektrisanje u osiromašenom sloju osnove Q fc - fiksno naelektrisanje u oksidu na granici sa osnovom (kanalom) Q b + Q i = Q si -ukupno negativno naelektrisanje ms - razlika kontaktnih potencijala metala gejta gj i poluprovodnika p u kanalu 6

#Režimi rada MOS tranzistora Režimi rada u gornjoj tabeli definisani su u odnosu na površinski potencijal s i potencijal kanala V ch. V ch odgovara razlici kvazi-fermijevih potencijala većinskih i manjinskih nosilaca duž kanala. Integracijom pokretnog naelektrisanja duž kanala dobija se izraz za struju drejna. Normalizovana direktna komponenta struje drejna daje indikaciju nivoa inverzije, koji može da se koristi kao parametar u projektovanju. 7

Izraz za naelektrisanje inverzije se dobija integracijom Poasonove jednačine (za n-kanalni tranzistor): 2 V s s F ch s Qinv Cox Vt exp Vt Vt Vt - faktor modulacije osnove (supstrata) Relacija između površinskog potencijala s, naelektrisanja inverzije Q inv i napona gejta V G, koja važi u svim radnim režimima, je V Q inv V, C G FB s s ox 2qN sub s C ox # Jaka inverzija, napon uštinuća (pinch-off voltage) i faktor nagiba Napon praga V T0, napon uštinuća V P i faktor nagiba n se odnose na rad u režimu jake inverzije. Oni su izvedeni iz aproksimacije naelektrisanja inverzije u režimu jake inverzije. U režimu jk jake inverzijeij površinski potencijal je s = 2 F + mv t +VV ch. (V t = kt/q) ) Uz 0 =2 F + mv t može da se napiše s = 0 +V ch.sadaje Ako je prag napona gejt osnova naelektrisanje inverzije može da se napiše kao 8

Napon praga V T0 je napon gejta za koji je kanal u ravnoteži (V ch = 0) i naelektrisanje inverzije je jednako nuli. Sledi Napon uštinuća V P je potencijal kanala za koji, pri datom naponu gejta, naelektrisanje inverzije postaje tj jd jednakonuli (tj. kanalje uštinut). t) Iz V V V V V G V V, Q 0 TB V FB 0 P 0 P ch VP ch P inv sledi 2 VP VG VT0 VG VT0 0 0 2 2 Napon uštinuća kao funkcija napona gejta je prikazan na slici na sledećem slajdu. Ako je napon gejta jednak V T0, napon uštinuća je jednak nuli. Nagib V P =f(v G ) nije konstantan i obično se piše dv P dv G 1 dvg dvp n gde je n faktor nagiba. Iz jednačine za V G on može da se izračuna kao n 1 2 0 VV P 1 i pošto zavisi od često se naziva faktorom efekta osnove. Njegova vrednost obično varira između 1,2 i 1,8. Za ručne proračune njegova vrednost se aproksimira asimptotskom vrednošću u režimu jake inverzije i dj daje se kao tehnološki parametar. Sd Sada se napon uštinuća ši dbij dobija aproksimacijom ki ij prvog reda gornjeg izraza za V P kao 9

V P V V V V nv G T G T 0 0 n G Aproksimativni i izraz za V P sa prethodnog slajda ljd može da sekoristi uručnim proračunima i ako tranzistor nije u režimu jake inverzije. Iz ove relacije se vidi da je V G = V T0 + nv P. Na osnovu toga može da se napiše i V TB = V T0 +nv ch, pošto je V TB prag napona gejta pri nekom naponu kanala, V TB =V G G Qinv =0, a V P =V ch Qinv =0. Unošenjem ovih izraza za V G i V TB u izraz za Q inv dobija se Q inv = C ox n(v P V ch ). Dakle, u režimu jake inverzije Q inv linearno zavisi od V P V ch. 10

#Slaba inverzija Kada je potencijal kanala veći od V P, naelektrisanje inverzije Q inv postaje mnogo manje od naelektrisanja osiromašene oblasti Q dep i kanal je u režimu slabe inverzije. Zbog Q inv «Q dep može da se napiše Qinv VG VFB s s VFB s s C Na osnovu poređenja sa definicijom za V P, ox V V V V V G V V, Q 0 TB V V FB 0 P 0 P ch P inv sledi da pri slaboj inverziji površinski potencijal može da se aproksimira sa Kd Kada se ovo unese u rešenje Poasonove jd jednačine s ch V P 0 P. s s 2F Vch s Qinv Cox Vt exp Vt Vt Vt i razvije u Tajlorov red, naelektrisanje inverzije u režimu slabe inverzije može da se aproksimira sa 0 2F VP Vch Qinv Coxn1Vt exp exp. V t V t Dakle, u režimu slabe inverzije Q inv eksponencijalno zavisi od V P V ch., 11

#Struja drejna i specifična struja Slika prikazuje naelektrisanje inverzije u funkciji potencijala kanala. Vidi se da ono linearno zavisi od (V P V ch ) u režimu jake inverzije, ij a eksponencijalno u režimu slabe lb inverzije. Prelazna oblast odgovara umerenoj inverziji. Struja drejna se dobija integracijom naelektrisanja inverzije duž kanala, i proporcionalna je osenčenoj površini na istoj slici. Ako se pretpostavi da pokretljivost ne zavisi od pozicije duž kanala, struja drejna je V D Qinv ID dvch, 0CoxW / L C Ovaj integral može da se napiše na sledeći način: V S S S D ox VD Qinv Qinv Qinv D ch ch ch F R C V ox C V ox C V ox I dv dv dv I I 12

Ovim se uvodi koncept direktne (I F ) i inverzne (I R ) struje, koji je potpuno u skladu sa simetrijom tranzistora: ako se naponi drejna i sorsa međusobno zamene, menja se samo znak struje drejna. Korišćenjem prethodno određenih aproksimacija za naelektrisanje inverzije mogu da se odrede izrazi za I F,R u režimu slabe/jake inverzije. Međutim, za projektovanje analognih kola malog napona napajanja i male snage, neophodno je da se raspolaže jednim izrazom koji obuhvata sve režime inverzije. Prema tome, korišćenjem interpolacije dobija se kontinualna funkcija koja važi pri svim nivoima inverzije: 2 2 VP VS, D IFR, 2nVt ln 1exp 2Vt gde direktna struja zavisi od (V P V S ), a inverzna struja zavisi od (V P V D ). Pored toga, direktna i inverzna struja mogu da se normalizuju na specifičnu struju 2 IS 2nVt Specifična struja je važan projektni parametar i jednaka je struji drejna kada tranzistor radi u sredini umerene inverzije. Parametar se obično određuje kao β=kp(w/l), gde je kp= μ Cox dato kao parametar modela koji se naziva transkonduktansnim parametrom. Specifična struja zavisi od tehnologije i geometrije tranzistora. Međutim, za potrebe analognog dizajna, za datu tehnologiju specifična struja možeda sesmatrafunkcijom samo geometrije tranzistora. Konačno, struja drejna je 2 VP VS, D ID ISiF ir, if, R ln 1exp 2V t gde su normalizovana direktna i inverzna struja i izračunavaju se korišćenjem aproksimacije za napon V P V P V V G T0 n 13

Važna činjenica ovde je da slučaj kada je napon sorsa ili drejna manji od V P odgovara radu u režimu jake inverzije, j, aslučaj kada su naponi i sorsa i drejna veći od V P odgovara radu u režimu slabe inverzije, kao što je prikazano na slici desno. # Struja drejna u zasićenju i napon zasićenja Na osnovu prethodnih izraza, triodna oblast i oblast zasićenja mogu da se interpretiraju na sledeći način: kada se menja napon drejna, sve dok su direktna i inverzna struja istog reda veličine, tranzistor je u triodnoj oblasti. Kada je I F» I R uticaj napona drejna postaje zanemarljiv, tj. tranzistor radi u oblasti zasićenja, i struja drejna je jednaka struji drejna u zasićenju I Dsat : I I i i I i I D S F R i i S F Dsat F Pogodniji način za odredjivanje da li tranzistor radi u triodnoj oblasti ili u zasićenju je poređenje razlike napona drejna i sorsa sa projektnim parametrom koji se naziva naponom zasićenja V DSsat.Dabise on izračunao potrebno je ponovo analizirati uslove za triodnu oblast i zasićenje pri jakoj i slaboj inverziji. Kada tranzistor radi u jakoj inverziji, triodna oblast i zasićenje mogu da se definišu u odnosu na V P : ako su i V S i V D manji od V P tranzistor je u triodnoj oblasti, a ako je VS VP VD tranzistor je u zasićenju. Napon zasićenja se izračunava kao VDSsat VP VS što je prikazano na slici a) na sledećem slajdu. R 14

Kada tranzistor radi u slaboj inverziji tada je Vs,Vd>Vp Pošto je direktna struja drejna ovde nekoliko redova veličine manja nego u slučaju jake inverzije pa uslov I F» I R ne može lako da se verifikuje, napon zasićenja se određuje prema prihvatljivoj j grešci šiizmeđu struje drejna i očekivane struje drejna u zasićenju (slika b). Procenjuje se da je ova vrednost (napona zasićenja) j) nekoliko V t. Na osnovu ovih asimptota napona zasićenja, EKV model predlaže jednostavnu relaciju V V 2 i 4 DSsat t F gde napon zasićenja zavisi samo od normalizovane direktne struje drejna, ili nivoa inverzije, što će sledeće biti pokazano. 15

#Faktor inverzije kao mera nivoa inverzije tranzistora Nivo inverzije može da se odredi na osnovu direktne struje drejna I F, koja je direktno proporcionalna pokretnom naelektrisanju inverzije duž kanala. Projektni parametar se naziva faktorom inverzije IF koji je jednak: I 2 Dsat P S V V IF if ln 1 exp IS 2Vt Gornja relacija pokazuje da je faktor inverzije određen: strujom zasićenja (odnosno strujom polarizacije tranzistora, kao što će biti pokazano kasnije) i geometrijom tranzistora (preko specifične struje); naponima polarizacije tranzistora (V G, V S ). Kada je struja drejna u zasićenju jednaka specifičnoj struji, tranzistor radi na sredini umerene inverzije, ij tj. IF = 1. Stoga se procenjuje j da prelazna oblast rada u umerenoj inverzijiiji odgovara opsegu struja drejna između 0,1I S i10i S. U skladu sa tim, oblasti rada u režimu jake, umerene i slabe inverzije definišu se kao u priloženoj tabeli. Ovo omogućava jednostavnu manipulaciju podatkom o nivou inverzije tokom procesa analognog projektovanja. 16

#Transkonduktanse di di di i v v v g v g v g v D D D D G S D mg G ms S md D dv G dv G dv D Transkonduktansa gejta g mg, obično se označava sa g m i naziva transkonduktansom tranzistora g mg g m d I I dv dv dv F R P Transkonduktansa sorsa g ms did dif gms. dv dv Transkonduktansa osnove u odnosu na sors je did g g g g dv S mb ms mg md dv BS pošto se u EKV modelu naponi gejta, sorsa i drejna određuju u odnosu na osnovu. Transkonduktansa drejna g md did dir gmd. dvd dvd Obično se ova transkonduktansa označava kao g ds, što je ispravno pošto uticaj napona sorsa može da se zanemari kada se određuje inverzna struja. Ako se uzme u obzir da su I F,R funkcije (VV P V S,D ), sledi da je di di FR, FR, G T0 P 1 VP P dv S, D n dv G n dv P S G V V dv. 17

Stoga je u oblasti zasićenja dif IR dvp 1 gms gm gms gds dv P dv G n n Sada jednačina za struju drejna sa prethodnog slajda može da se napiše u obliku id gmvg ngmvs gdsvds što daje ekvivalentnu šemu za male signale prikazanu na slici. i Transkonduktansa drejn sors je predstavljena kao otpornik pošto je kontrolisana naponom na svojim krajevima. Stoga ona predstavlja izlaznu provodnost tranzistora i važan je parametar u projektovanju. Za ručne proračune u projektovanju analognih kola izlazna provodnost se aproksimira pomoću Early-jevog napona V a kao IDsat gds LV (Ovo je Early-jev napon za jediničnu dužinu tranzistora) a 18

# Normalizovana transkonduktansa Diferenciranjem struje drejna i interpolacione funkcije EKV modela dobija se g I m Dsat 1 1 gms 1 1 gds 1 1 nvt 1 1 IF Vt 1 1 IR Vt 1 1 if if ir 2 4 2 4 2 4 Normalizovana transkonduktansa, izvedena iz prve od ovih jednačina i definisana kao predstavlja fundamentalnu relaciju za projektovanje analognih kola. Ona daje vezu između parametra za male signale i jednosmernih parametara (struje drejna u zasićenju i faktora inverzije) i predstavlja meru translacije struje polarizacije u transkonduktansu za različite nivoe inverzije. Stoga se često naziva faktorom efikasnosti transkonduktanse TEF. Ova relacija je univerzalna i ne zavisi od th tehnologije. U slaboj lbj inverzijiiji asimptotski se približava jedinici, a asimptota za jaku inverziju je TEF strong 1/ if 19

# Kapacitivnosti Varijacija globalnog naelektrisanja (Q inv, Q G, Q d ) u odnosu na varijacije napona priključaka modeluje se preko unutrašnjih kapacitivnosti. Nazivaju se unutrašnjim zato što se odnose na unutrašnji deo tranzistora (koji se sastoji od inverzionog sloja, osiromašene oblasti, oksida i gejta), koji određuje njegovo ponašanje. Ostatak tranzistora predstavlja spoljašnji deo i utiče na parazitne efekte koji obično ograničavaju ukupni odziv. Unutrašnje kapacitivnosti su: - kapacitivnosti između gejta i ostalih priključaka - kapacitivnosti između supstrata i priključaka sorsa/drejna Ovaj način modelovanja je ispravan samo za kvazi-statičko ponašanje, tj. ako naponi priključaka variraju dovoljno sporo, tako da raspodela naelektrisanja u kanalu može da prati varijacije sa zanemarljivom inercijom. Kvazi-statičko ponašanje je ispravno do 20

Unutrašnje kapacitivnosti se izračunavaju iz normalizovane direktne i inverzne struje drejna: U oblasti zasićenja je pa je 21

Spoljašnje kapacitivnosti su: - kapacitivnosti preklapanja između gejta i sorsa, drejna ili supstrata i određene su sa: gde su i parametri tehnologije; - kapacitivnosti spoja sorsa/drejna, i Kompletna šema za male signale i uprošćena šema za rad u zasićenju, u analognim primenama: Unutrašnje pojačanje Unutrašnje pojačanje se definiše kao odnos transkonduktanse i izlazne konduktanse Ovaj parametar pokazuje granice tehnologije, tj. pojačanje koje možedasedostigne sa jednim pojačavačkim stepenom pri datim uslovima polarizacije. On zavisi od odnosa g m /I Dsat, dakle od nivoa inverzije, kao i od dužine tranzistora. 22

Jedinična učestanost Predstavlja maksimalnu učestanost do koje tranzistor može da se koristi, i mera je brzine rada tranzistora. Unutrašnji šum Spektralna gustina strujnog termičkog šuma može da se aproksimira zavisnošću od faktora inverzije gde je Zarad u zasićenju ovo postaje tj S Ith Spektralna gustina naponskog termičkog šuma se zatim izračunava kao Spektralna gustina naponskog fliker šuma je gde je f učestanost a KF i AF su tehnološki parametri. Ekvivalentna spektralna gustina naponskog šuma na ulazu je jednaka zbiru 23

Učestanost na kojoj je komponenta fliker šuma jednaka komponenti termičkog šuma naziva se granična učestanost (corner frequency) Način projektovanja Svaki tranzistor u kolu predstavlja kombinaciju jednog ili nekoliko projektnih parametara. Specifikacija za svaku osnovnu analognu strukturu se izvodi iz specifikacije kola. Sve struje polarizacije su određene ili iz zahteva za maksimalnu dozvoljenu struju disipacije ili minimalnu prihvatljivu brzinu. Pošto se svaka osnovna analogna struktura sastoji od jednog ili nekoliko tranzistora koji realizuju određenu analognu funkciju, potrebne vrednosti parametara svakog tranzistora se ekstrahuju iz specifikacije analogne strukture. Stoga se projektovanje na nivou tranzistora sastoji od proračuna vrednosti projektnih varijabli tranzistora kojima se ostvaruju zadati projektni parametri analogne strukture sa datom strujom polarizacije. 24

# Projektni parametri i projektne promenljive Za projektovanje osnovnih analognih struktura su potrebni sledeći parametri tranzistora: - napon zasićenja V DSsat - transkonduktansa g m - izlazna konduktansa g ds - parazitne kapacitivnosti (unutrašnje/spoljašnje) - pojačanje A i - jedinična učestanost f t - ekvivalentni šum Iz datih izraza za ove parametre tranzistora se vidi da oni zavise od sledećih promenljivih: - struja zasićenja I Dsat - faktor inverzije IF - širina tranzistora W - dužina tranzistora L - odnos W/L - površina WL. Međuzavisnost ovih varijabli komplikuje zadatak određivanja veličina tranzistora, što u tradicionalnom načinu projektovanja predstavlja proračun širine i dužine tranzistora. Stoga problem projektovanja na nivou tranzistora treba da se postavi drugačije. Pošto tranzistor u analognom kolu obično radi u zasićenju, data struja polarizacije predstavlja struju drejna u zasićenju: 25

Stoga struja drejna u zasićenju nije nezavisna promenljiva na nivou tranzistora, pošto je određena projektovanjem na nivou kola. Ako je zadat faktor inverzije IF, odnos W/L može da se izračuna kao ili obrnuto. Pošto dužina tranzistora utiče na važne projektne parametre kao što su izlazna konduktansa i jedinična učestanost, pogodno je izraziti širinu u funkciji IF i L : Ovim se širina tranzistora eliminiše iz skupa projektnih promenljivih. Na isti način površina tranzistora može da se napiše kao Na ovaj način, problem dimenzionisanja tranzistora može da se posmatra kao proračun faktora inverzije i dužine tranzistora u cilju postizanja zadatih projektnih parametara sa datom strujom polarizacije. 26

# Tabela projektnih parametara u funkciji projektnih promenljivih U sledećoj tabeli su dati svi značajni tranzistorski projektni parametri u funkciji dve nezavisne projektne jk promenljive. Umesto transkonduktanse k je kao projektni jk parametar upotrebljen odnos g m /I Dsat, pošto on zavisi samo od faktora inverzije, pa je pogodniji za analogni dizajn. 27

Sa druge strane, zbir svih unutrašnjih kapacitivnosti je aproksimiran sa gde se površina WL zamenjuje datim izrazom. Na sličan način je jedinična učestanost izražena kao funkcija faktora inverzije i dužine tranzistora. Rekapitulacija projektnih parametara i njihova zavisnost od projektnih promenljivih naznačena je na sledećoj slici. Odnos g m /I Dsat, napon zasićenja i il izlazna konduktansa zavise od samo jedne projektne promenljive i kada su ovi parametri dati kao projektna specifikacija, dužina tranzistora ili faktor inverzije se direktno izračunava. Nasuprot tome, projektni parametri koji zavise od dve projektne promenljive zahtevaju ili dva projektna uslova ili strategiju optimizacije. 28