Differentiation of polymer branching and composition using the Mark Houwink plot

Similar documents
GPC/SEC Analysis of Polymer Degradation

How to use GPC/SEC for compositional analysis

Optimization of PLA/PLGA molecular weight and structure to suit final application requirements

The power of multi-detector SEC in the analysis of antibodies

GPC/SEC Analysis of Polymer Solutions Used in Inkjet Printing

How switching mobile phases can improve your OMNISEC results

Component specific particle characterisation of the active components in a pharmaceutical topical formulations

Overcoming and quantifying Wall Slip in measurements made on a rotational rheometer

Use of DLS/Raman to study the thermal unfolding process of lysozyme

Introduction to the calculators in the Zetasizer software

Determining cure profile and post-cure shrinkage of photopolymers using UV accessory on a rotational rheometer

Understanding the colloidal stability of protein therapeutics using dynamic light scattering

Discriminating between polymorphs of acetaminophen using Morphologically-Directed Raman Spectroscopy (MDRS)

Nanobubble Applications and Characterization by Nanoparticle Tracking Analysis

10 REASONS THAT THE ZETASIZER NANO IS CHOSEN FOR SCIENTIFIC SUCCESS

Evaluating the rheological properties of hyaluronic acid hydrogels for dermal filler applications

MALVERN ADVANCED GPC/SEC DETECTORS SETTING THE STANDARD MOLECULAR WEIGHT MOLECULAR SIZE MOLECULAR STRUCTURE

Using rheology to study the hardness and spreadability of butter

Studying the Effect of Steric Layer Thickness on Emulsion Stability

Characterization of protein aggregates in suspension and on a filter membrane by Morphologically-Directed Raman Spectroscopy

Characterization of Single Wall Carbon Nanotubes (SWNTs) by combining Dynamic Light Scattering and Raman Spectroscopy

Executive Summary. Introduction WHITEPAPER

MEASURING PROTEIN AGGREGATION WITH THE VISCOTEK SEC-MALS 20

Setting the Standard for Advanced GPC/SEC Systems

Measuring the rheology of thermoplastic polymer melts

DEVELOPING A BIOFORMULATION STABILITY PROFILE

Using the Zetasizer Nano to optimize formulation stability

Understanding the conformational stability of protein therapeutics using Raman spectroscopy

Characterization of polyphenylene sulphide using the Agilent PL-GPC 220 High Temperature GPC System with triple detection

Analysis of Star Polymers Using the Agilent 1260 Infinity Multi-Detector GPC/SEC System

An Introductions to Advanced GPC Solutions

GPC / SEC Theory and Understanding

Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research?

The ultimate in desktop particle characterization

The ultimate in desktop particle characterization

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments

Progress toward reliable NC molecular mass distribution by GPC

Malvern Macromolecular Solutions. Innovative Solutions in Material Characterization

Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector

Tips & Tricks GPC/SEC: Inter-Detector Delay

Laser diffraction and automated imaging: complementary techniques for nasal spray development

ZS90. The ultimate in desktop particle characterization. Particle size. Zeta potential. Molecular weight

MALVERN OMNISEC RESOLVE, REVEAL, REALIZE MOLECULAR WEIGHT MOLECULAR SIZE MOLECULAR STRUCTURE

MALVERN OMNISEC RESOLVE, REVEAL, REALIZE MOLECULAR WEIGHT MOLECULAR SIZE MOLECULAR STRUCTURE

Tips & Tricks GPC/SEC: From a Chromatogram to the Molar Mass Distribution

Measuring the rheology of polymer solutions

Setting the Standard for GPC. Complete Guide for GPC / SEC / GFC Instrumentation and Detection Technologies. The Right Instrument for Your Application

Gel Permeation Chromatography

Using High Speed/High Resolution Size Exclusion Chromatography Separation of Polymeric Materials with Light Scattering Detection

Zeta potential - An introduction in 30 minutes

Macromolecular Chemistry

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques

Polymer analysis by GPC-SEC. Technical Note. Introduction

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC)

Gel Permeation Chromatography

Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages

GPC - Gel Permeation Chromatography. aka Size Exclusion Chromatography- SEC

CASE STUDY. Degradation of Polyethylene by FTIR and High Temperature GPC

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

Polymer Analysis by Gel Permeation Chromatography

Sample measurements to demonstrate Zetasizer specifications (Zetasizer Nano, Zetasizer APS, Zetasizer μv)

GPC/SEC standards. Product guide

Sem /2007. Fisika Polimer Ariadne L. Juwono

[VIM = 4 R3 gx ( 3)

GPC/SEC An essential tool for polymer analysis

GPC/SEC standards. Product guide

Polymers Reactions and Polymers Production (3 rd cycle)

Determination of Polymer Modifier in Asphalt

(3) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY. [TIM = 4 R3 gx POLYMER LETTERS VOL. 5, PP (1967)

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Measurements of protein electrophoretic mobility using the Zetasizer Nano ZSP

Chapter 14. Molar Mass Distribution.

The Diffusion Barrier Technique, Practical Aspects and Data interpretation

Maximizing Performance Through GPC Column Selection

Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Optimizing GPC Separations

EcoSEC - semi-micro GPC/SEC system for high throughput polymer analysis

KINEXUS DSR SERIES REDEFINING RHEOMETER CAPABILITIES FOR ASPHALT TESTING

REVERSE ENGINEERING PHARMACEUTICAL FORMULATION USING THE MORPHOLOGI G3-ID.

Clearing the Confusion: GPC, SEC, GFC What, When, Why, and How?

1 Supporting Information. 2 Adhesive RAFT Agents for Controlled Polymerization of Acrylamide: Effect of. 3 Catechol-end R Groups

This document is a preview generated by EVS

next generation Welcome to the Dispersion options Smarter particle sizing Your sample, expertly processed and prepared Particle size

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation

Use of High Speed/High Resolution Size-Based Chromatographic Separation of Polymeric Mixtures with Offline Infrared Detection

Size Exclusion Chromatography: Method Development

Gold Nanoparticle Applications and Characterization by Nanoparticle Tracking Analysis

Inform is a series of white papers designed to provide advice on material characterization issues. Mie theory The rst 100 years

Comprehensive Polymer Analysis Strategies

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Analysis of polyolefins by GPC/SEC

Practical Steps in GPC Method Development

Accurate Mass Measurement for Intact Proteins using ESI-oa-TOF. Application Note. Donghui Yi and Christine Miller Agilent Technologies

The Analysis of Organophosphate Pesticides by LC/MS Application

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Electrophoretic Light Scattering Overview

Evaluation of round robin test results for a size exclusion chromatography method for the analysis of nitrocellulose

Transcription:

Differentiation of polymer branching and composition using the Mark Houwink plot MOLECULAR SIZE MOLECULAR STRUCTURE MOLECULAR WEIGHT Introduction The manipulation of polymer properties through changes in structure or derivatization is key to creating novel polymers with desirable physical properties. For instance, polystyrene is brominated to instill fire retardant properties for uses in consumer goods such as furniture. While creating these polymers is a particular challenge, characterization of the polymers and derivatives created also presents difficulties. Gel permeation chromatography (GPC) is regularly used to compare polymer samples, conventional measurements based on a single detector only generate limited comparative data. Measurements with multiple detectors, though, allow for a more detailed characterization of polymers of all types. The Mark Houwink plot, which is one of the results from an advanced multidetection GPC measurement, is a powerful tool for investigating polymer structure in solution as it clearly reveals the structure-molecular weight relationship with high sensitivity. It is generated by plotting the molecular weight (MW) against the intrinsic viscosity (IV) on a log-log graph. The molecular weight, of course, indicates the length of the polymer chains (or degree of polymerization) but on its own cannot give any indication of structure. The intrinsic viscosity (expressed in dl/g) is a measurement of the molecular density of the polymer chains in solution. The tighter the chains fold or coil in solution, the higher the density and the lower the intrinsic viscosity. This measurement is independent of the molecular weight, so two different structures having the same molecular weight can have different intrinsic viscosities for example a linear (unbranched) polymer and a branched polymer of the same molecular weight will have different intrinsic viscosities. Furthermore, if the polymer changes structure across its molecular weight distribution (e.g. becomes more substituted), the intrinsic Malvern Instruments Worldwide Sales and service centres in over 65 countries www.malvern.com/contact 2015 Malvern Instruments Limited

viscosity changes will be easily detected. This is what makes the Mark-Houwink plot so useful and powerful. The raw data for the Mark-Houwink plot is conveniently and simply obtained from high quality multi-detection GPC/SEC data by combining the molecular weight from a light scattering detector with the intrinsic viscosity from a viscometer detector. Both data sets are measured at each point across the elution profile of the sample. The resulting plot can be used in many ways from simply assessing how close two structures are to making complex quantitative measurements of polymer branching. In this application note, we will show, using polystyrene, how to separate the effects of a structural difference induced by a compositional change (bromination) and the structural change induced by polymer chain branching using the Mark- Houwink plot. Polymer properties The physical properties and behavior of polymers depends strongly on the properties of the polymer molecules themselves. This in turn means that the polymer properties will also have an impact on the properties of finished products made from or containing polymers. The molecular weight and molecular weight distribution, molecular size, intrinsic viscosity and structure all affect how the polymer material will behave. The most common tool used to investigate these aspects of synthetic polymers is gel-permeation or size-exclusion chromatography (GPC/SEC). Advanced GPC/ SEC The principle of GPC involves separating the sample as it travels through a porous but inert chromatography column matrix. While smaller molecules penetrate the pores more deeply, larger molecules are excluded and thus travel through the column faster. The result is a separation based on hydrodynamic volume. The basic data is simply a concentration profile of the size-separated sample but by using a multi-detector GPC/SEC system that combines light scattering, refractive index (RI), ultraviolet (UV) and intrinsic viscosity (IV), a large amount of information about a sample can be determined simultaneously. Materials and methods Samples were separated using two Viscotek T6000M columns. The mobile phase was THF stabilized with 300 ppm BHT. Samples were allowed to dissolve overnight to ensure full dissolution. The data in this application note was generated using the completely new Malvern OMNISEC system shown in Figure 4. The OMNISEC system was set up as follows: Flow rate: 1.0 ml/min 2 Differentiation of polymer branching and composition using the Mark Houwink plot

Autosampler temperature: 15 C Column oven temperature: 35 C Detectors temperature: 35 C All system control, data acquisition, data analysis and data reporting were performed using the new OMNISEC software v10. The three polymer samples analyzed were all polystyrenes. The first is a linear (unbranched) polystyrene, the second a star-branched polystyrene and the last a brominated linear polystyrene. Results All three polymers are easily and successfully chromatographed under these conditions and a triple detection chromatogram of each of the three samples is shown in Figure 1, in each case showing the right angle light scattering (RALS), low angle light scattering (LALS), RI and viscometer signals. Figure 1 (a) Triple chromatogram of linear (unbranched) polystyrene 3 Differentiation of polymer branching and composition using the Mark Houwink plot

Figure 1 (b) Triple chromatogram of star branched polystyrene Figure 1 (c) Triple chromatogram of brominated polystyrene In addition to these detectors, data was also collected on the UV-vis photo-diode array detector in the OMNISEC system (UV-PDA). This collects high quality spectral data at each data point and allows sample identification and differentiation. Table 1 shows the numerical results for duplicate injections the three samples and from this it is clear that the branched and brominated samples have a different molecular weight to intrinsic viscosity ratio. 4 Differentiation of polymer branching and composition using the Mark Houwink plot

Parameter Polystyrene samples Linear Star branched Linear brominated Retention volume (ml) 17.360 17.943 17.447 Mn (Da) 108,810 114,650 262,240 Mw (Da) 237,090 123,120 541,850 Mz (Da) 371,520 133,050 970,640 PD (Mw/Mn) 2.179 1.074 2.066 Intrinsic viscosity (dl/g) 0.832 0.451 0.282 Rhw (nm) 13.904 9.528 12.688 This is more fully illustrated in the Mark-Houwink plot for the three samples shown in Figure 2. Figure 2: Mark-Houwink plot showing the structural differences between the 3 polystyrene samples. Linear in red and purple, star-branched in black and green, brominated in blue and olive Here we can see that the linear polystyrene (in red) has the highest intrinsic viscosity (most open structure and lowest density). The star-branched polystyrene (purple) falls lower than the linear as the branching increases the density in solution. The brominated polystyrene (green) is the lowest on the plot as the intrinsic viscosity at any given molecular weight is much lower than the unbrominated samples. This is due to the substitution of the Hydrogen atoms (atomic mass = 1) on the styrene with Bromine atoms (atomic mass = 79.9) resulting in a much higher MW for the brominated chains without increasing the molecular chain length compared to unbrominated polystyrene. More mass in the 5 Differentiation of polymer branching and composition using the Mark Houwink plot

same chain length will result in an increase in molecular density in solution and corresponding decrease in intrinsic viscosity. Both the star-branched polystyrene and the brominated polystyrene have lower intrinsic viscosities but how can we differentiate the effect of substitution (bromination) and the effect of structural change (branching)? This is where we can use the spectral data from the UV-PDA. Figure 3 shows the UV spectra taken from the peaks of all three samples. It clearly shows that the spectra for the linear and branched polystyrenes are very similar; indicating that any difference in the Mark-Houwink plots is almost certainly due to structural changes, and therefore branching. In contrast, the brominated polystyrene spectrum is, as would be expected, very different from the polystyrene with the λ-max shifting from 262 to 241 nm, indicating its compositional difference. Figure 3 (a) UV spectra of brominated polystyrene Figure 3 (b) UV spectra of linear polystyrene 6 Differentiation of polymer branching and composition using the Mark Houwink plot

Figure 3 (c) UV spectra of star-branched polystyrene Conclusions High quality, high sensitivity multi-detection GPC/SEC data, such as that obtained here from the new OMNISEC system, can be a powerful tool in studying the effects of structural and compositional changes on polymers by using the Mark- Houwink plot. This application note has shown that the Mark-Houwink plot can be used to see structural changes such as branching independent of molecular weight and also differentiate that from compositional or substitutional changes by additionally using UV spectral data. By understanding the precise structural or chemical changes induced in polymers during production using GPC and the Mark-Houwink plot, scientists and manufacturers are able to more fully understand, predict and control the final properties of the polymer under study. This leads to higher quality product, and higher quality polymer research. 7 Differentiation of polymer branching and composition using the Mark Houwink plot

Figure 4: The OMNISEC system, comprising OMNISEC RESOLVE (left) and OMNISEC REVEAL (right). 8 Differentiation of polymer branching and composition using the Mark Houwink plot

Malvern Instruments Limited Grovewood Road, Malvern, Worcestershire, UK. WR14 1XZ Tel: +44 1684 892456 Fax: +44 1684 892789 www.malvern.com Malvern Instruments is part of Spectris plc, the Precision Instrumentation and Controls Company. Spectris and the Spectris logo are Trade Marks of Spectris plc. All information supplied within is correct at time of publication. Malvern Instruments pursues a policy of continual improvement due to technical development. We therefore reserve the right to deviate from information, descriptions, and specifications in this publication without notice. Malvern Instruments shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Malvern Instruments owns the following registered trademarks: Bohlin, FIPA, Insitec, ISYS, Kinexus, Malvern, Malvern 'Hills' logo, Mastersizer, MicroCal, Morphologi, Rosand, 'SEC-MALS', Viscosizer, Viscotek, Viscogel and Zetasizer. 2015 Malvern Instruments Limited AN150119MarkHouwinkPlot