A Semianalytical Model for the Simulation of Polymers

Similar documents
WORKSHOP Introduction to material characterization

Development, implementation and Validation of 3-D Failure Model for Aluminium 2024 for High Speed Impact Applications

Enhancing Prediction Accuracy In Sift Theory

Module-4. Mechanical Properties of Metals

A Constitutive Model for Plastics with Piecewise Linear Yield Surface and Damage

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM

Recent Developments in Damage and Failure Modeling with LS-DYNA

Anisotropic plasticity, anisotropic failure and their application to the simulation of aluminium extrusions under crash loads

Enhancement of Spot Weld Modeling using MAT 100 DAI

Crash and Vibration Analysis of rotors in a Roots Vacuum Booster

EQUIVALENT FRACTURE ENERGY CONCEPT FOR DYNAMIC RESPONSE ANALYSIS OF PROTOTYPE RC GIRDERS

An orthotropic damage model for crash simulation of composites

Introduction to Engineering Materials ENGR2000. Dr. Coates

Simulation of Adhesives

Chapter 7. Highlights:

GISSMO Material Modeling with a sophisticated Failure Criteria

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

14. LS-DYNA Forum 2016

Modelling the behaviour of plastics for design under impact

Plastic Instability of Rate-Dependent Materials - A Theoretical Approach in Comparison to FE-Analyses -

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS

ME 2570 MECHANICS OF MATERIALS

Composite Materials 261 and 262

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

An overview of Carbon Fiber modeling in LS-DYNA. John Zhao October 23 th 2017

The Significance of the Production Process of FRP Parts for the Performance in Crashworthiness

Mechanical Properties of Materials

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

CONSTITUTIVE MODELING AND OPTIMAL DESIGN OF POLYMERIC FOAMS FOR CRASHWORTHINESS

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

Card Variable MID RO E PR ECC QH0 FT FC. Type A8 F F F F F F F. Default none none none 0.2 AUTO 0.3 none none

Digimat material model for short fiber reinforced plastics at Volvo Car Corporation

Constitutive models: Incremental plasticity Drücker s postulate

*MAT_PAPER - a new orthotropic elastoplastic model for paper materials

Chapter 6: Plastic Theory

MECHANICS OF POLYMERS

Coupling of plasticity and damage in glass fibre reinforced polymer composites

SIMPLIFIED CONCRETE MODELING WITH *MAT_CONCRET_DAMAGE_REL3

Lecture #8: Ductile Fracture (Theory & Experiments)

ANSYS Mechanical Basic Structural Nonlinearities

CONSIDERATIONS CONCERNING YIELD CRITERIA INSENSITIVE TO HYDROSTATIC PRESSURE

Evaluation of Material Models to Predict Material Failure in LS-DYNA

Multiscale modeling of failure in ABS materials

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

MHA042 - Material mechanics: Duggafrågor

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Performance Evaluation of Fu Chang and Low Density Foam Model for Expanded Polypropylene

Numerical simulation the bottom structures. grounding test by LS-DYNA

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Short Introduction of a New Generalized Damage Model

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS

Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications. University of Illinois 12 February 2009

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements

Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

A RHEOLOGICAL ANALYSIS OF SOLID POLYMERS USING AN INVERSE METHOD APPLIED TO A FINITE ELEMENT MODEL OF THE TORSION AND TENSILE TESTS

CLOSED SIMULATION PROCESS CHAIN FOR SHORT FIBER REINFORCED PLASTIC COMPONENTS WITH LS-DYNA

Accurate Finite Element Simulations of PTFE Components

Simulation and Test Validation of Windscreen Subject to Pedestrian Head Impact

Lecture 7, Foams, 3.054

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

The design of a formula student front impact attenuator

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

IMPACT RESPONSE ANALYSIS OF LARGE SCALE RC GIRDER WITH SAND CUSHION

20. Rheology & Linear Elasticity

University of Sheffield The development of finite elements for 3D structural analysis in fire

Tensile stress strain curves for different materials. Shows in figure below

Practice Final Examination. Please initial the statement below to show that you have read it

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

Outline. Tension test of stainless steel type 301. Forming including the TRIP-effect

Mechanical analysis of timber connection using 3D finite element model

A Constitutive Model for DYNEEMA UD composites

Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 pebbles

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL

Theory at a Glance (for IES, GATE, PSU)

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

Discrete Element Modelling of a Reinforced Concrete Structure

Constitutive model for quasi-static deformation of metallic sandwich cores

Crashworthy Design of Composite Structures Using CAE Process Chain

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques

Loading σ Stress. Strain

Failure surface according to maximum principal stress theory

4.MECHANICAL PROPERTIES OF MATERIALS

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

An experimental and constitutive modeling study on the large strain deformation and fracture behavior of PC/ABS blends

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Prediction of Elastic Constants on 3D Four-directional Braided

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

MECHANICS OF MATERIALS

Lecture No. (1) Introduction of Polymers

Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface

MSC Elastomers Seminar Some Things About Elastomers

Transcription:

A Semianalytical Model for the Simulation of Polymers Paul Du Bois 3, Stefan Kolling 1, Markus Feucht 1 & André Haufe 2 1 DaimlerChrysler AG, Sindelfingen, Germany 2 Dynamore GmbH, Stuttgart, Germany 3 Consultant, Offenbach, Germany 4. LS DYNA FORUM 25, 2. 21. Oktober 25, Bamberg

Overview Introduction and motivation Discussion of appropriate p yield surfaces Details of a new material model A few examples Conclusions 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 2

Motivation More and more structural parts are made from plastics. At present important crashworthiness applications are: Pedestrian protection (bumper, fascia, hood, adhesives) Passenger protection (cockpit, internal structures) Their mechanical behaviour is strongly dependent on Underlaying chemical structure and production process Temperature, strain rate, humidity etc. Many thousand different blends are available today!! Shell-like but rib reinforced structures 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 3

V&V processes for complete FE models Semi Analytical Model for Polymers V&V process of each individual part of the numerical model necessary: Global solution strategy Constitutive model Element formulation, type & size Discretisation depth & modeling techniques more In engineering practise the numerical model shall correlate to experimental data close enough, to allow sound predictions in a predefined range of model variations. 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 4

Identification challenge: Structures made of plastics Plastics is a group name comprising many different materials Mechanical response at room temperature may be glassy or rubbery, brittle or viscous ε& 1 2 3 T st tress 4 5 thermoset plastic (Duroplast) thermoplastic elastomer strain 1 glasslike behaviour 2 plastic or viscous flow 3 low ductility 4 high ductility 5 rubbery crystalline thermoplastic amorphous thermoplastic Fiber reinforcement may causeanisotropic anisotropic response Rib reinforcements represent an important modeling effort 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 5

Mechanical behaviour of thermoplastics (uniaxial loading) True Stress Yield curve AND Young s Modulus are strain rate dependent d Non linear elasticity Uniform necking due to stabilisation True Stre ess True strain Visco elasto visco plasticity Different yielding under tension/compression (and shear) Plastic incompressibility for compression only (ν p 5).5) Under tension foam like (ν p ) True strain Tensile Test Compression Test No Von Mises type of plasticity! 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 6

Simulation of a tensile test: thermoplastic response Von Mises (piecewise linear) plasticity, linear elastic visco plastic, input of strain rate dependent test data (= state of the art: MAT24 in LS DYNA) Generally good representation of tensile responses 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 7

Simulation of a tensile test: thermoplastic response Positive curvature in the hardening curve causes stabilisation of the cross section after necking 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 8

Deficiencies of Von Mises plasticity to describe plastics Plastic incompressibility not correct for thermoplastics No Von Mises relationship between yield stress in tension, compression, shear σ c σ t σ b σ t σ Loss of isotropy during hardening due to reorientation of molecules (load induced anisotropy) Crazing ( volumetric plasticity and low biaxial strength) cannot be described Modulus is rate dependent (viscosity below the yield surface) Modulus of elasticity it depends d on plastic df deformation ( damage) s σ t 3 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 9

Major concerns for the simulation of plastic parts Bending stiffness is usually underestimated Under biaxial loads (punching) the plastic tends to develop crazes Important elastic rebound is currently the major stumbling block 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 1

SAMP 1 : goals and limitations Semi Analytical Model for Polymers Describe isotropic ductile thermoplastic materials Implement for solid and shell (plane stress) elements Fully tabulated input data Most general quadratic isotropic yield surface formulation, allows to fit 3 experiments exactly and 4 approximately (least squares) Damage model to simulate unloading response Tabulated visco plasticity Not suited for the simulation of fiber reinforced structures with high anisotropy and low rupture strain Load induced anisotropy neglected Large plastic deformation expected : rate dependency in elastic region is neglected No sophisticated failure model yet 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 11

SAMP A Semi Analytical Model for Polymers Hardening curves: tabulated data σ y ε& σ y σ c σ y σ s σ t d l l l l h tensile hardening curve from tensile test at different strain rates σt ε pt = ε t, ε t = E l ln l ε pt ε pc compressive hardening curve from compression test shear hardening curve from shear test ε ps c l ε = σ σ 1 x& s 1 d pc εc, εc = ln ε = = = E l ps εs, εs dt 2G 2 y 2 h difficult! 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 12

General isotropic quadratic yield surface: SAMP 1 f = tension q shear compression Yield surface rface(modified Schlimmer): (,, pl 2 2 f p σ ε ) = σ A A p A p vm vm 1 2 3 1 p To achieve a fast and easy calibration i process, test results from tension, compression and shear tests can be fd fed directly into SAMP 1 via table definitions: σt σc σs Tension test data Compression test data Shear test data ε t ε c ε s Therefore the yield surface coefficients A,1,2 are calculated directly from stresses gained from a table lookup. A 2 c t t c s = σ A = 9( σ ) A = 9( ) 2 3 s 1 s σ σ σ σ c t 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 13 2 2 σ σ 3σ σ σ t c

General isotropic quadratic yield surface: special cases Von Mises q Drucker Prager q f = f = 3 tension tension 1 3 compression 1 p p σ t σ t σ c Tension test data Tension test data Compression test data ε t εt εc alternatively υ p.5 σt σs Tension test data Shear test data ε t ε s 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 14

General isotropic quadratic yield surface: SAMP 1 f = q tension q shear compression Yield surface: (,, pl 2 2 f p σ ε ) = σ A A p A p vm vm 1 2 Biaxial tension 3 1 Plastic potential: g = σ α p 2 2 vm p To achieve a fast and easy calibration process, test results from tension, compression and shear tests can be fed directly into SAMP 1 via table definitions: σ t σt σc σs Tension test data Biaxial test data Compression test data Shear test data ε t ε t ε c ε s Therefore the yield surface coefficients A 12,1,2 are calculated each time step by a least squares approach fitting the yield stress values obtained by a table lookup 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 15

General isotropic quadratic yield surface: anything goes! f = q Drucker Prager q tension q shear compression f = Biaxial tension 3 tension 1 biaxial 3 1 p p σ t σ t σ c σ t σ t Tension test data Biaxial test data Compression test data Tension test data Biaxial test data ε ε t ε t ε c ε t ε t σ t σ t σ s Tension test data Biaxial test data Shear test data ε t εt εs 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 16

General isotropic quadratic yield surface: convexity f = q compression tension q shear A 2 Yield surface: (,, pl 2 2 f p σ ε ) = σ A A p A p vm vm 1 2 Biaxial tension 3 1 A 2 2 Condition for convexity : A 2 σ s σ σ t 3 c p In the numerical algorithm, a unique solution is guaranteed only for convex yield surfaces In order to avoid numerical problems convexity can be enforced in SAMP 1 by a user controlled flag The hardening curve in shear is then scaled as necessary every timestep This allows to achieve robust numerical behaviour under most loading conditions 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 17

SAMP 1: Flow rule & g g = & λ F = σ = q vm σ c ε p σ plastic potential: ti g=const. σ t σ s m = g σσ g = 2 2 q A A1 p A2 p associated 2 2 q + αpα p non associated σ t 3 σ c 3 p flow parameter correlates to plastic ν p Poisson s ratio: l 9 2α α υ p =.5 18 + 2α l l 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 18 ε pt

SAMP 1: Flow rule & g g = & λ F = σ = q vm σ c ε p σ plastic potential: ti g=const. σ t σ s m = g σσ g = 2 2 q A A1 p A2 p associated 2 2 q + αpα p non associated σ t 3 σ c 3 p flow parameter correlates to plastic ν p Poisson s ratio: l 9 2α α υ p =.5 18 + 2α l l 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 19 ε pt

SAMP1: Visco plasticity Elastoplastic consistency condition f ( ) 2 2 λ, & λ = = σ A A p A p vm 1 2 σ y ε& Viscoplastic constitutive law: & λ = f Φ( f ) 2η ( ) 1 λ, & λ Φ ( 2ηλ& ) = σ t l ε pt l 1 Φ ( 2ηλ& ) = f ( λ, & λ) f ( λ,) 2 = A ( λ, & λ) + A ( λ, & λ) p + A ( λ, & λ) p A ( λ, ) A ( λ, ) p A ( λ, ) p 2 1 2 1 2 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 2

25 2 15 1 5,, 1, 2, 3, 4, 5 Semi Analytical Model for Polymers Unloading test: (1 d) damage damage model: Basics E E eff1 E eff2 Schädigung d 1 Tabulated damage curve: d(ε pl ) =1 - E eff / E wahre True Spann St nung tress [MPa] d,8,6,4,2 Test Versuch Input Simulation data 125 Test % Streckgrenze 8% Approximated Versagendehnung effective modulus of elasticity 75% Streckgrenze,,1,2,3,4,5 Plastic strain ε pl plastische Dehnung True strain wahre Dehnung [-] Damage parameter d : E eff = E (1 d) d = 1 E eff / E σ eff y σ y = 1 d 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 21

SAMP 1: Damage and failure Semi Analytical Model for Polymers Failure onset defined by the parameter further fading of the element defined by d c p Δ ε rupt d 1. d c Δ ε p rupt ε p 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 22

Yield surfaces: experiment vs. SAMP Polyvinyl Chloride (PVC) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 23

Experimental data vs. SAMP Polystyrene (PS) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 24

Experimental data vs. SAMP Polycarbonate (PC) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 25

Experimental data vs. SAMP Polypropylene (PP) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 26

Experimental data vs. SAMP Polyethylene (PE) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 27

Experimental datavs vs. SAMP Acrylonitrile Butadiene Styrene (ABS) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 28

Verification and validation of PP EPDM Quasi static tensile tests with unloading 5 45 4 tensile tests with unloading experiment unloading simulation with damage simulation no damage 35 8x2 mm 48.6 mm [N] force 3 25 2 15 1 5.5 1 1.5 2 displacement [mm] 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 29

Verification and validation of PP EPDM Compression test F 3 2.5 DKI PP_EPDM compression tests : 2.5mm mesh experiment simulation 2 force [N N] 1.5 4x6 mm 1.5 F 2 4 6 8 1 12 14 16 displacement [mm] 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 3

Verification and validation of PP EPDM Shear test F 5 45 PP_EPDM - Shear Test experiment simulation 4 35 force N 3 25 2 F 15 1 5.5 1 1.5 2 2.5 3 3.5 4 4.5 5 displacement mm 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 31

Verification and validation of PP EPDM SAMP 1: experimental results (tension and compression test) has been used directly as input data for this three point bending test. Tensile Test Compression Test Specimen size 1 x 133 x 3.8 mm Downward prescribed displacement (quasi static) 3 integration points across thickness direction 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 32

Unloading test: (1 d) damage damage model: Results Flow curve definition and failure parameters for a simple dogbone tension test at different loading velocities including proper unloading behaviour 6 5 u 4 u 3 F-x_dyn (test data) F-x_static (test data) 2 F-x_dyn_dam (SAMP-) F-x_static_dam (SAMP-) t 1 5 1 15 2 25 3 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 33

Other applications Material model: SAMP not only valid for thermoplastics It covers metals as well Also suitable for Adhesives (if you have a clue how to model) Structural foams Crushable foams Example: validation of a high strength, low density, expandable epoxy polymer (CORE Products) using a single material input card of SAMP 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 34

Material laws for crushable foams in LS DYNA No. keyword formulation input 5,14 MAT_SOIL_AND_FOAM isotropic, el pl parameter 26,126 MAT_HONEYCOMB anisotropic, el pl LC 53 MAT_CLOSED_CELL_FOAM CELL isotropic, el pl LC 63,163 MAT_CRUSHABLE_FOAM isotropic, el pl LC / table υ variable 75 MAT_BILKHU/DUBOIS_FOAM _ isotropic, el pl LC strain rate parameter 142 MAT_TRANSVERSELY_ANISO TROPIC_CRUSHABLE_FOAM anisotropic el pl LC 144 MAT_PITZER_CRUSHABLE isotropic, el pl LC + strain rate _FOAM υ variable parameter user MAT_SAMP isotropic, el pl variable LC / table υ 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 35

Validation of structural high density foam (CORE) 45 4 FOAM compression experiment simulation 6 FOAM tension experiment simulation 35 5 Fad force [kn] 3 25 2 15 1 force [kn] 4 3 2 ading out via damage formulation on 5 1-5 -3-2.5-2 -1.5-1 -.5.5.5 1 1.5 2 2.5 displacement [mm] FOAM shear displacement [mm] experiment simulation -1 force [kn] -2-3 -4-5 -6 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 displacement [mm] 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 36

Conclusions and outlook Semi Analytical Model for Polymers Most critical issues have been addressed with SAMP 1 Damage and strain rate dependency Failure and unloading General quadratic yield condition Pressure dependent plastic potential First shot at crazing Features still missing: Transition to anisotropic behaviour Rate dependency in elastic region Future work: Further testing of material ilmodel dl Calibration and validation of more polymers Simulation of more component tests SAMP 1 will be available in the next release of LS DYNA (971) 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 37

Thanks for your attention! Semi Analytical Model for Polymers This presentation was pedagogical valuable or somehow 4. LS DYNA FORUM, 2. 21. Oktober 25, Bamberg S. 38