CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Similar documents
CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

FACET-II Design Update

ILC Damping Ring Alternative Lattice Design **

6 Bunch Compressor and Transfer to Main Linac

Lattice Design and Performance for PEP-X Light Source

Notes on the HIE-ISOLDE HEBT

Beam Optics design for CEPC collider ring

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

Linear Collider Collaboration Tech Notes

FACET-II Design, Parameters and Capabilities

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

ILC Damping Ring Alternative Lattice Design (Modified FODO)

On-axis injection into small dynamic aperture

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

Status of linear collider designs:

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

Lattice design and dynamic aperture optimization for CEPC main ring

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

The TESLA Dogbone Damping Ring

Low slice emittance preservation during bunch compression

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Injector Linac and RF gun

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

Simulations for photoinjectors C.Limborg

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Emittance preservation in TESLA

Longitudinal Top-up Injection for Small Aperture Storage Rings

Low Energy RHIC electron Cooling (LEReC)

Positron Source using Channelling for the Baseline of the CLIC study

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac

Lattice Design of 2-loop Compact ERL. High Energy Accelerator Research Organization, KEK Miho Shimada and Yukinori Kobayashi

Beam Feedback System Challenges at SuperKEKB Injector Linac

Linac optimisation for the New Light Source

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Proposal to convert TLS Booster for hadron accelerator

Conceptual design of an accumulator ring for the Diamond II upgrade

LOLA: Past, present and future operation

Linac Driven Free Electron Lasers (III)

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

SBF Accelerator Principles

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

TeV Scale Muon RLA Complex Large Emittance MC Scenario

STATUS OF BEPC AND PLAN OF BEPCII

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University

WG2 on ERL light sources CHESS & LEPP

Muon Front-End without Cooling

X-band Experience at FEL

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

Introduction to Collider Physics

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

Overview of HEMC Scheme

Accelerator Physics Issues of ERL Prototype

Pretzel scheme of CEPC

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Compressor Lattice Design for SPL Beam

Overview of Acceleration

General Considerations

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan.

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Simulation for choice of RF phase and RF jitters in the main linac

Optics considerations for

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Design Status of the PEFP RCS

An Optimization of Positron Injector of ILC

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University)

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

Overview of Energy Recovery Linacs

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

CSR Benchmark Test-Case Results

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV

7th IPAC, May 8-13, 2016, Busan, Korea

Low energy electron storage ring with tunable compaction factor

Status of linear collider designs:

ASSESMENT OF OPPORTUNITY FOR A COLLINEAR WAKEFIELD ACCELERATOR FOR A MULTI BEAMLINE SOFT X-RAY FEL FACILITY

Polarized electron and positron beams at CEPC

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

International Scientific Spring 2010, March 1-6, 1. R. Garoby. slhc

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

Issues of Electron Cooling

Multiparameter optimization of an ERL. injector

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

Accelerator Physics. Accelerator Development

Transcription:

HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy Physics, CAS, Beijing

Outline Introduction Main parameters Linac layout Positron source design Linac design Electron linac Positron linac Error study Summary

Outline Introduction Main parameters Linac layout Positron source design Linac design Electron linac Positron linac Error study Summary

Introduction Main parameters Linac design goal and principles Simplicity High Availability (necessary hot-standby backups,1%-2%) and Reliability Always providing beams that can meet requirements of Booster Parameter Symbol Unit Value e - /e + beam energy E e- /E e+ GeV 1 Repetition rate f rep Hz 1 e - /e + bunch population Ne-/Ne+ >9.4 1 9 nc >1.5 Energy spread (e - /e + ) σ E <2 1-3 Emittance (e - /e + ) ε r nm <12 e - beam energy on Target GeV 4 e - bunch charge on Target nc 1

Introduction Main parameters Layout Smaller emittance requirement possibility and high potential Damping Ring for positron linac Shorter damping time to damp the ejection beam of booster to the requirements Easy injection design and high efficiency Bunch charge Positron bunch charge decide the layout of linac and it s difficult to upgrade if not keep potential Enough allowance and high bunch charge requirement possibility or potential, designed 3 nc One-bunch-per-pulse Only short-range Wakefield need to be considered Frequency Collider: 65 MHz Booster: 13MHz Linac: 2856.75MHz (s-band) 2856.75MHz =3.25MHz 879 65 MHz =3.25MHz 2MHz 13 MHz =3.25MHz 4MHz

Introduction Layout of Linac Linac tunnel total length ~ 12m ESBS ( Electron Source and Bunching System): 5 MeV && 3.3 nc for electron injection/ 11nC for positron production FAS (the First Accelerating Section): Electron beam to 4 GeV && 3 nc for electron injection/ 1nC for positron production PSPAS (Positron Source and Pre-Accelerating Section) Positron beam larger than 2 MeV && larger than 3 nc SAS (the Second Accelerating Section) Positron beam to 4 GeV && 3 nc TAS (the Third Accelerating Section) Electron/Positron beam to 1 GeV && 3 nc EBTL ( Electron By-pass Transport Line) Transport line bypass scheme

Outline Introduction Main parameters Linac layout Positron source design Linac design Electron linac Positron linac Error study Summary

Positron source Layout of PSPAS Layout of positron source Target: W@15mm Rms electron beam size:.5mm AMD Length: 1mm Aperture: 8mm 26mm Capture & Pre-accelerating section Length:2 m Aperture: 25 mm Gradient: 22 MV/m Chicane Wasted electron separation Bunch length compression Magnetic field of the positron source and pre-accelerating section 5~6T.5T Bz (T) 7 6 5 4 3 2 Bz (T) 8 6 4 2 2 4 6 8 1 Position (mm) 1-2 2 4 6 8 1 12 14 Position (m)

Positron source Target design SuperKEKB positron linac commissioning (3.3 GeV) 214, N(e+)/N(e-)~2% 215, N(e+)/N(e-)~3% [designed 5%] CEPC positron 8 Positron bunch charge > 3 nc Energy=2 GeV 7 Energy=3.6 GeV Electron beam: Energy=4 GeV 4GeV 6 1nC/bunch (maybe lower) 5 Electron beam: 4 kw 4 Energy deposition 3.784 GeV/e- @ FLUKA 2 784 W water cooling 1 Target length (mm) Target tungsten 15 mm Beam size:.5 mm N e +/N e - @ target exit 5 1 15 2

Positron source Capture accelerating tubes Positron yield(@ capture accelerating tube exit) within some energy range with different capture accelerating tube phase (or different input phase for pre-accelerating section) and different accelerating gradient Deceleration mode (D1) Acceleration mode (A1) 22 MV/m (Considering energy and positron yield, lower accelerating gradient have acceptable positron yield decrease) 1.9.8 Gradient=1 MV/m Gradient=12 MV/m Gradient=14 MV/m Gradient=16 MV/m Gradient=18 MV/m D1 A1.7 Gradient=2 MV/m Gradient=22 MV/m.6 Gradient=24 MV/m N e +/N e -.5.4.3 Deceleration Acceleration.2.1 SuperKEKB -2-15 -1-5 5 1 15 2 Input phase (degree) Only energy cutoff EE < 15 MeV SuperKEKB commissioning results

Dynamic results of PSPAS Positron source Pre-accelerating section RF phase Norm. RMS. Emittance 25 mm-mrad Energy: >2 MeV Positron yield Ne+/Ne- ~=.55 [-6,14,235 MeV,265 MeV].3 X-Y X-Xp Norm.Rms.Emittance X&Y 4 1 4 1 1 X.2 2 Y 1.1 2 1-1 -2-4 -1 4 6 8 1 25 2 15 1-1 X(mm) 1-2 1 X(mm) Y-Yp.5 Phase-E 4.4 1 1 26 2-3.3.2 1-1 Phase 12 Z (cm) 2 Yp (mrad) 2 Beam power loss (W/cm) 1 15 Energy (MeV) -1-4 25 E (MeV) N,rm s 25 Xp (mrad) 3 Y(mm) (mm-mrad) 35-2 24.1 23-4 5 22 1 2 4 6 Z (cm) 8 1 12 24 26 28-1 1-1 -5 2 4 6 Z (cm) 8 1 12 14 Energy (MeV) Y(mm) Phase (deg) 1

Positron source Parameters SLC LEP (LIL) KEKB/SUPER KEKB FCC-ee (conv.)* CEPC Incident e- beam energy 33 GeV 2 MeV 3.3/3.3 GeV 4.46 GeV 4 GeV e-/bunch [1 1 ] 3-5.5-3 (2 ns pulse) 6.25/6.25 5.53 6.25 Bunch/pulse 1 1 2/2 2 1 Rep. rate 12 Hz 1 Hz 5 Hz/5 Hz 2 Hz 1Hz Incident Beam power ~2 kw 1 kw (max) 3.3 kw 15 kw 4 kw Beam size @ target.6 -.8 mm < 2 mm />.7 mm.5 mm.5 mm Target thickness 6X 2X /4X 4.5X 4.3X Target size 7 mm 5 mm 14 mm 1mm Target Moving Fixed Fixed/Fixed Moving/Fixed Deposited power 4.4 kw /.6 kw 2.7 kw.78kw Capture system AMD λ/4 transformer /AMD AMD AMD Magnetic field 6.8T->.5T 1 T->.3T /4.5T->.4T 7.5T->.5T 6T->.5T Aperture of 1st cavity 18 mm 25mm/18 mm /3 mm 2 mm 25 mm Gradient of 1st cavity 3-4 MV/m ~1 MV/m /1 MV/m 3 MV/m 22 MV/m length of 1st cavity 1m 3m 2m 3m 2m Linac frequency 2855.98 MHz 2998.55 MHz 2855.98 MHz 2855.98 MHz 2856.75 MHz e+ yield @ CS exit ~1.6 e+/e- ~.3 e+/e- (linac exit) /~.5 e+/e- ~.7 e+/e- ~.55 e+/e- Tungsten radiation length X is.35 cm.

Outline Introduction Main parameters Linac layout Positron source design Linac design Electron linac Positron linac Error study Summary

Linac design Electron linac Focusing structure: Triplet Long drift length for accelerating tubes Beam size in Acc. tubes is small and easy control Same beam envelopes at X/Y planes 1 triplet+4 Acc. tubes 1 triplet+8 Acc. tubes Operation mode : High charge mode (positron production) 4GeV & 1 nc Low charge mode (electron injection) 1 GeV & 3 nc

Linac design Electron linac Positron production 1.4 High charge mode 1 nc && 4 GeV Energy spread (rms):.5% Emittance growth with errors 1 4 1.2 1 Energy spread (%) 1 3 x, r m s y, r m s 4.1 4.5 (%).8.6 r m s (nm) 1 2 Energy (GeV) 4 3.95 3.9.4 1 2 3 1 1 1 2 3-5 5 s [m] Z (m) t (ps) 5 4 3 2 15 1 X r m s X m a x Y r m s Y m a x Energy (GeV) 2 1 Beam size (mm) 5 1 2 3 Z (m) 5 1 15 2 25 3 Z (m)

Linac design Low charge mode 3 nc && 1 GeV Energy spread (rms):.15% Emittance (rms): 5 nm Electron linac Electron injection 2 1 4 Energy spread (%) x, r m s 1.16 1.5 y, r m s 1.14 (%).5 1 r m s (nm) 1 2 Energy (GeV) 1.12 1.1 1.8 5 1 1 5 1 1.6-1 -5 5 1 s [m] Z (m) t (ps) 12 2 1 15 X r m s X m a x 8 Y r m s 1 Y m a x Energy (GeV) 6 4 2 Beam size (mm) 5 2 4 6 8 1 1 2 3 4 5 6 7 8 9 1 Z (m) Z (m)

Linac design Positron linac PSPAS SAS+TAS && Damping Ring SAS: 2 MeV 4 GeV Damping Ring: 1.1 GeV TAS: 4GeV 1 GeV Because of the larger emittance of positron beam, the lattice design of TAS is focused on positron beam, especially the transverse focusing structure.

Linac design Positron linac Transverse focusing structure FODO, nesting on Acc. tubes Triplet Positron linac Controlled β function Smaller beam size Need smaller β Longer period length Reduce quadrupole number Cause larger β (m) 5 4 3 2 KLY SLED KLY SLED KLY SLED KLY SLED KLY SLED x y 1-1 1 2 3 4 5 6 7 Z (m)

Linac design Positron linac Positron linac 3 nc && 1 GeV Energy spread (rms):.16% Emittance (rms): 4/24 nm 2.5 1 4 (%) 2 1.5 1.5 r m s (nm) 1 3 1 2 x, r m s y, r m s Energy (GeV) 1.15 1.1 1.5 1 9.95 9.9 2 4 6 1 1 2 4 6 9.85-1 -5 5 1 s [m] Z (m) t (ps) 12 2 1 15 X r m s X m a x 8 Y r m s 1 Y m a x Energy (GeV) 6 4 2 Beam size (mm) 5 2 4 6 1 2 3 4 5 6 7 Z (m) Z (m)

Linac design Damping Ring DR V1. Unit Value Energy GeV 1.1 Circumference M 58.5 Repetition frequency Hz 1 Bending radius M 3.6 Dipole strength B T 1.1 U kev 35.8 Damping time x/y/z Ms 12/12/6 δ %.49 ε mm.mrad 32 Nature σ z mm 7 (23ps) Extract σ z mm 7 (23ps) ε inj mm.mrad 25 ε ext x/y mm.mrad 716/471 δ inj /δ ext %.6/.7 Energy acceptance by % 1. RF f RF MHz 65 V RF MV 1.8

Error study Misalignment errors with correction Positron linac 5 seeds with correction 4 One-to-one correction scheme for each period Errors: Gaussian distribution, 3σ truncated Beam orbit RMS value<.3 mm Rms value<.1 mm (high energy part) Error description Unit Value Translational error mm.1 Rotation error mrad.2 Magnetic element field error %.1 BPM uncertainty mm.1 RMS beam orbit (mm) 6 X 5 Y 3 2 1 1 2 3 4 5 6 7 Z (m)

Error study Misalignment errors with correction Electron linac First orbit correction + multi-particles simulation Low charge Beam orbit can be controlled well High charge Misalignments of Acc. Tubes BPM noisy Wakefield In operation, the orbit and emittance growth can be controlled better; Correction is based on multi-particles orbit Meet the requirements for positron production

Linac design Energy jitter Simulation condition 5 seeds Accelerating tubes phase errors and amp errors 4 in 1 KLY, 4 accelerating tubes in one group 3σ--Gaussian 15 Energy spread <.2% Phase errors:.5 degree (rms) Amp errors:.5% (rms) Energy jitter:.2% 25 =.1 deg && V e r r =.1% e r r 2 =.3 deg && V e r r =.5 deg && V e r r =.3% e r r =.5% e r r 1 15 =1 deg && V e r r e = 1% r r Probability (%) 5 Probability (%) 1 5 -.6 -.4 -.2.2.4.6.1.15.2.25 (%) (%)

Linac design Status Parameter Symbol Unit Goal Status e - /e + beam energy E e- /E e+ GeV 1 1/1 Repetition rate f rep Hz 1 1 e - /e + bunch population Ne-/Ne+ >9.4 1 9 >1.875 1 1 Ne-/Ne+ nc >1.5 >3.* Energy spread (e - /e + ) σ E <2 1-3 e - :1.5 1-3 e + :1.6 1-3 Emittance@1GeV (e - /e + ) nm 12 e - : 5/ 5 e + : 4/24~12 e - beam energy on Target GeV 4 4 e - bunch charge on Target nc 1 1 * Enough allowance and high bunch charge requirement possibility or potential

Summary The physics design of CEPC Linac have been proposed and the simulated beam dynamics results can meet the requirements of Booster. The design of positron source have been proposed. Preliminary damping ring is proposed. There are no issue that defies solution for CEPC linac. Further optimization are undergoing.

Linac design Short-Range Wakefield k. Yokoya and K. bane s Wakefield model periodic linac structure k. Yokoya and K. bane, The longitudinal high-frequency impedance of a periodic accelerating structure, Proceedings of the 1999 IEEE Particle Accelerator Conference Vol. 3 pag. 1725, New York, March 1999